1
|
Geisler S. Augustus Waller's foresight realized: SARM1 in peripheral neuropathies. Curr Opin Neurobiol 2024; 87:102884. [PMID: 38852438 PMCID: PMC11600426 DOI: 10.1016/j.conb.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Peripheral neuropathy is a common neurodegenerative condition characterized by numbness, tingling, pain, and weakness that frequently starts in the distal limbs. Arising from multiple etiologies, many peripheral neuropathies exhibit a slowly progressive course due to axon degeneration for which no effective treatments exist. During the past decade, numerous crucial insights into mechanisms of axon degeneration in peripheral neuropathies emerged from experiments involving nerve-cutting procedures, revealing the central role of the SARM1 axon degeneration pathway in both. Here I review commonalities and differences in the role of SARM1 after nerve cut and in several acquired and inherited peripheral neuropathies. This new knowledge now paves the way for the development of therapeutics that directly address root causes of various kinds of neuropathies.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, 660S. Euclid Ave, Box 8111, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Helbing DL, Kirkpatrick JM, Reuter M, Bischoff J, Stockdale A, Carlstedt A, Cirri E, Bauer R, Morrison H. Proteomic analysis of peripheral nerve myelin during murine aging. Front Cell Neurosci 2023; 17:1214003. [PMID: 37964793 PMCID: PMC10642449 DOI: 10.3389/fncel.2023.1214003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Aging of the peripheral nervous system (PNS) is associated with structural and functional changes that lead to a reduction in regenerative capacity and the development of age-related peripheral neuropathy. Myelin is central to maintaining physiological peripheral nerve function and differences in myelin maintenance, degradation, formation and clearance have been suggested to contribute to age-related PNS changes. Recent proteomic studies have elucidated the complex composition of the total myelin proteome in health and its changes in neuropathy models. However, changes in the myelin proteome of peripheral nerves during aging have not been investigated. Here we show that the proteomes of myelin fractions isolated from young and old nerves show only subtle changes. In particular, we found that the three most abundant peripheral myelin proteins (MPZ, MBP, and PRX) do not change in old myelin fractions. We also show a tendency for high-abundance myelin proteins other than these three to be downregulated, with only a small number of ribosome-related proteins significantly downregulated and extracellular matrix proteins such as collagens upregulated. In addition, we illustrate that the peripheral nerve myelin proteome reported in this study is suitable for assessing myelin degradation and renewal during peripheral nerve degeneration and regeneration. Our results suggest that the peripheral nerve myelin proteome is relatively stable and undergoes only subtle changes in composition during mouse aging. We proffer the resultant dataset as a resource and starting point for future studies aimed at investigating peripheral nerve myelin during aging. Said datasets are available in the PRIDE archive under the identifier PXD040719 (aging myelin proteome) and PXD041026 (sciatic nerve injury proteome).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Julia Bischoff
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Amy Stockdale
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Seixas AI, Morais MRG, Brakebusch C, Relvas JB. A RhoA-mediated biomechanical response in Schwann cells modulates peripheral nerve myelination. Prog Neurobiol 2023:102481. [PMID: 37315917 DOI: 10.1016/j.pneurobio.2023.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/22/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Myelin improves axonal conduction velocity and is essential for nerve development and regeneration. In peripheral nerves, Schwann cells depend on bidirectional mechanical and biochemical signaling to form the myelin sheath but the mechanism underlying this process is not understood. Rho GTPases are integrators of "outside-in" signaling that link cytoskeletal dynamics with cellular architecture to regulate morphology and adhesion. Using Schwann cell-specific gene inactivation in the mouse, we discovered that RhoA promotes the initiation of myelination, and is required to both drive and terminate myelin growth at different stages of peripheral myelination, suggesting developmentally-specific modes of action. In Schwann cells, RhoA targets actin filament turnover, via Cofilin 1, actomyosin contractility and cortical actin-membrane attachments. This mechanism couples actin cortex mechanics with the molecular organization of the cell boundary to target specific signaling networks that regulate axon-Schwann cell interaction/adhesion and myelin growth. This work shows that RhoA is a key component of a biomechanical response required to control Schwann cell state transitions for proper myelination of peripheral nerves.
Collapse
Affiliation(s)
- Ana I Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Miguel R G Morais
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | - João B Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Dept of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
5
|
Deng C, Reinhard S, Hennlein L, Eilts J, Sachs S, Doose S, Jablonka S, Sauer M, Moradi M, Sendtner M. Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy. Transl Neurodegener 2022; 11:31. [PMID: 35650592 PMCID: PMC9161492 DOI: 10.1186/s40035-022-00304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. Methods Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. Results We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. Conclusions These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00304-2.
Collapse
Affiliation(s)
- Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Stefan Sachs
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| |
Collapse
|
6
|
Peretti A, Squintani G, Taioli F, Tagliapietra M, Cavallaro T, Fabrizi GM. Neuropathic pain in Charcot-Marie-Tooth Disease. Eur J Pain 2022; 26:929-936. [PMID: 35129250 DOI: 10.1002/ejp.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/12/2022] [Accepted: 02/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pain, either nociceptive or neuropathic (NP), is a common symptom in Charcot-Marie-Tooth (CMT) disease. METHODS We investigated small fibers involvement and its correlation with pain in different CMT subtypes through a systematic clinical and neurophysiological study. We enrolled 50 patients: 19 with duplication of PMP22 (CMT1A), 11 with mutation of MPZ (CMT1B, CMT2I/J or CMTDID), 12 with mutation of GJB1 (CMTX1) and 8 with mutation of MFN2 (CMT2A and CMT2A2B). Pain was rated with the 11-point Numerical Rating Scale and characterized through Neuropathic Pain Symptoms Inventory). Laser evoked potentials (LEPs) were recorded after right foot and hand stimulation and N2-P2 complex amplitude and latency were compared with those of 41 controls. RESULTS Overall pain prevalence was 36%. NP was present in 14,6 % of patients, with a length-dependent distribution in 85,7% of cases and it was significantly more frequent in CMT1A (p<0,001). Aδ fibers involvement greatly varies between CMT subtypes, reflecting differences in molecular pathology and pathophysiologic mechanisms. Prolonged N2 latency from foot stimulation was noted in 11 CMT1A patients, 5 of which report NP. MPZ-CMTs displayed different neurophysiological phenotypes and a very low prevalence of NP. LEPs were normal in all but one CMTX1 patients, although lower limbs N2-P2 amplitude was significantly reduced in males (p=0,043). MFN2-CMTs were NP free and LEPs recordings were all normal. NP strictly correlated with LEPs alterations (p=0,017). CONCLUSIONS NP prevalence varies among CMTs subtypes and is mainly related to Aδ fibers impairment.
Collapse
Affiliation(s)
- A Peretti
- Department of Neurology, Ospedale San Bortolo, Azienda ULSS8 Berica, Vicenza, Italy
| | - G Squintani
- Department of Neurology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Veneto, Italy
| | - F Taioli
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy
| | - M Tagliapietra
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy
| | - T Cavallaro
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy
| | - G M Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy
| |
Collapse
|
7
|
Caillaud M, Gobeaux F, Hémadi M, Boutary S, Guenoun P, Desmaële D, Couvreur P, Wien F, Testard F, Massaad-Massade L. Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles. Int J Pharm 2021; 609:121117. [PMID: 34562556 DOI: 10.1016/j.ijpharm.2021.121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Small interfering RNAs (siRNA) are attractive and powerful tools to inhibit the expression of a targeted gene. However, their extreme hydrophilicities combined with a negative charge and short plasma half-life counteract their use as therapeutics. Previously, we chemically linked siRNA to squalene (SQ) which self-assembled as nanoparticles (NPs) with pharmacological efficiency in cancers and recently in a hereditary neuropathy. In order to understand the siRNA-SQ NP assembly and fate once intravenously injected, the present study detailed characterization of siRNA-SQ NP structure and its interaction with serum components. From SAXS and SANS analysis, we propose that the siRNA-SQ bioconjugate self-assembled as 11-nm diameter supramolecular assemblies, which are connected one to another to form spherical nanoparticles of around 130-nm diameter. The siRNA-SQ NPs were stable in biological media and interacted with serum components, notably with albumin and LDL. The high specificity of siRNA to decrease or normalize gene expression and the high colloidal stability when encapsulated into squalene nanoparticles offer promising targeted therapy with wide applications for pathologies with gene expression dysregulation.
Collapse
Affiliation(s)
- Marie Caillaud
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Frédéric Gobeaux
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Miryana Hémadi
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 75013 Paris, France
| | - Suzan Boutary
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | | | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Liliane Massaad-Massade
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.
| |
Collapse
|
8
|
Weis J, Katona I, Nikolin S, Nobbio L, Prada V, Grandis M, Schenone A. Techniques for the standard histological and ultrastructural assessment of nerve biopsies. J Peripher Nerv Syst 2021; 26 Suppl 2:S3-S10. [PMID: 34768314 DOI: 10.1111/jns.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
It is always a challenge to acquire a clear picture of the pathological processes and changes in any disease. For this purpose, it is advantageous to directly examine the affected organ. Nerve biopsy has been a method of choice for decades to classify peripheral neuropathies and to find clues to uncover their etiology. The histologic examination of the peripheral nerve provides information on axonal or myelin pathology as well as on the surrounding connective tissue and vascularization of the nerve. Minimal requirements of the workup include paraffin histology as well as resin semithin section histology. Cryostat sections, teased fiber preparations and electron microscopy are potentially useful in a subset of cases. Here we describe our standard procedures for the workup of the tissue sample and provide examples of diagnostically relevant findings.
Collapse
Affiliation(s)
- Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Nikolin
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Lucilla Nobbio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
9
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
10
|
Cavallaro T, Tagliapietra M, Fabrizi GM, Bai Y, Shy ME, Vallat JM. Hereditary neuropathies: A pathological perspective. J Peripher Nerv Syst 2021; 26 Suppl 2:S42-S60. [PMID: 34499384 DOI: 10.1111/jns.12467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
Hereditary neuropathies may result from mutations in genes expressed by Schwann cells or neurons that affect selectively the peripheral nervous system (PNS) or may represent a minor or major component of complex inherited diseases that involve also the central nervous system and/or other organs and tissues. The chapter is constantly expanding and reworking, thanks to advances of molecular genetics; next-generation sequencing is identifying a plethora of new genes and is revolutionizing the diagnostic approach. In the past, diagnostic sural nerve biopsies paved the way to the discovery and elucidation of major genes and molecular pathways associated to most frequent hereditary motor-sensory neuropathies. Nowadays, a sural nerve biopsy may prove useful in selected cases for the differential diagnosis of an acquired neuropathy when clinical examination, nerve conduction studies, and molecular tests are not sufficiently informative. Skin biopsy has emerged as a minimally invasive window on the PNS, which may provide biomarkers of progression and clues to the physiopathology and molecular pathology of inherited neuropathies. The aim of our review is to illustrate the pathological features of more frequent and paradigmatic hereditary neuropathies and to highlight their correlations with the roles of the involved genes and functional consequences of related molecular defects.
Collapse
Affiliation(s)
- Tiziana Cavallaro
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Matteo Tagliapietra
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jean-Michel Vallat
- Department of Neurology, National Reference Center for "Rare Peripheral Neuropathies", CHU Dupuytren, Limoges, France
| |
Collapse
|
11
|
Huang C, Shen ZR, Huang J, Sun SC, Ma D, Li MY, Wang ZK, Zheng YC, Zheng ZJ, He F, Xu X, Li Z, Zheng BY, Li YM, Xu XM, Xiong F. C1orf194 deficiency leads to incomplete early embryonic lethality and dominant intermediate Charcot-Marie-Tooth disease in a knockout mouse model. Hum Mol Genet 2021; 29:2471-2480. [PMID: 32592472 DOI: 10.1093/hmg/ddaa129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/23/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy and shows clinical and genetic heterogeneity. Mutations in C1orf194 encoding a Ca2+ regulator in neurons and Schwann cells have been reported previously by us to cause CMT disease. In here, we further investigated the function and pathogenic mechanism of C1or194 by generating C1orf194 knockout (KO) mice. Homozygous mutants of C1orf194 mice exhibited incomplete embryonic lethality, characterized by differentiation abnormalities and stillbirth on embryonic days 7.5-15.5. Heterozygous and surviving homozygous C1orf194 KO mice developed motor and sensory defects at the age of 4 months. Electrophysiologic recordings showed decreased compound muscle action potential and motor nerve conduction velocity in the sciatic nerve of C1orf194-deficient mice as a pathologic feature of dominant intermediate-type CMT. Transmission electron microscopy analysis revealed demyelination and axonal atrophy in the sciatic nerve as well as swelling and loss of mitochondrial matrix and other abnormalities in axons and Schwann cells. A histopathologic examination showed a loss of motor neurons in the anterior horn of the spinal cord and muscle atrophy. Shorter internodal length between nodes of Ranvier and Schmidt-Lanterman incisures was detected in the sciatic nerve of affected animals. These results indicate that C1orf194 KO mice can serve as an animal model of CMT with a severe dominant intermediate CMT phenotype that can be used to investigate the molecular mechanisms of the disease and evaluate the efficacy of therapeutic strategies.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zong Rui Shen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jin Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shun Chang Sun
- Department of Clinical Laboratory, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mei Yi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhi Kui Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Chun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuo Jun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyuan Xu
- Experimental Teaching Center for Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Yang Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Mao Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiang Min Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R. China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R. China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
12
|
Gutierrez-Quintana R, Mellersh C, Wessmann A, Ortega M, Penderis J, Sharpe S, Freeman E, Stevenson L, Burmeister L. Hereditary sensory and autonomic neuropathy in a family of mixed breed dogs associated with a novel RETREG1 variant. J Vet Intern Med 2021; 35:2306-2314. [PMID: 34387380 PMCID: PMC8478055 DOI: 10.1111/jvim.16242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background Hereditary sensory and autonomic neuropathies (HSANs) are a group of genetic disorders affecting the peripheral nervous system. Two different associated variants have been identified in dogs: 1 in Border Collies and 1 in Spaniels and Pointers. Objectives Clinically and genetically characterize HSAN in a family of mixed breed dogs. Animals Five 7‐month‐old mixed breed dogs from 2 related litters were presented for evaluation of a 2‐month history of acral mutilation and progressive pelvic limb gait abnormalities. Methods Complete physical, neurological, electrodiagnostic, and histopathological evaluations were performed. Whole genome sequencing of 2 affected dogs (1 from each litter) was used to identify variants that were homozygous or heterozygous in both cases, but wild type in 217 control genomes of 100 breeds. Immunohistochemistry was used to assess protein expression. Results Complete physical, neurological, electrodiagnostic, and histopathological evaluations confirmed a disorder affecting sensory and autonomic nerves. Whole genome sequencing identified a missense variant in the RETREG1 (reticulophagy regulator 1) gene (c.656C > T, p.P219L). All affected dogs were homozygous for the variant, which was not detected in 1193 dogs from different breeds. Immunohistochemistry showed no expression of RETREG1 in the cerebellum of affected dogs. One of the affected dogs lived for 5 years and showed gradual progression of the clinical signs. Conclusions and Clinical Importance We confirmed the diagnosis of HSAN in a family of mixed breed dogs and identified a novel and possibly pathogenic RETREG1 variant. Affected dogs experienced gradual deterioration over several years.
Collapse
Affiliation(s)
| | | | | | | | | | - Samuel Sharpe
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Lynn Stevenson
- Pathology Department, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
13
|
Korinthenberg R, Trollmann R, Plecko B, Stettner GM, Blankenburg M, Weis J, Schoser B, Müller-Felber W, Lochbuehler N, Hahn G, Rudnik-Schöneborn S. Differential Diagnosis of Acquired and Hereditary Neuropathies in Children and Adolescents-Consensus-Based Practice Guidelines. CHILDREN-BASEL 2021; 8:children8080687. [PMID: 34438578 PMCID: PMC8392610 DOI: 10.3390/children8080687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Disorders of the peripheral nerves can be caused by a broad spectrum of acquired or hereditary aetiologies. The objective of these practice guidelines is to provide the reader with information about the differential diagnostic workup for a target-oriented diagnosis. Following an initiative of the German-speaking Society of Neuropaediatrics, delegates from 10 German societies dedicated to neuroscience worked in close co-operation to write this guideline. Applying the Delphi methodology, the authors carried out a formal consensus process to develop practice recommendations. These covered the important diagnostic steps both for acquired neuropathies (traumatic, infectious, inflammatory) and the spectrum of hereditary Charcot-Marie-Tooth (CMT) diseases. Some of our most important recommendations are that: (i) The indication for further diagnostics must be based on the patient's history and clinical findings; (ii) Potential toxic neuropathy also has to be considered; (iii) For focal and regional neuropathies of unknown aetiology, nerve sonography and MRI should be performed; and (iv) For demyelinated hereditary neuropathy, genetic diagnostics should first address PMP22 gene deletion: once that has been excluded, massive parallel sequencing including an analysis of relevant CMT-genes should be performed. This article contains a short version of the guidelines. The full-length text (in German) can be found at the Website of the "Arbeitsgemeinschaft der Wissenschftlichen Medizinischen Fachgesellschaften e.V. (AWMF), Germany.
Collapse
Affiliation(s)
- Rudolf Korinthenberg
- Division of Neuropaediatrics and Muscular Disorders, Faculty of Medicine, University Medical Center (UMC), University of Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-46017
| | - Regina Trollmann
- Department of Pediatrics, Division of Neuropaediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Medical University Graz, 8036 Graz, Austria;
| | - Georg M. Stettner
- Neuromuscular Center Zurich, Department of Pediatric Neurology, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Markus Blankenburg
- Department of Pediatric Neurology, Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany;
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Ziemssenstr. 1a, 80336 Munich, Germany;
| | | | - Nina Lochbuehler
- Pediatric Radiology, Institute of Radiology, Olgahospital, Klinikum Stuttgart, 70174 Stuttgart, Germany;
| | - Gabriele Hahn
- Department of Radiological Diagnostics, UMC, University of Dresden, 01307 Dresden, Germany;
| | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Hereditary motor neuropathies (HMN) comprise a broad genotypic and phenotypic spectrum of rare, progressively disabling diseases manifesting with length-dependent muscle weakness and atrophy. To date, more than half of the cases cannot be genetically explained. To provide symptomatic and disease-modifying treatments in the future, a better understanding of disease mechanisms is required. RECENT FINDINGS By whole exome and genome sequencing, the discovery of several novel genes (SCO2, TDRKH, SPTAN1, CADM3, and SORD) involved in the pathogenesis of HMN has now relevantly changed the pathophysiological knowledge. This recent success in causative understanding has mainly been driven by the development of functional models including cell culture, animal, and patient-derived induced pluripotent stem cell platforms. These models have an important impact on therapeutic advances including broader approaches to prevent or reverse axonal degeneration and individualized gene silencing attempts using sequence-specific RNA degradation mechanisms. SUMMARY In rare diseases such as HMN, the recent development of genetic sequencing and data interpretation methods has enabled a broader diagnostic approach, whereas treatment strategies are becoming more individualized. Significant milestones have been reached in the discovery of new genes, the establishment of functional disease models, and the preclinical development of mechanistic-based therapies.
Collapse
|
15
|
Safka Brozkova D, Stojkovic T, Haberlová J, Mazanec R, Windhager R, Fernandes Rosenegger P, Hacker S, Züchner S, Kochański A, Leonard-Louis S, Francou B, Latour P, Senderek J, Seeman P, Auer-Grumbach M. Demyelinating Charcot-Marie-Tooth neuropathy associated with FBLN5 mutations. Eur J Neurol 2020; 27:2568-2574. [PMID: 32757322 DOI: 10.1111/ene.14463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth disease type 1 (CMT1) is a group of autosomal dominantly inherited demyelinating sensorimotor neuropathies. Symptoms usually start in the first to second decade and include distal muscle weakness and wasting, sensory disturbances and foot deformities. The most frequent cause is a duplication of PMP22 whilst point mutations in PMP22 and other genes are rare causes. Recently, FBLN5 mutations have been reported in CMT1 families. METHODS Individuals with FBLN5-associated CMT1 were compiled from clinical and research genetic testing laboratories. Clinical data were extracted from medical records or obtained during patients' visits at our centres or primary care sites. RESULTS Nineteen CMT1 families containing 38 carriers of three different FBLN5 missense variants were identified and a mutational hotspot at c.1117C>T (p.Arg373Cys) was confirmed. Compared to patients with the common PMP22 duplication, individuals with FBLN5 variants had a later age of diagnosis (third to fifth decade) and less severely reduced motor median nerve conduction velocities (around 31 m/s). The most frequent clinical presentations were prominent sensory disturbances and painful sensations, often as initial symptom and pronounced in the upper limbs, contrasting with rather mild to moderate motor deficits. CONCLUSIONS Our study confirms the relevance of FBLN5 mutations in CMT1. It is proposed to include FBLN5 in the genetic work-up of individuals suspected with CMT1, particularly when diagnosis is established beyond the first and second decade and comparably moderate motor deficits contrast with early and marked sensory involvement. FBLN5-associated CMT1 has a recognizable clinical phenotype and should be referred to as CMT1H according to the current classification scheme.
Collapse
Affiliation(s)
- D Safka Brozkova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - T Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, APHP, G-H Pitié-Salpêtrière, Paris, France
| | - J Haberlová
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - R Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - R Windhager
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - P Fernandes Rosenegger
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - S Hacker
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - S Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - A Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - S Leonard-Louis
- Unité de Pathologie Neuromusculaire, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, APHP, G-H Pitié-Salpêtrière, Paris, France
| | - B Francou
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, APHP, Hôpital Kremlin-Bicêtre, Paris, France
| | - P Latour
- Service de Biochimie et Biologie Moléculaire Grand Est, CHU de Lyon, GH Est, Bron, France
| | - J Senderek
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - P Seeman
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - M Auer-Grumbach
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Zuo S, Shi G, Fan J, Fan B, Zhang X, Liu S, Hao Y, Wei Z, Zhou X, Feng S. Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Exp Ther Med 2020; 21:48. [PMID: 33273976 PMCID: PMC7706384 DOI: 10.3892/etm.2020.9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
Schwann cells are unique glial cells in the peripheral nervous system. These cells provide a range of cytokines and nutritional factors to maintain axons and support axonal regeneration. However, little is known concerning adhesion-associated epigenetic changes that occur in Schwann cells after peripheral nerve injury (PNI). In the present study, adhesion-associated DNA methylation biomarkers were assessed between normal and injury peripheral nerve. Specifically, normal Schwann cells (NSCs) and activated Schwann cells (ASCs) were obtained from adult Wistar rats. After the Schwann cells were identified, proliferation and adhesion assays were used to assess differences between NSCs and ASCs. Methylated DNA immunoprecipitation-sequencing and bioinformatics analysis were used to identify and analyze the differentially methylated genes. Reverse transcription-quantitative PCR was performed to assess the expression levels of adhesion-associated genes. In the present study, the proliferation and adhesion assays demonstrated that ASCs had a more robust proliferative activity and adhesion compared with NSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify methylation-associated biological processes and signaling pathways. Protein-protein interaction network analysis revealed that Fyn, Efna1, Jak2, Vav3, Flt4, Epha7, Crk, Kitlg, Ctnnb1 and Ptpn11 were potential markers for Schwann cell adhesion. The expression levels of several adhesion-associated genes, such as vinculin, BCAR1 scaffold protein, collagen type XVIII α1 chain and integrin subunit β6, in ASCs were altered compared with those in NSCs. The current study analyzed adhesion-associated DNA methylation patterns of Schwann cells and identified candidate genes that may potentially regulate Schwann cell adhesion in Wistar rats before and after PNI.
Collapse
Affiliation(s)
- Shanhuai Zuo
- Department of Radiology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Guidong Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jianchao Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xiaolei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
17
|
Sullivan JM, Motley WW, Johnson JO, Aisenberg WH, Marshall KL, Barwick KE, Kong L, Huh JS, Saavedra-Rivera PC, McEntagart MM, Marion MH, Hicklin LA, Modarres H, Baple EL, Farah MH, Zuberi AR, Lutz CM, Gaudet R, Traynor BJ, Crosby AH, Sumner CJ. Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy. J Clin Invest 2020; 130:1506-1512. [PMID: 32065591 DOI: 10.1172/jci128152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/12/2019] [Indexed: 12/23/2022] Open
Abstract
Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway-modulating therapeutics.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William W Motley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janel O Johnson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - William H Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine L Marshall
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katy Es Barwick
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer S Huh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Meriel M McEntagart
- Medical Genetics, Clinical Developmental Sciences, St. George's University of London, London, United Kingdom
| | | | - Lucy A Hicklin
- Department of Ears, Nose and Throat (ENT), St. George's Hospital, London, United Kingdom
| | | | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aamir R Zuberi
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Cathleen M Lutz
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, Maryland, USA.,Brain Sciences Institute, Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, United Kingdom
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Abstract
Abstract
Inherited peripheral neuropathy is the most common hereditary neuromuscular disease with a prevalence of about 1:2,500. The most frequent form is Charcot-Marie-Tooth disease (CMT, or hereditary motor and sensory neuropathy [HMSN]). Other clinical entities are hereditary neuropathy with liability to pressure palsies (HNPP), distal hereditary motor neuropathies (dHMN), and hereditary sensory and autonomic neuropathies (HSAN). With the exception of HNPP, which is almost always caused by defects of the PMP22 gene, all other forms show genetic heterogeneity with altogether more than 100 genes involved. Mutation detection rates vary considerably, reaching up to 80 % in demyelinating CMT (CMT1) but are still as low as 10–30 % in axonal CMT (CMT2), dHMN, and HSAN. Based on current information, analysis of only four genes (PMP22, GJB1, MPZ, MFN2) identifies 80–90 % of CMT-causing mutations that can be detected in all known disease genes. For the remaining patients, parallel analysis of multiple neuropathy genes using next-generation sequencing is now replacing phenotype-oriented multistep gene-by-gene sequencing. Such approaches tend to generate a wealth of genetic information that requires comprehensive evaluation of the pathogenic relevance of identified variants. In this review, we present current classification systems, specific phenotypic clues, and diagnostic yields in the different subgroups of hereditary CMT and motor neuropathies.
Collapse
|
19
|
Muranova LK, Sudnitsyna MV, Strelkov SV, Gusev NB. Mutations in HspB1 and hereditary neuropathies. Cell Stress Chaperones 2020; 25:655-665. [PMID: 32301006 PMCID: PMC7332652 DOI: 10.1007/s12192-020-01099-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is major hereditary neuropathy. CMT has been linked to mutations in a range of proteins, including the small heat shock protein HspB1. Here we review the properties of several HspB1 mutants associated with CMT. In vitro, mutations in the N-terminal domain lead to a formation of larger HspB1 oligomers when compared with the wild-type (WT) protein. These mutants are resistant to phosphorylation-induced dissociation and reveal lower chaperone-like activity than the WT on a range of model substrates. Mutations in the α-crystallin domain lead to the formation of yet larger HspB1 oligomers tending to dissociate at low protein concentration and having variable chaperone-like activity. Mutations in the conservative IPV motif within the C-terminal domain induce the formation of very large oligomers with low chaperone-like activity. Most mutants interact with a partner small heat shock protein, HspB6, in a manner different from that of the WT protein. The link between the altered physico-chemical properties and the pathological CMT phenotype is a subject of discussion. Certain HspB1 mutations appear to have an effect on cytoskeletal elements such as intermediate filaments and/or microtubules, and by this means damage the axonal transport. In addition, mutations of HspB1 can affect the metabolism in astroglia and indirectly modulate the viability of motor neurons. While the mechanisms of pathological mutations in HspB1 are likely to vary greatly across different mutations, further in vitro and in vivo studies are required for a better understanding of the CMT disease at molecular level.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991
| | - Maria V Sudnitsyna
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991
| | - Sergei V Strelkov
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Biocrystallography, KU Leuven, 3000, Leuven, Belgium
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
20
|
Slosarek EL, Schuh AL, Pustova I, Johnson A, Bird J, Johnson M, Frankel EB, Bhattacharya N, Hanna MG, Burke JE, Ruhl DA, Quinney K, Block S, Peotter JL, Chapman ER, Sheets MD, Butcher SE, Stagg SM, Audhya A. Pathogenic TFG Mutations Underlying Hereditary Spastic Paraplegia Impair Secretory Protein Trafficking and Axon Fasciculation. Cell Rep 2020; 24:2248-2260. [PMID: 30157421 PMCID: PMC6152936 DOI: 10.1016/j.celrep.2018.07.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/30/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Length-dependent axonopathy of the corticospinal tract causes lower limb spasticity and is characteristic of several neurological disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis. Mutations in Trk-fused gene (TFG) have been implicated in both diseases, but the pathomechanisms by which these alterations cause neuropathy remain unclear. Here, we biochemically and genetically define the impact of a mutation within the TFG coiled-coil domain, which underlies earlyonset forms of HSP. We find that the TFG (p.R106C) mutation alters compaction of TFG ring complexes, which play a critical role in the export of cargoes from the endoplasmic reticulum (ER). Using CRISPR-mediated genome editing, we engineered human stem cells that express the mutant form of TFG at endogenous levels and identified specific defects in secretion from the ER and axon fasciculation following neuronal differentiation. Together, our data highlight a key role for TFG-mediated protein transport in the pathogenesis of HSP. Slosarek et al. demonstrate that pathological mutations in TFG, which underlie various forms of neurodegenerative disease, impair secretory protein transport from the endoplasmic reticulum and compromise the ability of axons to self-associate. These findings highlight a critical function for the early secretory pathway in neuronal maintenance.
Collapse
Affiliation(s)
- Erin L Slosarek
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Adam Johnson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jennifer Bird
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Matthew Johnson
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - E B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Nilakshee Bhattacharya
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jordan E Burke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Ruhl
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kyle Quinney
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jennifer L Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael D Sheets
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Muranova LK, Ryzhavskaya AS, Sudnitsyna MV, Shatov VM, Gusev NB. Small Heat Shock Proteins and Human Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW) 2019; 84:1256-1267. [PMID: 31760916 DOI: 10.1134/s000629791911004x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The review discusses the role of small heat shock proteins (sHsps) in human neurodegenerative disorders, such as Charcot-Marie-Tooth disease (CMT), Parkinson's and Alzheimer's diseases, and different forms of tauopathies. The effects of CMT-associated mutations in two small heat shock proteins (HspB1 and HspB8) on the protein stability, oligomeric structure, and chaperone-like activity are described. Mutations in HspB1 shift the equilibrium between different protein oligomeric forms, leading to the alterations in its chaperone-like activity and interaction with protein partners, which can induce damage of the cytoskeleton and neuronal death. Mutations in HspB8 affect its interaction with the adapter protein Bag3, as well as the process of autophagy, also resulting in neuronal death. The impact of sHsps on different forms of amyloidosis is discussed. Experimental studies have shown that sHsps interact with monomers or small oligomers of amyloidogenic proteins, stabilize their structure, prevent their aggregation, and/or promote their specific proteolytic degradation. This effect might be due to the interaction between the β-strands of sHsps and β-strands of target proteins, which prevents aggregation of the latter. In cooperation with the other heat shock proteins, sHsps can promote disassembly of oligomers formed by amyloidogenic proteins. Despite significant achievements, further investigations are required for understanding the role of sHsps in protection against various neurodegenerative diseases.
Collapse
Affiliation(s)
- L K Muranova
- Lomonosov Moscow State University, School of Biology, Department of Biochemistry, Moscow, 119991, Russia
| | - A S Ryzhavskaya
- Lomonosov Moscow State University, School of Biology, Department of Biochemistry, Moscow, 119991, Russia
| | - M V Sudnitsyna
- Lomonosov Moscow State University, School of Biology, Department of Biochemistry, Moscow, 119991, Russia
| | - V M Shatov
- Lomonosov Moscow State University, School of Biology, Department of Biochemistry, Moscow, 119991, Russia
| | - N B Gusev
- Lomonosov Moscow State University, School of Biology, Department of Biochemistry, Moscow, 119991, Russia.
| |
Collapse
|
22
|
Sundal C, Carmona S, Yhr M, Almström O, Ljungberg M, Hardy J, Hedberg-Oldfors C, Fred Å, Brás J, Oldfors A, Andersen O, Guerreiro R. An AARS variant as the likely cause of Swedish type hereditary diffuse leukoencephalopathy with spheroids. Acta Neuropathol Commun 2019; 7:188. [PMID: 31775912 PMCID: PMC6880494 DOI: 10.1186/s40478-019-0843-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Swedish type Hereditary Diffuse Leukoencephalopathy with Spheroids (HDLS-S) is a severe adult-onset leukoencephalopathy with the histopathological hallmark of neuraxonal degeneration with spheroids, described in a large family with a dominant inheritance pattern. The initial stage of the disease is dominated by frontal lobe symptoms that develop into a rapidly advancing encephalopathy with pyramidal, deep sensory, extrapyramidal and optic tract symptoms. Median survival is less than 10 years. Recently, pathogenic mutations in CSF1R were reported in a clinically and histologically similar leukoencephalopathy segregating in several families. Still, the cause of HDLS-S remained elusive since its initial description in 1984, with no CSF1R mutations identified in the family. Here we update the original findings associated with HDLS-S after a systematic and recent assessment of several family members. We also report the results from exome sequencing analyses indicating the p.Cys152Phe variant in the alanyl tRNA synthetase (AARS) gene as the probable cause of this disease. The variant affects an amino acid located in the aminoacylation domain of the protein and does not cause differences in splicing or expression in the brain. Brain pathology in one case after 10 years of disease duration showed the end stage of the disease to be characterized by widespread liquefaction of the white matter leaving only some macrophages and glial cells behind the centrifugally progressing front. These results point to AARS as a candidate gene for rapidly progressing adult-onset CSF1R-negative leukoencephalopathies.
Collapse
Affiliation(s)
- Christina Sundal
- Department of Clinical Neurology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3rd floor, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden
| | - Susana Carmona
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E, Grand Rapids, MI, 49503-2518, USA
| | - Maria Yhr
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Odd Almström
- Department of Clinical Neurology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3rd floor, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden
| | - Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - John Hardy
- Department of Neurodegenerative Disease, Reta Lila Weston Laboratories, Queen Square Genomics, UCL Dementia Research Institute, London, UK
| | - Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Åsa Fred
- Department of Pathology, Hospital of Halland, Halmstad, Sweden
| | - José Brás
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E, Grand Rapids, MI, 49503-2518, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Oluf Andersen
- Department of Clinical Neurology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3rd floor, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden.
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E, Grand Rapids, MI, 49503-2518, USA.
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
23
|
Manganelli F, Parisi S, Nolano M, Miceli F, Tozza S, Pisciotta C, Iodice R, Provitera V, Cicatiello R, Zuchner S, Taglialatela M, Russo T, Santoro L. Insights into the pathogenesis of
ATP1A1
‐related CMT disease using patient‐specific iPSCs. J Peripher Nerv Syst 2019; 24:330-339. [DOI: 10.1111/jns.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Silvia Parisi
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Naples “Federico II” Naples Italy
| | - Maria Nolano
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
- Department of NeurologyIstituti Clinici Scientifici Maugeri IRCCS, SpA SB Pavia Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Stefano Tozza
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Chiara Pisciotta
- Rare Neurodegenerative and Neurometabolic Disease UnitFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Rosa Iodice
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Vincenzo Provitera
- Department of NeurologyIstituti Clinici Scientifici Maugeri IRCCS, SpA SB Pavia Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Naples “Federico II” Naples Italy
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of Medicine Miami Florida
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Tommaso Russo
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Naples “Federico II” Naples Italy
| | - Lucio Santoro
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| |
Collapse
|
24
|
Eggermann K, Gess B, Häusler M, Weis J, Hahn A, Kurth I. Hereditary Neuropathies. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:91-97. [PMID: 29478438 DOI: 10.3238/arztebl.2018.0091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hereditary peripheral neuropathies constitute a large group of genetic diseases, with an overall prevalence of 1:2500. In recent years, the use of so-called next-generation sequencing (NGS) has led to the identification of many previously unknown involved genes and genetic defects that cause neuropathy. In this article, we review the procedures and utility of genetic evaluation for hereditary neurop - athies, while also considering the implications of the fact that causally directed treatment of these disorders is generally unavailable. METHODS This review is based on pertinent publications retrieved by a PubMed search employing the search terms "hereditary neuropathy," "Charcot-Marie-Tooth disease," "hereditary sensory neuropathy," and "hereditary motor neuropathy." RESULTS With rare exceptions, the diagnostic evaluation for hereditary neuropathies proceeds in stepwise fashion, beginning with the study of individual genes. If this fails to detect any abnormality, NGS analysis, which involves the sequencing of many different genes in parallel and has now become available for routine diagnosis, should be performed early on in the diagnostic work-up. Exome and genome analyses are currently performed only when considered to be indicated in the individual case. Whenever a hereditary neuropathy is suspected, other (including potentially treatable) causes of neuropathy should be ruled out. Mutations in neurop athy-associated genes may also be associated with other clinical entities such as spastic paraplegia or myopathy. Thus, interdisciplinary assessment is necessary. CONCLUSION The molecular diagnosis of neuropathies has become much more successful through the use of NGS. Although causally directed treatment approaches still need to be developed, the correct diagnosis puts an end to the often highly stressful search for a cause and enables determination of the risk of disease in other members of the patient's family.
Collapse
Affiliation(s)
- Katja Eggermann
- Institute of Human Genetics, Uniklinik RWTH Aachen; Department of Neurology, Uniklinik RWTH Aachen; Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, Uniklinik RWTH Aachen; Department of Neuropediatrics, Developmental Medicine and Epileptology, Children's Medical Center; Giessen, University of Giessen; Institute of Neuropathology, Uniklinik RWTH Aachen
| | | | | | | | | | | |
Collapse
|
25
|
Altered interplay between endoplasmic reticulum and mitochondria in Charcot-Marie-Tooth type 2A neuropathy. Proc Natl Acad Sci U S A 2019; 116:2328-2337. [PMID: 30659145 DOI: 10.1073/pnas.1810932116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations in the MFN2 gene encoding Mitofusin 2 lead to the development of Charcot-Marie-Tooth type 2A (CMT2A), a dominant axonal form of peripheral neuropathy. Mitofusin 2 is localized at both the outer membrane of mitochondria and the endoplasmic reticulum and is particularly enriched at specialized contact regions known as mitochondria-associated membranes (MAM). We observed that expression of MFN2R94Q induces distal axonal degeneration in the absence of overt neuronal death. The presence of mutant protein leads to reduction in endoplasmic reticulum and mitochondria contacts in CMT2A patient-derived fibroblasts, in primary neurons and in vivo, in motoneurons of a mouse model of CMT2A. These changes are concomitant with endoplasmic reticulum stress, calcium handling defects, and changes in the geometry and axonal transport of mitochondria. Importantly, pharmacological treatments reinforcing endoplasmic reticulum-mitochondria cross-talk, or reducing endoplasmic reticulum stress, restore the mitochondria morphology and prevent axonal degeneration. These results highlight defects in MAM as a cellular mechanism contributing to CMT2A pathology mediated by mutated MFN2.
Collapse
|
26
|
Juneja M, Burns J, Saporta MA, Timmerman V. Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development. J Neurol Neurosurg Psychiatry 2019; 90:58-67. [PMID: 30018047 PMCID: PMC6327864 DOI: 10.1136/jnnp-2018-318834] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
Much has been achieved in terms of understanding the complex clinical and genetic heterogeneity of Charcot-Marie-Tooth neuropathy (CMT). Since the identification of mutations in the first CMT associated gene, PMP22, the technological advancement in molecular genetics and gene technology has allowed scientists to generate diverse animal models expressing monogenetic mutations that closely resemble the CMT phenotype. Additionally, one can now culture patient-derived neurons in a dish using cellular reprogramming and differentiation techniques. Nevertheless, despite the fact that finding a disease-causing mutation offers a precise diagnosis, there is no cure for CMT at present. This review will shed light on the exciting advancement in CMT disease modelling, the breakthroughs, pitfalls, current challenges for scientists and key considerations to move the field forward towards successful therapies.
Collapse
Affiliation(s)
- Manisha Juneja
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium.,Neurogenetics Labatory, Institute Born Bunge, Antwerp, Belgium
| | - Joshua Burns
- University of Sydney, Faculty of Health Sciences & Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Mario A Saporta
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium .,Neurogenetics Labatory, Institute Born Bunge, Antwerp, Belgium
| |
Collapse
|
27
|
SACS variants are a relevant cause of autosomal recessive hereditary motor and sensory neuropathy. Hum Genet 2018; 137:911-919. [PMID: 30460542 DOI: 10.1007/s00439-018-1952-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
Mutations in the SACS gene have been initially reported in a rare autosomal recessive cerebellar ataxia syndrome featuring prominent cerebellar atrophy, spasticity and peripheral neuropathy as well as retinal abnormalities in some cases (autosomal recessive spastic ataxia of Charlevoix-Saguenay, ARSACS). In the past few years, the phenotypic spectrum has broadened, mainly owing to the availability and application of high-throughput genetic testing methods. We identified nine patients (three sib pairs, three singleton cases) with isolated, non-syndromic hereditary motor and sensory neuropathy (HMSN) who carried pathogenic SACS mutations, either in the homozygous or compound heterozygous state. None of the patients displayed spasticity or pyramidal signs. Ataxia, which was noted in only three patients, was consistent with a sensory ataxia. Nerve conduction and nerve biopsy studies showed mixed demyelinating and axonal neuropathy. Brain MRI scans were either normal or revealed isolated upper vermis atrophy of the cerebellum. Our findings confirm the broad clinical spectrum associated with SACS mutations, including pure polyneuropathy without characteristic clinical and brain imaging manifestations of ARSACS.
Collapse
|
28
|
|
29
|
Nerve ultrasound findings differentiate Charcot-Marie-Tooth disease (CMT) 1A from other demyelinating CMTs. Clin Neurophysiol 2018; 129:2259-2267. [PMID: 30216910 DOI: 10.1016/j.clinph.2018.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/04/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ulnar/median motor nerve conduction velocity (MNCV) is ≤38 m/s in demyelinating Charcot-Marie-Tooth disease (CMT). Previous nerve high resolution ultrasound (HRUS) studies explored demyelinating CMT assuming it as a homogeneous genetic/pathological entity or focused on CMT1A. METHODS To explore the spectrum of nerve HRUS findings in demyelinating CMTs, we recruited patients with CMT1A (N = 44), CMT1B (N = 9), CMTX (N = 8) and CMT4C (N = 4). They underwent nerve conduction study (NCS) and HRUS of the median, ulnar, peroneal nerve, and the brachial plexus. RESULTS Median, ulnar and peroneal MNCV significantly differed across CMT subtypes. Cross sectional area (CSA) was markedly and diffusely enlarged at all sites, except entrapment ones, in CMT1A, while it was slightly enlarged or within normal range in the other CMTs. No significant right-to-left difference was found. Age had limited effect on CSA. CSAs of some CMT1A patients largely overlapped with those of other demyelinating CMTs. A combination of three median CSA measures could separate CMT1A from other demyelinating CMTs. CONCLUSIONS Nerve HRUS findings are heterogeneous in demyelinating CMTs. SIGNIFICANCE Nerve HRUS may separate CMT1A from other demyelinating CMTs. The large demyelinating CMTs HRUS spectrum may be related to its pathophysiological variability.
Collapse
|
30
|
Laššuthová P, Vill K, Erdem-Ozdamar S, Schröder JM, Topaloglu H, Horvath R, Müller-Felber W, Bansagi B, Schlotter-Weigel B, Gläser D, Neupauerová J, Sedláčková L, Staněk D, Mazanec R, Weis J, Seeman P, Senderek J. Novel SBF2 mutations and clinical spectrum of Charcot-Marie-Tooth neuropathy type 4B2. Clin Genet 2018; 94:467-472. [PMID: 30028002 DOI: 10.1111/cge.13417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
Biallelic SBF2 mutations cause Charcot-Marie-Tooth disease type 4B2 (CMT4B2), a sensorimotor neuropathy with autosomal recessive inheritance and association with glaucoma. Since the discovery of the gene mutation, only few additional patients have been reported. We identified seven CMT4B2 families with nine different SBF2 mutations. Revisiting genetic and clinical data from our cohort and the literature, SBF2 variants were private mutations, including exon-deletion and de novo variants. The neuropathy typically started in the first decade after normal early motor development, was predominantly motor and had a rather moderate course. Electrophysiology and nerve biopsies indicated demyelination and excess myelin outfoldings constituted a characteristic feature. While neuropathy was >90% penetrant at age 10 years, glaucoma was absent in ~40% of cases but sometimes developed with age. Consequently, SBF2 mutation analysis should not be restricted to individuals with coincident neuropathy and glaucoma, and CMT4B2 patients without glaucoma should be followed for increased intraocular pressure. The presence of exon-deletion and de novo mutations demands comprehensive mutation scanning and family studies to ensure appropriate diagnostic approaches and genetic counseling.
Collapse
Affiliation(s)
- P Laššuthová
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Vill
- Department of Pediatric Neurology, Dr. v. Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - S Erdem-Ozdamar
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - J M Schröder
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - H Topaloglu
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - W Müller-Felber
- Department of Pediatric Neurology, Dr. v. Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - B Bansagi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - B Schlotter-Weigel
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - D Gläser
- Genetikum, Center for Human Genetics, Neu-Ulm, Germany
| | - J Neupauerová
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - L Sedláčková
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - D Staněk
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - R Mazanec
- Department of Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - P Seeman
- DNA Laboratory, Department of Pediatric Neurology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Senderek
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Fabrizi GM, Tamburin S, Cavallaro T, Zanette G. Reply to “Relationship between age and nerve dimensions in Charcot-Marie-Tooth disease. Do we know the reality?”. Clin Neurophysiol 2018; 129:1335-1336. [DOI: 10.1016/j.clinph.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 11/26/2022]
|
32
|
Bansagi B, Phan V, Baker MR, O'Sullivan J, Jennings MJ, Whittaker RG, Müller JS, Duff J, Griffin H, Miller JAL, Gorman GS, Lochmüller H, Chinnery PF, Roos A, Swan LE, Horvath R. Multifocal demyelinating motor neuropathy and hamartoma syndrome associated with a de novo PTEN mutation. Neurology 2018; 90:e1842-e1848. [PMID: 29720545 PMCID: PMC5962916 DOI: 10.1212/wnl.0000000000005566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To describe a patient with a multifocal demyelinating motor neuropathy with onset in childhood and a mutation in phosphatase and tensin homolog (PTEN), a tumor suppressor gene associated with inherited tumor susceptibility conditions, macrocephaly, autism, ataxia, tremor, and epilepsy. Functional implications of this protein have been investigated in Parkinson and Alzheimer diseases. METHODS We performed whole-exome sequencing in the patient's genomic DNA validated by Sanger sequencing. Immunoblotting, in vitro enzymatic assay, and label-free shotgun proteomic profiling were performed in the patient's fibroblasts. RESULTS The predominant clinical presentation of the patient was a childhood onset, asymmetric progressive multifocal motor neuropathy. In addition, he presented with macrocephaly, autism spectrum disorder, and skin hamartomas, considered as clinical criteria for PTEN-related hamartoma tumor syndrome. Extensive tumor screening did not detect any malignancies. We detected a novel de novo heterozygous c.269T>C, p.(Phe90Ser) PTEN variant, which was absent in both parents. The pathogenicity of the variant is supported by altered expression of several PTEN-associated proteins involved in tumorigenesis. Moreover, fibroblasts showed a defect in catalytic activity of PTEN against the secondary substrate, phosphatidylinositol 3,4-trisphosphate. In support of our findings, focal hypermyelination leading to peripheral neuropathy has been reported in PTEN-deficient mice. CONCLUSION We describe a novel phenotype, PTEN-associated multifocal demyelinating motor neuropathy with a skin hamartoma syndrome. A similar mechanism may potentially underlie other forms of Charcot-Marie-Tooth disease with involvement of the phosphatidylinositol pathway.
Collapse
Affiliation(s)
- Boglarka Bansagi
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vietxuan Phan
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mark R Baker
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Julia O'Sullivan
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Matthew J Jennings
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Roger G Whittaker
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juliane S Müller
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jennifer Duff
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Helen Griffin
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - James A L Miller
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Grainne S Gorman
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hanns Lochmüller
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patrick F Chinnery
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Andreas Roos
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Laura E Swan
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Rita Horvath
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
33
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
34
|
Distal Hereditary Motor Neuropathy. Neuromuscul Disord 2018. [DOI: 10.1007/978-981-10-5361-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ, Libert C, Ceuterick-de Groote C, Irobi J, Weis J, Timmerman V. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol 2018; 135:131-148. [PMID: 28780615 PMCID: PMC5756276 DOI: 10.1007/s00401-017-1756-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Manisha Juneja
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Holmgren
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Tino Hochepied
- Transgenic Mouse Core Facility, VIB Inflammation Research Center, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Steven Goossens
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Jody J Haigh
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Claude Libert
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Chantal Ceuterick-de Groote
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge and Translational Neurosciences, University of Antwerp, Antwerpen, Belgium
| | - Joy Irobi
- Neurofunctional Genomics, Biomedical Research Institute (BIOMED), Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium.
| |
Collapse
|
36
|
Aging Schwann cells: mechanisms, implications, future directions. Curr Opin Neurobiol 2017; 47:203-208. [DOI: 10.1016/j.conb.2017.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
37
|
Fabrizi GM, Tamburin S, Cavallaro T, Cabrini I, Ferrarini M, Taioli F, Magrinelli F, Zanette G. The spectrum of Charcot-Marie-Tooth disease due to myelin protein zero: An electrodiagnostic, nerve ultrasound and histological study. Clin Neurophysiol 2017; 129:21-32. [PMID: 29136549 DOI: 10.1016/j.clinph.2017.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nerve ultrasound (US) data on myelin protein zero (MPZ)-related Charcot-Marie-Tooth disease (CMT) are lacking. To offer a comprehensive perspective on MPZ-related CMTs, we combined nerve US with clinics, electrodiagnosis and histopathology. METHODS We recruited 36 patients (12 MPZ mutations), and correlated nerve US to clinical, electrodiagnostic measures, and sural nerve biopsy. RESULTS According to motor nerve conduction velocity (MNCV) criteria, nine patients were categorized as "demyelinating" CMT1B, 17 as "axonal" CMT2I/J, and 10 as dominant "intermediate" CMTDID. Sural nerve biopsy showed hypertrophic de-remyelinating neuropathy with numerous complex onion bulbs in one patient, de-remyelinating neuropathy with scanty/absent onion bulbs in three, axonal neuropathy in two, mixed demyelinating-axonal neuropathy in five. Electrodiagnosis significantly differed in CMT1B vs. CMT2I/J and CMTDID subgroups. CMT1B had slightly enlarged nerve cross sectional area (CSA) especially at proximal upper-limb (UL) sites. CSA was negatively correlated to UL MNCV and not increased at entrapment sites. Major sural nerve pathological patterns were uncorrelated to UL nerve US and MNCV. CONCLUSIONS Sural nerve biopsy confirmed the wide pathological spectrum of MPZ-CMT. UL nerve US identified two major patterns corresponding to the CMT1B and CMT2I/J-CMTDID subgroups. SIGNIFICANCE Nerve US phenotype of MPZ-CMT diverged from those in other demyelinating peripheral neuropathies and may have diagnostic value.
Collapse
Affiliation(s)
- Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy.
| | - Tiziana Cavallaro
- Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Ilaria Cabrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Moreno Ferrarini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Federica Taioli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurology Division, Department of Neuroscience, AOUI Verona, Verona, Italy
| | - Giampietro Zanette
- Neurology Division, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| |
Collapse
|
38
|
Pasternak AL, Ward KM, Luzum JA, Ellingrod VL, Hertz DL. Germline genetic variants with implications for disease risk and therapeutic outcomes. Physiol Genomics 2017; 49:567-581. [PMID: 28887371 PMCID: PMC5668651 DOI: 10.1152/physiolgenomics.00035.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic testing has multiple clinical applications including disease risk assessment, diagnosis, and pharmacogenomics. Pharmacogenomics can be utilized to predict whether a pharmacologic therapy will be effective or to identify patients at risk for treatment-related toxicity. Although genetic tests are typically ordered for a distinct clinical purpose, the genetic variants that are found may have additional implications for either disease or pharmacology. This review will address multiple examples of germline genetic variants that are informative for both disease and pharmacogenomics. The discussed relationships are diverse. Some of the agents are targeted for the disease-causing genetic variant, while others, although not targeted therapies, have implications for the disease they are used to treat. It is also possible that the disease implications of a genetic variant are unrelated to the pharmacogenomic implications. Some of these examples are considered clinically actionable pharmacogenes, with evidence-based, pharmacologic treatment recommendations, while others are still investigative as areas for additional research. It is important that clinicians are aware of both the disease and pharmacogenomic associations of these germline genetic variants to ensure patients are receiving comprehensive personalized care.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Kristen M Ward
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Vicki L Ellingrod
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| |
Collapse
|
39
|
Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system. Histochem Cell Biol 2017; 148:597-606. [PMID: 28755316 DOI: 10.1007/s00418-017-1600-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G-/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G-/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G-/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G-/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.
Collapse
|
40
|
Haidar M, Timmerman V. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Front Mol Neurosci 2017; 10:143. [PMID: 28553203 PMCID: PMC5425483 DOI: 10.3389/fnmol.2017.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer's, Parkinson's, and Huntington's diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.
Collapse
Affiliation(s)
- Mansour Haidar
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| |
Collapse
|