1
|
Colombo S, Cowling BS, Eyler L, Nijkamp D, Freitag C, Thielemans L, Bouman K, Baets J, Vissing J, Quinlivan R, Guglieri M, Montagnese F, Schara-Schmidt U, Dhawan A, Lawlor MW, Voermans NC. Liver function in X-linked myotubular myopathy and autosomal dominant centronuclear myopathy: Data of the unite-CNM study. J Neuromuscul Dis 2025:22143602251329215. [PMID: 40275672 DOI: 10.1177/22143602251329215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
BACKGROUND Centronuclear myopathies represent a subset of debilitating genetic disorders, for which no treatment exists. The Unite-CNM trial (NCT04033159) aimed to assess the effect of an antisense oligonucleotide to reduce DNM2 mRNA expression in X-linked myotubular myopathy (XLMTM) and autosomal dominant centronuclear myopathy (ADCNM). OBJECTIVE The trial was discontinued due to tolerability concerns (hepatic and hematological). This report aims to provide an overview of hepatic involvement in XLMTM and ADCNM adults. METHODS The medical history and prospective liver imaging and liver function test results at screening and baseline were assessed. Furthermore, DNM2 protein expression in livers of four other pediatric patients with XLMTM and of healthy children and adults were assessed. RESULTS Twenty-six patients were screened; 15 with DNM2 mutations (median age 36 years; six females), and 11 with MTM1 mutations (median age 52 years; five females). Overall, six patients had a history of liver disease (6/19;31.6%). One patient with XLMTM had elevated serum alanine transaminase and another XLMTM patient had elevated serum gamma glutamyl transpeptidase. Liver ultrasound showed no features of peliosis hepatis. Liver steatosis was observed in three ADCNM patients and two XLMTM patients. The Fibroscan CAP score was above normal range in three XLMTM patients, and borderline or normal in other patients. The histopathology study showed that DNM2 protein levels in human liver decrease with age and are lower in pediatric individuals with XLMTM compared to controls. CONCLUSIONS This study provides an overview of hepatic involvement in a large group of ADCNM and XLMTM patients. Findings suggest an underlying liver pathology may impact tolerability of therapeutic approaches, and will be important to consider for future trial design and clinical management. The results of DNM2 protein expression warrant further investigations on the role of DNM2 in the liver if it is to be used as a therapeutic target.
Collapse
Affiliation(s)
- S Colombo
- Dynacure SA (now Flamingo Therapeutics NV), Louvain, Belgium
| | - B S Cowling
- Dynacure SA (now Flamingo Therapeutics NV), Louvain, Belgium
| | - L Eyler
- Dynacure SA (now Flamingo Therapeutics NV), Louvain, Belgium
| | - D Nijkamp
- Dynacure SA (now Flamingo Therapeutics NV), Louvain, Belgium
| | - C Freitag
- Dynacure SA (now Flamingo Therapeutics NV), Louvain, Belgium
| | - L Thielemans
- Dynacure SA (now Flamingo Therapeutics NV), Louvain, Belgium
| | - K Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Baets
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - J Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - R Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - M Guglieri
- John Walton Centre for Neuromuscular Disease, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - F Montagnese
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - U Schara-Schmidt
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - A Dhawan
- Pediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| | - M W Lawlor
- Diverge Translational Science Laboratory and Medical College of Wisconsin, Milwaukee, WI, USA
| | - N C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Martin C, Servais L. X-linked myotubular myopathy: an untreated treatable disease. Expert Opin Biol Ther 2025; 25:379-394. [PMID: 40042390 DOI: 10.1080/14712598.2025.2473430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION X-linked myotubular myopathy (XLMTM) is a life-threatening congenital disorder characterized by severe respiratory and motor impairment. This disease presents significant therapeutic challenges, with various strategies being explored to address its underlying pathology. Among these approaches, gene replacement therapy has demonstrated substantial functional improvements in clinical trials. However, safety issues emerged across different therapeutic approaches, highlighting the need for further research. AREAS COVERED This review provides a comprehensive analysis of the data gathered from natural history studies, preclinical models and clinical trials, with a particular focus on gene replacement therapy for XLMTM. The different therapeutic strategies are addressed, including their outcomes and associated safety concerns. EXPERT OPINION Despite the encouraging potential of gene therapy for XLMTM, the occurrence of safety challenges emphasizes the urgent need for a more comprehensive understanding of the disease's complex phenotype. Enhancing preclinical models to more accurately mimic the full spectrum of disease manifestations will be crucial for optimizing therapeutic strategies and reducing risks in future clinical applications.
Collapse
Affiliation(s)
- Cristina Martin
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Pediatrics, Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
3
|
Simons J, Dekker A, Govaarts R, Sarkozy A, Windpassinger C, Houwen S, Voermans N. Signs and symptoms of carriers of non- DMD X-linked neuromuscular diseases: A scoping review. J Neuromuscul Dis 2025:22143602251330441. [PMID: 40156242 DOI: 10.1177/22143602251330441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
BACKGROUND It has been known for long that females carrying pathogenic variants in the DMD gene often report symptoms and/or exhibit signs of the disease. However, a notable knowledge gap exists concerning the signs and symptoms of female carriers of other X-linked neuromuscular diseases (XLNMDs). OBJECTIVE This scoping review aims to provide a comprehensive outline of existing literature regarding the signs and symptoms of carriers of non-DMD XLNMDs to raise awareness among both researchers and clinicians. METHODS Three electronic databases were used for the literature search (PubMed, Embase, Web of Science). Studies on the signs and symptoms of carriers of non-DMD XLNMDs were included. RESULTS We included 44 articles for this review with a total of 354 carriers of non-DMD XLNMDs (mean age 43.9 years, std. deviation 17.4). Muscular signs and symptoms were reported for 125 carriers (X-linked myotubular myopathy (XLMTM): n = 96 (65%); Kennedy's disease (KD): n = 25 (32%); X-linked recessive Charcot-Marie-Tooth disease (CMTXR): n = 2 (15%); Uruguay faciocardiomusculoskeletal syndrome (FCMSU): n = 1 (33%); Barth syndrome (BS): n = 1 (100%)). In terms of ancillary investigations, abnormalities in histopathology and imaging were the most frequent with 44 carriers having abnormalities found by these testing (XLMTM: n = 36 (24%); Emery-Dreifuss muscular dystrophy 1 (EDMD1): n = 4 (5%); KD: n = 4 (5%) / XLMTM: n = 18 (12%); EDMD1: n = 1 (1%); KD: n = 5 (6%); X-linked myopathy with postural muscle atrophy (XMPMA): n = 19 (83%); BS: n = 1 (100%)). A difference between the number of EDMD1 carriers with cardiovascular signs and symptoms (n = 2 (1%)) and the number of carriers with abnormal electrocardiography tests (n = 20 (23%)) was also noted. CONCLUSION Carriers of non-DMD XLNMDs exhibit a variety of signs and symptoms that could impact quality of life, making it vital for clinicians to be aware of these patients.
Collapse
Affiliation(s)
- Job Simons
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Rehabilitation, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amanda Dekker
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Rehabilitation, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosanne Govaarts
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
- Neurogenetics Laboratory, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Saskia Houwen
- Department of Rehabilitation, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
de Brito MR, Rezende TJR, da Silva Passos S, Iwabe C, Martinez ARM, Nucci A, França MC. Cognitive changes and brain structural abnormalities in female carriers of DMD pathogenic variants. J Neurol 2025; 272:152. [PMID: 39812837 DOI: 10.1007/s00415-025-12896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Skeletal and cardiac muscle damage have been increasingly recognized in female carriers of DMD pathogenic variants (DMDc). Little is known about cognitive impairment in these women or whether they have structural brain damage. OBJECTIVE To characterize the cognitive profile in a Brazilian cohort of DMDc and determine whether they have structural brain abnormalities using multimodal MRI. METHODS Thirty-three DMDc and 33 age-matched healthy women were recruited. The Addenbrooke cognitive examination revised (ACE-R) and the Beck depression inventory (BDI) were used to assess cognition and depressive symptoms. 3T Brain MRI was acquired for both groups. Using volumetric T1 sequence, we computed cerebral cortical thickness (FreeSurfer), basal ganglia (T1 Multi-atlas) and cerebellar (Cerebnet) volumetry. Diffusion tensor imaging (DTI) assessed white-matter integrity (DTI Multi-atlas). Groups were compared using a generalized linear model with Bonferroni-corrected p values < 0.05. RESULTS Mean age of DMDc was 38.2 ± 8.2 years, 48.5% of them had abnormal cognition, but only 15% showed meaningful depressive symptoms. Multiple cognitive domains were affected: Attention in 51.5%, Verbal Fluency in 36.4%, Visuospatial Ability in 36.4%, Language in 27.3%, and Memory in 21.2%. Multimodal MRI revealed bilateral, symmetric atrophy in parieto-occipital cortices in DMDc relative to controls, but no basal ganglia, white matter, or cerebellar changes. Parietal cortex thinning correlated with attention, memory, and verbal fluency scores. INTERPRETATION DMDc should no longer be seen as 'asymptomatic'. They have cognitive abnormalities and cerebral structural changes compared to healthy women. These manifestations should be actively identified and managed in clinical practice.
Collapse
Affiliation(s)
- Mariana Rabelo de Brito
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil
| | - Thiago Junqueira R Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil
| | - Stephany da Silva Passos
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil
| | - Cristina Iwabe
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil
| | - Alberto R M Martinez
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil
| | - Anamarli Nucci
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil
| | - Marcondes Cavalcante França
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
5
|
Takeuchi Y, Masuda T, Kimura N, Sumi K, Jikumaru M, Eura N, Nishino I, Matsubara E. X-linked Myotubular Myopathy Manifesting Carrier with Central and Peripheral Nervous System Involvement. Intern Med 2024; 63:3371-3375. [PMID: 38631855 PMCID: PMC11729177 DOI: 10.2169/internalmedicine.3417-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a rare genetic disorder caused by X-linked mutations in the MTM1 gene. Although heterozygous females are typically asymptomatic, affected cases have recently been reported. We herein report a case of XLMTM manifesting carrier of the pathogenic c.206dupG mutation in MTM1 with uncommon extramuscular symptoms. She developed gaze nystagmus and cognitive impairment in addition to muscle weakness. Electrophysiological studies and brain magnetic resonance imaging indicated the involvement of the central and peripheral nervous systems. XLMTM manifesting carriers may have a wider spectrum of clinical phenotypes than currently assumed. Appropriate follow-up of extramuscular and conventional muscular manifestations is important in such cases.
Collapse
Affiliation(s)
- Yosuke Takeuchi
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Kaori Sumi
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Mika Jikumaru
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Nobuyuki Eura
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| |
Collapse
|
6
|
Simon A, Diedhiou N, Reiss D, Goret M, Grandgirard E, Laporte J. Potential compensatory mechanisms preserving cardiac function in myotubular myopathy. Cell Mol Life Sci 2024; 81:476. [PMID: 39625536 PMCID: PMC11615164 DOI: 10.1007/s00018-024-05512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the Mtm1-/y mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3P and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.
Collapse
MESH Headings
- Animals
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mice
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Myocardium/metabolism
- Myocardium/pathology
- Male
- Dynamin II/metabolism
- Dynamin II/genetics
- Disease Models, Animal
- Liver/metabolism
- Liver/pathology
- Mice, Inbred C57BL
- Cell Adhesion/genetics
Collapse
Affiliation(s)
- Alix Simon
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Nadège Diedhiou
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France
| | - David Reiss
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Marie Goret
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Erwan Grandgirard
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Jocelyn Laporte
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
7
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
8
|
Kušíková K, Šoltýsová A, Ficek A, Feichtinger RG, Mayr JA, Škopková M, Gašperíková D, Kolníková M, Ornig K, Kalev O, Weis S, Weis D. Prognostic Value of Genotype-Phenotype Correlations in X-Linked Myotubular Myopathy and the Use of the Face2Gene Application as an Effective Non-Invasive Diagnostic Tool. Genes (Basel) 2023; 14:2174. [PMID: 38136996 PMCID: PMC10742680 DOI: 10.3390/genes14122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present. METHODS We investigated the genotype-phenotype correlations in newly diagnosed XLMTM patients in a patients' cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application. RESULTS Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001). CONCLUSIONS Using genotype-phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.
Collapse
Affiliation(s)
- Katarína Kušíková
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University Bratislava and National Institute of Children’s Diseases, 83340 Bratislava, Slovakia; (K.K.)
| | - Andrea Šoltýsová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - René G. Feichtinger
- University Children’s Hospital, SalzburgerLandeskliniken (SALK), Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (R.G.F.)
| | - Johannes A. Mayr
- University Children’s Hospital, SalzburgerLandeskliniken (SALK), Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (R.G.F.)
| | - Martina Škopková
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Science, 84505 Bratislava, Slovakia
| | - Daniela Gašperíková
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Science, 84505 Bratislava, Slovakia
| | - Miriam Kolníková
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University Bratislava and National Institute of Children’s Diseases, 83340 Bratislava, Slovakia; (K.K.)
| | - Karoline Ornig
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| | - Ognian Kalev
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University, 4020 Linz, Austria
| |
Collapse
|
9
|
Huang L, Sun L, Li X, Li S, Zhang T, Zhang Z, Ding X. NDP-related retinopathies: clinical phenotype of female carriers. Br J Ophthalmol 2023; 107:1151-1155. [PMID: 35361573 PMCID: PMC10359507 DOI: 10.1136/bjophthalmol-2021-320084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/13/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIMS Norrin cysteine knot growth factor (NDP) located on the X chromosome, was previously reported to cause Norrie disease and familial exudative vitreoretinopathy (FEVR), which are blindness-causing ocular disorders, in males. In this study, we aimed to explore the clinical characteristics of female carriers with NDP mutations. METHODS Twelve female carriers from 11 unrelated families with pathogenic NDP mutations were recruited. Clinical data were collected from the NDP carriers. Comprehensive ocular examinations, including best corrected visual acuity, slit lamp examination, fundus photography and fundus fluorescein angiography (FFA) were evaluated. Targeted gene or whole exome sequencing was performed in the probands, and Sanger sequencing was performed to confirm NDP mutations in female carriers. RESULTS Of the 12 females, 1 (1/12, 8.3%) presented with decreased visual acuity and 11 (11/12, 91.7%) were asymptomatic. Based on the FFA, peripheral vascular changes were noted in 66.7% (16/24) of the eyes of 75.0% (9/12) of the carriers. A total of 33.3% (8/24) had typical FEVR phenotype, 33.3% (8/24) had mild vascular abnormalities and 33.3% (8/24) was unremarkable. In addition, predominant changes such as telangiectatic endings (66.7%), anomalous circumferential vessel (37.5%), supernumerary vascular branching (33.3%), fluorescein leakage (29.2%), avascular area (8.3%), retina fold (8.3%) and peripheral straightening of retinal vessels (33.3%) were noted. CONCLUSION Although NDP-related retinopathy is an X-linked recessive disorder, most of the female carriers of NDP exhibited clinical features of FEVR. Thus, timely examinations and lifelong monitoring should be conducted in the NDP female carriers.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Bouma S, Cobben N, Bouman K, Gaytant M, van de Biggelaar R, van Doorn J, Reumers SFI, Voet NB, Doorduin J, Erasmus CE, Kamsteeg EJ, Jungbluth H, Wijkstra P, Voermans NC. Respiratory features of centronuclear myopathy in the Netherlands. Neuromuscul Disord 2023; 33:580-588. [PMID: 37364426 DOI: 10.1016/j.nmd.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Centronuclear myopathy (CNM) is a heterogeneous group of muscle disorders primarily characterized by muscle weakness and variable degrees of respiratory dysfunction caused by mutations in MTM1, DNM2, RYR1, TTN and BIN1. X-linked myotubular myopathy has been the focus of recent natural history studies and clinical trials. Data on respiratory function for other genotypes is limited. To better understand the respiratory properties of the CNM spectrum, we performed a retrospective study in a non-selective Dutch CNM cohort. Respiratory dysfunction was defined as an FVC below 70% of predicted and/or a daytime pCO2 higher than 6 kPa. We collected results of other pulmonary function values (FEV1/FVC ratio) and treatment data from the home mechanical ventilation centres. Sixty-one CNM patients were included. Symptoms of respiratory weakness were reported by 15/47 (32%) patients. Thirty-three individuals (54%) with different genotypes except autosomal dominant (AD)-BIN1-related CNM showed respiratory dysfunction. Spirometry showed decreased FVC, FEV1 & PEF values in all but two patients. Sixteen patients were using HMV (26%), thirteen of them only during night-time. In conclusion, this study provides insight into the prevalence of respiratory symptoms in four genetic forms of CNM in the Netherlands and offers the basis for future natural history studies.
Collapse
Affiliation(s)
- Sietse Bouma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicolle Cobben
- Department of Pulmonary Diseases & Home Mechanical Ventilation, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Gaytant
- Center for Home Mechanical Ventilation, Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ries van de Biggelaar
- Department of Pulmonary Diseases & Home Mechanical Ventilation, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stacha F I Reumers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicoline Bm Voet
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Rehabilitation Center Klimmendaal, Arnhem, the Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center - Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, FoLSM, King's College, London, UK
| | - Peter Wijkstra
- Department of Pulmonary Diseases & Home Mechanical Ventilation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Chausova P, Murtazina A, Stepanova A, Borovicov A, Kovalskaia V, Ryadninskaya N, Chukhrova A, Ryzhkova O, Poliakov A. X-Linked Myotubular Myopathy in a Female Patient with a Pathogenic Variant in the MTM1 Gene. Int J Mol Sci 2023; 24:ijms24098409. [PMID: 37176116 PMCID: PMC10179330 DOI: 10.3390/ijms24098409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
X-linked centronuclear myopathy is caused by pathogenic variants in the MTM1 gene, which encodes myotubularin, a phosphatidylinositol 3-phosphate (PI3P) phosphatase. This form of congenital myopathy predominantly affects males. This study presents a case of X-linked myotubular myopathy in a female carrier of a pathogenic c.1261-10A>G variant in the MTM1 gene.
Collapse
Affiliation(s)
- Polina Chausova
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Aysylu Murtazina
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Anna Stepanova
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Artem Borovicov
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Valeriia Kovalskaia
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Nina Ryadninskaya
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Alena Chukhrova
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Oxana Ryzhkova
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Aleksander Poliakov
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| |
Collapse
|
12
|
Bhattacharyya T, Ghosh A, Verma S, Raghu P, Sowdhamini R. Structural rationale to understand the effect of disease-associated mutations on Myotubularin. Curr Res Struct Biol 2023; 5:100100. [PMID: 37101954 PMCID: PMC10123148 DOI: 10.1016/j.crstbi.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Myotubularin or MTM1 is a lipid phosphatase that regulates vesicular trafficking in the cell. The MTM1 gene is mutated in a severe form of muscular disease, X-linked myotubular myopathy or XLMTM, affecting 1 in 50,000 newborn males worldwide. There have been several studies on the disease pathology of XLMTM, but the structural effects of missense mutations of MTM1 are underexplored due to the unavailability of a crystal structure. MTM1 consists of three domains-a lipid-binding N-terminal GRAM domain, the phosphatase domain and a coiled-coil domain which aids dimerisation of Myotubularin homologs. While most mutations reported to date map to the phosphatase domain of MTM1, the other two domains on the sequence are also frequently mutated in XLMTM. To understand the overall structural and functional effects of missense mutations on MTM1, we curated several missense mutations and performed in silico and in vitro studies. Apart from significantly impaired binding to substrate, abrogation of phosphatase activity was observed for a few mutants. Possible long-range effects of mutations from non-catalytic domains on phosphatase activity were observed as well. Coiled-coil domain mutants have been characterised here for the first time in XLMTM literature.
Collapse
Affiliation(s)
| | | | - Shailya Verma
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
13
|
Sarkozy A, Quinlivan R, Bourke JP, Ferlini A. 263rd ENMC International Workshop: Focus on female carriers of dystrophinopathy: refining recommendations for prevention, diagnosis, surveillance, and treatment. Hoofddorp, The Netherlands, 13-15 May 2022. Neuromuscul Disord 2023; 33:274-284. [PMID: 36804616 DOI: 10.1016/j.nmd.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Affiliation(s)
- Anna Sarkozy
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, Institute of Child Health, London, UK.
| | - Rosaline Quinlivan
- Queen Square Centre for Neuromuscular Diseases, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - John P Bourke
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK and John Walton Muscular Dystrophy Research Centre, Newcastle University.
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Science, University of Ferrara, Italy.
| |
Collapse
|
14
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
15
|
Masingue M, Rucheton B, Bris C, Romero NB, Procaccio V, Eymard B. Highly asymmetrical distribution of muscle wasting correlates to the heteroplasmy in a patient carrying a large-scale mitochondrial DNA deletion: a novel pathophysiological mechanism for explaining asymmetry in mitochondrial myopathies. Neuromuscul Disord 2022; 32:923-930. [PMID: 36428163 DOI: 10.1016/j.nmd.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of pathologies, caused by missense mutations, sporadic large-scale deletions of mitochondrial DNA (mtDNA) or mutations of nuclear maintenance genes. We report the case of a patient in whom extended muscle pathology, biochemical and genetic mtDNA analyses have proven to be essential to elucidate a unique asymmetrical myopathic presentation. From the age of 34 years on, the patient has presented with oculomotor disorders, right facial peripheral palsy and predominantly left upper limb muscle weakness and atrophy. By contrast, he displayed no motor weakness on the right hemi-body, and no sensory symptoms, cerebellar syndrome, hypoacusis, or parkinsonism. Cardiac function was normal. CK levels were elevated (671 UI/L). Electroneuromyography (ENMG) and muscle MRI showed diffuse myogenic alterations, more pronounced on the left side muscles. Biopsy of the left deltoid muscle showed multiple mitochondrial defects, whereas in the right deltoid, mitochondrial defects were much less marked. Extended mitochondrial biochemical and molecular workup revealed a unique mtDNA deletion, with a 63.4% heteroplasmy load in the left deltoid, versus 8.1% in the right one. This case demonstrates that, in mitochondrial myopathies, heteroplasmy levels may drastically vary for the same type of muscle, rising the hypothesis of a new pathophysiological mechanism explaining asymmetry in hereditary myopathies.
Collapse
Affiliation(s)
- M Masingue
- Reference Center for Neuromuscular Disorders Nord/Est/Ile de France, Neuromuscular Morphology Unit, Institut de Myologie, CHU Pitié-Salpêtrière, APHP, Paris, France.
| | - B Rucheton
- UF de Biochimie des maladies neurométaboliques et neurodégénératives, Service de Biochimie Métabolique, AP-HP, Paris, France
| | - C Bris
- Department of Genetics, Angers Hospital, Angers, France; Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - N B Romero
- Reference Center for Neuromuscular Disorders Nord/Est/Ile de France, Neuromuscular Morphology Unit, Institut de Myologie, CHU Pitié-Salpêtrière, APHP, Paris, France; Université Sorbonne, UPMC Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, CHU Pitié-Salpêtrière, Paris, France
| | - V Procaccio
- Department of Genetics, Angers Hospital, Angers, France; Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - B Eymard
- Reference Center for Neuromuscular Disorders Nord/Est/Ile de France, Neuromuscular Morphology Unit, Institut de Myologie, CHU Pitié-Salpêtrière, APHP, Paris, France.
| |
Collapse
|
16
|
Gómez-Oca R, Edelweiss E, Djeddi S, Gerbier M, Massana-Muñoz X, Oulad-Abdelghani M, Crucifix C, Spiegelhalter C, Messaddeq N, Poussin-Courmontagne P, Koebel P, Cowling BS, Laporte J. Differential impact of ubiquitous and muscle dynamin 2 isoforms in muscle physiology and centronuclear myopathy. Nat Commun 2022; 13:6849. [PMID: 36369230 PMCID: PMC9652393 DOI: 10.1038/s41467-022-34490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamin 2 mechanoenzyme is a key regulator of membrane remodeling and gain-of-function mutations in its gene cause centronuclear myopathies. Here, we investigate the functions of dynamin 2 isoforms and their associated phenotypes and, specifically, the ubiquitous and muscle-specific dynamin 2 isoforms expressed in skeletal muscle. In cell-based assays, we show that a centronuclear myopathy-related mutation in the ubiquitous but not the muscle-specific dynamin 2 isoform causes increased membrane fission. In vivo, overexpressing the ubiquitous dynamin 2 isoform correlates with severe forms of centronuclear myopathy, while overexpressing the muscle-specific isoform leads to hallmarks seen in milder cases of the disease. Previous mouse studies suggested that reduction of the total dynamin 2 pool could be therapeutic for centronuclear myopathies. Here, dynamin 2 splice switching from muscle-specific to ubiquitous dynamin 2 aggravated the phenotype of a severe X-linked form of centronuclear myopathy caused by loss-of-function of the MTM1 phosphatase, supporting the importance of targeting the ubiquitous isoform for efficient therapy in muscle. Our results highlight that the ubiquitous and not the muscle-specific dynamin 2 isoform is the main modifier contributing to centronuclear myopathy pathology.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France ,Dynacure, Illkirch, France
| | - Evelina Edelweiss
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Sarah Djeddi
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | | | - Xènia Massana-Muñoz
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Corinne Crucifix
- grid.420255.40000 0004 0638 2716Integrated Structural Biology platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Coralie Spiegelhalter
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Nadia Messaddeq
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Pierre Poussin-Courmontagne
- grid.420255.40000 0004 0638 2716Integrated Structural Biology platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Pascale Koebel
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | | | - Jocelyn Laporte
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| |
Collapse
|
17
|
Dowling JJ, Müller-Felber W, Smith BK, Bönnemann CG, Kuntz NL, Muntoni F, Servais L, Alfano LN, Beggs AH, Bilder DA, Blaschek A, Duong T, Graham RJ, Jain M, Lawlor MW, Lee J, Coats J, Lilien C, Lowes LP, MacBean V, Neuhaus S, Noursalehi M, Pitts T, Finlay C, Christensen S, Rafferty G, Seferian AM, Tsuchiya E, James ES, Miller W, Sepulveda B, Vila MC, Prasad S, Rico S, Shieh PB. INCEPTUS Natural History, Run-in Study for Gene Replacement Clinical Trial in X-Linked Myotubular Myopathy. J Neuromuscul Dis 2022; 9:503-516. [PMID: 35694931 PMCID: PMC9398079 DOI: 10.3233/jnd-210781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death. OBJECTIVE We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study. METHODS Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study. Disease-related adverse events, respiratory and motor function, feeding, secretions, and quality of life were assessed. RESULTS During median (range) follow-up of 13.0 (0.5, 32.9) months, there were 3 deaths (aspiration pneumonia; cardiopulmonary failure; hepatic hemorrhage with peliosis) and 61 serious disease-related events in 20 (59%) participants, mostly respiratory (52 events, 18 participants). Most participants (80%) required permanent invasive ventilation (>16 hours/day); 20% required non-invasive support (6-16 hours/day). Median age at tracheostomy was 3.5 months (95% CI: 2.5, 9.0). Thirty-three participants (97%) required gastrostomy. Thirty-one (91%) participants had histories of hepatic disease and/or prospectively experienced related adverse events or laboratory or imaging abnormalities. CHOP INTEND scores ranged from 19-52 (mean: 35.1). Seven participants (21%) could sit unsupported for≥30 seconds (one later lost this ability); none could pull to stand or walk with or without support. These parameters remained static over time across the INCEPTUS cohort. CONCLUSIONS INCEPTUS confirmed high medical impact, static respiratory, motor and feeding difficulties, and early death in boys with XLMTM. Hepatobiliary disease was identified as an under-recognized comorbidity. There are currently no approved disease-modifying treatments.
Collapse
Affiliation(s)
| | | | | | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Nancy L Kuntz
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Francesco Muntoni
- National Institute for Health Research (NIHR) Great Ormond Street (GOS) Hospital Biomedical Research Centre, University College London Institute of Child Health, London, UK
| | - Laurent Servais
- I-Motion, Hôpital Armand Trousseau, Paris, France.,Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| | | | - Alan H Beggs
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Astrid Blaschek
- Dr. v. Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | | | - Robert J Graham
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Minal Jain
- NIH Hatfield Clinical Research Center, Bethesda, MD, USA
| | | | - Jun Lee
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Julie Coats
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | | | | | - Victoria MacBean
- Brunel University London, London, UK and King's College 32 London, London, UK
| | - Sarah Neuhaus
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mojtaba Noursalehi
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | - Caroline Finlay
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Sarah Christensen
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | | | | | | | - Emma S James
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Weston Miller
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | - Bryan Sepulveda
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Maria Candida Vila
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Suyash Prasad
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Salvador Rico
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | | |
Collapse
|
18
|
Lawlor MW, Dowling JJ. X-linked myotubular myopathy. Neuromuscul Disord 2021; 31:1004-1012. [PMID: 34736623 DOI: 10.1016/j.nmd.2021.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital muscle disease caused by mutation in the MTM1 gene. MTM1 encodes myotubularin (MTM1), an endosomal phosphatase that acts to dephosphorylate key second messenger lipids PI3P and PI3,5P2. XLMTM is clinically characterized by profound muscle weakness and associated with multiple disabilities (including ventilator and wheelchair dependence) and early death in most affected individuals. The disease is classically defined by characteristic changes observed on muscle biopsy, including centrally located nuclei, myofiber hypotrophy, and organelle disorganization. In this review, we highlight the clinical and pathologic features of the disease, present concepts related to disease pathomechanisms, and present recent advances in therapy development.
Collapse
Affiliation(s)
- Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James J Dowling
- Division of Neurology and Program for Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Departments of Paediatrics and Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|
19
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
20
|
Wang Q, Yu M, Xie Z, Liu J, Wang Q, Lv H, Zhang W, Yuan Y, Wang Z. Mutational and clinical spectrum of centronuclear myopathy in 9 cases and a literature review of Chinese patients. Neurol Sci 2021; 43:2803-2811. [PMID: 34595679 DOI: 10.1007/s10072-021-05627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022]
Abstract
Centronuclear myopathy (CNM) is a group of congenital myopathies with the histopathological findings of centralized nuclei in muscle fibres. In this study, we summarized the mutational spectrum and phenotypic features of nine Chinese patients with CNM and reanalysed the existing data on 32 CNM patients reported in China. In a cohort comprising nine patients, 14 variants were found in three CNM-related genes, including DNM2, RYR1, and TTN, in 4, 3, and 2 patients, respectively. Of the total 14 variants identified, nine were reported, and 5 were novel including one pathogenic, one likely pathogenic, and 3 of undetermined significance (VUS). Pathologically, we identified the percentage of muscle fibres with central nuclei was much higher in the DNM2-related CNM patients than that in other genetic type of CNM. Of the 32 genetic-diagnosed CNM patients previously reported from China, DNM2, MTM1, SPEG, RYR1, and MYH7 mutations accounted for 59.4%, 25.0%, 9.4%, 3.1%, and 3.1%, respectively. Notably, all of the 20 variants of DNM2 were missense mutations, and the missense mutations in exon 8 were found in 60.0% of DNM2 variants. The c.1106G > A/ p.R369Q (NM_001005360) occurred in 26.3% patients of this Chinese cohort with DNM2-CNM. In conclusion, CNM showed a highly variable genetic spectrum, with DNM2 as the most common causative gene in Chinese CNM patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China.
| |
Collapse
|
21
|
Reumers SFI, Erasmus CE, Bouman K, Pennings M, Schouten M, Kusters B, Duijkers FAM, van der Kooi A, Jaeger B, Verschuuren-Bemelmans CC, Faber CG, van Engelen BG, Kamsteeg EJ, Jungbluth H, Voermans NC. Clinical, genetic, and histological features of centronuclear myopathy in the Netherlands. Clin Genet 2021; 100:692-702. [PMID: 34463354 PMCID: PMC9292987 DOI: 10.1111/cge.14054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Centronuclear myopathy (CNM) is a genetically heterogeneous congenital myopathy characterized by muscle weakness, atrophy, and variable degrees of cardiorespiratory involvement. The clinical severity is largely explained by genotype (DNM2, MTM1, RYR1, BIN1, TTN, and other rarer genetic backgrounds), specific mutation(s), and age of the patient. The histopathological hallmark of CNM is the presence of internal centralized nuclei on muscle biopsy. Information on the phenotypical spectrum, subtype prevalence, and phenotype–genotype correlations is limited. To characterize CNM more comprehensively, we retrospectively assessed a national cohort of 48 CNM patients (mean age = 32 ± 24 years, range 0–80, 54% males) from the Netherlands clinically, histologically, and genetically. All information was extracted from entries in the patient's medical records, between 2000 and 2020. Frequent clinical features in addition to muscle weakness and hypotonia were fatigue and exercise intolerance in more mildly affected cases. Genetic analysis showed variants in four genes (18 DNM2, 14 MTM1, 9 RYR1, and 7 BIN1), including 16 novel variants. In addition to central nuclei, histologic examination revealed a large variability of myopathic features in the different genotypes. The identification and characterization of these patients contribute to trial readiness.
Collapse
Affiliation(s)
- Stacha F I Reumers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Radboud University Medical Center - Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Paediatric Neurology, Radboud University Medical Center - Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Maartje Pennings
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meyke Schouten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Kusters
- Department of pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floor A M Duijkers
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke van der Kooi
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bregje Jaeger
- Department of Paediatric Neurology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Baziel G van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, FoLSM, King's College, London, UK
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Gbur S, Mauney L, Gray KJ, Wilkins-Haug L, Guseh S. Counseling for personal health implications identified during reproductive genetic carrier screening. Prenat Diagn 2021; 41:1460-1466. [PMID: 34426984 DOI: 10.1002/pd.6033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Preconception and prenatal carrier screening is designed to provide reproductive risk information, but carriers for some autosomal recessive or X-linked conditions also have personal health risks. This study investigated the prevalence of and inclusion of personal health implications in pre- and post-test counseling. METHODS Twelve genetic conditions with personal health risks for carriers included on carrier screening panels but not otherwise screened routinely were identified (e.g., Gaucher disease with Parkinson's disease risk). A retrospective review was performed of patients with a positive carrier screen for one of these conditions at our center from 2012 to 2019. RESULTS Of 6147 individuals that had carrier screening for one of the twelve conditions, 96 (1.56%) did not report a known family history and screened positive for one of the conditions. Testing was ordered largely by reproductive endocrinologists (51.0%) and genetic counselors (35.4%). Most individuals did not receive pre- (96.8%) or post-test (64.6%) counseling about personal health risks. Post-test counseling was performed principally by genetic counselors (97.1%). For carriers of conditions with guidelines for specialist referral, most individuals (75.9%) were referred. CONCLUSION Expanded genetic carrier screening increasingly identifies individuals with personal health implications, but patients are frequently not counseled before or after testing. These findings stress the importance of developing guidelines for practitioners about expanded carrier screening counseling and follow-up.
Collapse
Affiliation(s)
- Samantha Gbur
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Logan Mauney
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn J Gray
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Louise Wilkins-Haug
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Guseh
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Gordon B, Joyce E, Counihan TJ. Stridor: a rare presentation of motor neuron disease. BMJ Case Rep 2021; 14:14/7/e241923. [PMID: 34230044 DOI: 10.1136/bcr-2021-241923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 74-year-old farmer presented to the emergency department with a subacute history of progressive dyspnoea, wheeze and dysphonia. He was treated for an exacerbation of asthma with poor response to pharmacological therapy. Investigation of dysphonia via laryngoscopy identified a bilateral vocal cord palsy. Subsequently, the patient developed an episode of life-threatening stridor and hypercapnic respiratory failure requiring an emergency tracheostomy. Neurology input identified evidence of widespread muscle fasciculations on clinical examination. MRI of the brain and cervical spine were unremarkable. Electromyogram testing identified changes of acute denervation in several limbs consistent with a diagnosis of motor neuron disease (MND). Bilateral vocal cord palsy has been rarely reported in the literature as the heralding symptom resulting in the diagnosis of MND. In patients with a subacute onset of dysphonia, dyspnoea and stridor, MND should be a differential diagnosis.
Collapse
Affiliation(s)
- Brian Gordon
- Neurology, University Hospital Galway, Galway, Ireland
| | - Eimear Joyce
- Neurology, University Hospital Galway, Galway, Ireland
| | - Timothy J Counihan
- Neurology, University Hospital Galway, Galway, Ireland.,National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
24
|
Papadopoulos C, Papadimas GK. The Relevance of Blepharoptosis in Diagnostic Suspicion of Myopathies. Neurol India 2021; 69:177-180. [PMID: 33642296 DOI: 10.4103/0028-3886.310067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Blepharoptosis (ptosis) is classified, based on etiology, into mechanical, cerebral, neurogenic, neuromuscular, myogenic, and due to miscellaneous causes. Primary myopathic diseases are rare causes of blepharoptosis and many patients with myogenic ptosis undergo a series of extensive investigations before a myopathy is being considered. In this study, we report four patients with different myopathic disorders who had blepharoptosis as a presenting symptom of their disease. Moreover, we highlight frequent diagnostic errors and difficulties in patients with myopathies who present blepharoptosis. Lack of clear cut aggravation of symptoms by fatigue and response to cholinesterase inhibitors treatment, the association of proximal, distal or extraocular muscle weakness, and positive family history or evidence of a multi systemic disorder should prompt evaluation of an underlying myopathy.
Collapse
Affiliation(s)
| | - George K Papadimas
- Department of Neurology, Aegintion Hospital, Medical School of Athens, Greece
| |
Collapse
|
25
|
Reumers SFI, Braun F, Spillane JE, Böhm J, Pennings M, Schouten M, van der Kooi AJ, Foley AR, Bönnemann CG, Kamsteeg EJ, Erasmus CE, Schara-Schmidt U, Jungbluth H, Voermans NC. Spectrum of Clinical Features in X-Linked Myotubular Myopathy Carriers: An International Questionnaire Study. Neurology 2021; 97:e501-e512. [PMID: 34011573 DOI: 10.1212/wnl.0000000000012236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the spectrum of clinical features in a cohort of X-linked myotubular myopathy (XL-MTM) carriers, including prevalence, genetic features, clinical symptoms, and signs, as well as associated disease burden. METHODS We performed a cross-sectional online questionnaire study among XL-MTM carriers. Participants were recruited from patient associations, medical centers, and registries in the United Kingdom, Germany, and the Netherlands. We used a custom-made questionnaire, the Checklist Individual Strength (CIS), the Frenchay Activities Index (FAI), the Short Form 12 (SF-12) health survey, and the McGill Pain Questionnaire. Carriers were classified as manifesting or nonmanifesting on the basis of self-reported ambulation and muscle weakness. RESULTS The prevalence of manifesting carriers in this study population (n = 76) was 51%, subdivided into mild (independent ambulation, 39%), moderate (assisted ambulation, 9%), and severe (wheelchair dependent, 3%) phenotypes. In addition to muscle weakness, manifesting carriers frequently reported fatigue (70%) and exercise intolerance (49%). Manifesting carriers scored higher on the overall CIS (p = 0.001), the fatigue subscale (p < 0.001), and least severe pain subscale (p = 0.005) than nonmanifesting carriers. They scored lower on the FAI (p = 0.005) and the physical component of the SF-12 health survey (p < 0.001). CONCLUSIONS The prevalence of manifesting XL-MTM carriers may be higher than currently assumed, most having a mild phenotype and a wide variety of symptoms. Manifesting carriers are particularly affected by fatigue, limitations of daily activities, pain, and reduced quality of life. Our findings should increase awareness and provide useful information for health care providers and future clinical trials.
Collapse
Affiliation(s)
- Stacha F I Reumers
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Frederik Braun
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Jennifer E Spillane
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Johann Böhm
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Maartje Pennings
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Meyke Schouten
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Anneke J van der Kooi
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - A Reghan Foley
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Carsten G Bönnemann
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Erik-Jan Kamsteeg
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Corrie E Erasmus
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Ulrike Schara-Schmidt
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Heinz Jungbluth
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Nicol C Voermans
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK.
| |
Collapse
|
26
|
Gómez-González C, Rosas-Alonso R, Rodríguez-Antolín C, García-Guede A, Ibáñez de Caceres I, Sanguino J, Pascual SI, Esteban I, Pozo AD, Mori MÁ, Torres RJ, Prior C. Symptomatic heterozygous X-Linked myotubular myopathy female patient with a large deletion at Xq28 and decrease expression of normal allele. Eur J Med Genet 2021; 64:104170. [PMID: 33618039 DOI: 10.1016/j.ejmg.2021.104170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
X-linked myotubular myopathy (XLMTM; OMIM 310400) is a centronuclear congenital muscular disorder of X-linked recessive inheritance. Although female carriers are typically asymptomatic, affected heterozygous females have been described. Here, we describe the case of a sporadic female patient with suspicion of centronuclear myopathy and a heterozygous large deletion at Xq28 encompassing the MAMLD1, MTM1, MTMR1, CD99L2, and HMGB3 genes. The deletion was first detected using a custom next generation sequencing (NGS)-based multigene panel and finally characterized by comparative genomic hybridization array and multiplex ligation probe assay techniques. In this patient we have confirmed, by MTM1 mRNA quantification, a MTM1 gene expression less than the expected 50 percent in patient muscle. The significant 20% reduction in MTM1 mRNA expression in muscle, precludes low level of the normal myotubularin protein as the cause of the phenotype in this heterozygous female. We have also found that BIN1 expression in patient muscle biopsy was significantly increased, and postulate that BIN1 expression will be increased in XLMTM patient muscle as an attempt to maintain muscle function.
Collapse
Affiliation(s)
| | - Rocío Rosas-Alonso
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPaz, Madrid, Spain
| | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPaz, Madrid, Spain
| | - Alvaro García-Guede
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPaz, Madrid, Spain
| | - Inmaculada Ibáñez de Caceres
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPaz, Madrid, Spain
| | - Javier Sanguino
- Department of Genetics, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Samuel I Pascual
- Department of Pediatric Neurology. La Paz University Hospital, Madrid, Spain
| | - Isabel Esteban
- Department of Anatomical Pathology. La Paz University Hospital, Madrid, Spain
| | - Angela Del Pozo
- Department of Bioinformatics, INGEMM, La Paz University Hospital, Madrid, Spain
| | - María Ángeles Mori
- Department of Genetics, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Rosa J Torres
- La Paz University Hospital Health Research Institute (FIBHULP), IdiPaz, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Spain.
| | - Carmen Prior
- Department of Genetics, INGEMM, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
27
|
Souza LS, Almeida CF, Yamamoto GL, Pavanello RDCM, Gurgel-Giannetti J, da Costa SS, Anequini IP, do Carmo SA, Wang JYT, Scliar MDO, Castelli EC, Otto PA, Zanoteli E, Vainzof M. Manifesting carriers of X-linked myotubular myopathy: Genetic modifiers modulating the phenotype. NEUROLOGY-GENETICS 2020; 6:e513. [PMID: 33062893 PMCID: PMC7524580 DOI: 10.1212/nxg.0000000000000513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
Objective To analyze the modulation of the phenotype in manifesting carriers of recessive X-linked myotubular myopathy (XLMTM), searching for possible genetic modifiers. Methods Twelve Brazilian families with XLMTM were molecularly and clinically evaluated. In 2 families, 4 of 6 and 2 of 5 manifesting female carriers were identified. These females were studied for X chromosome inactivation. In addition, whole-exome sequencing was performed, looking for possible modifier variants. We also determined the penetrance rate among carriers of the mutations responsible for the condition. Results Mutations in the MTM1 gene were identified in all index patients from the 12 families, being 4 of them novel. In the heterozygotes, X chromosome inactivation was random in 3 of 4 informative manifesting carriers. The disease penetrance rate was estimated to be 30%, compatible with incomplete penetrance. Exome comparative analyses identified variants within a segment of 4.2 Mb on chromosome 19, containing the killer cell immunoglobulin-like receptor cluster of genes that were present in all nonmanifesting carriers and absent in all manifesting carriers. We hypothesized that these killer cell immunoglobulin-like receptor variants may modulate the phenotype, acting as a protective factor in the nonmanifesting carriers. Conclusions Affected XLMTM female carriers have been described with a surprisingly high frequency for a recessive X-linked disease, raising the question about the pattern of inheritance or the role of modifier factors acting on the disease phenotype. We demonstrated the possible existence of genetic mechanisms and variants accountable for the clinical manifestation in these women, which can become future targets for therapies.
Collapse
Affiliation(s)
- Lucas Santos Souza
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Camila Freitas Almeida
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Guilherme Lopes Yamamoto
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Rita de Cássia Mingroni Pavanello
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Silvia Souza da Costa
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Isabela Pessa Anequini
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Silvana Amanda do Carmo
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Jaqueline Yu Ting Wang
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Erick C Castelli
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Paulo Alberto Otto
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Edmar Zanoteli
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Mariz Vainzof
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| |
Collapse
|
28
|
Schon KR, Ratnaike T, van den Ameele J, Horvath R, Chinnery PF. Mitochondrial Diseases: A Diagnostic Revolution. Trends Genet 2020; 36:702-717. [PMID: 32674947 DOI: 10.1016/j.tig.2020.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
Mitochondrial disorders have emerged as a common cause of inherited disease, but are traditionally viewed as being difficult to diagnose clinically, and even more difficult to comprehensively characterize at the molecular level. However, new sequencing approaches, particularly whole-genome sequencing (WGS), have dramatically changed the landscape. The combined analysis of nuclear and mitochondrial DNA (mtDNA) allows rapid diagnosis for the vast majority of patients, but new challenges have emerged. We review recent discoveries that will benefit patients and families, and highlight emerging questions that remain to be resolved.
Collapse
Affiliation(s)
- Katherine R Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Thiloka Ratnaike
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Paediatrics, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
29
|
X-linked myotubular myopathy mimics hereditary spastic paraplegia in two female manifesting carriers of pathogenic MTM1 variant. Eur J Med Genet 2020; 63:104040. [PMID: 32805447 DOI: 10.1016/j.ejmg.2020.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy caused by pathogenic variants in the myotubularin 1 (MTM1) gene. XLMTM leads to severe weakness in male infants and majority of them die in the early postnatal period due to respiratory failure. Disease manifestations in female carriers vary from asymptomatic to severe, generalized congenital weakness. The symptomatic female carriers typically have limb-girdle weakness, asymmetric muscle weakness and skeletal size, urinary incontinence, facial weakness, ptosis and ophthalmoplegia. Here we describe a Finnish family with two females with lower limb spasticity and hyperreflexia resembling spastic paraplegia, gait difficulties and asymmetric muscle weakness in the limbs. A whole exome sequencing identified a heterozygous pathogenic missense variant MTM1 c.1262G > A, p.(Arg421Gln) segregating in the family. The variant has previously been detected in male and female patients with XLMTM. Muscle biopsy of one of the females showed variation in the myofiber diameter, atrophic myofibers, central nuclei and necklace fibers consistent with a diagnosis of XLMTM. This report suggests association between spastic paraplegia and pathogenic MTM1 variants expanding the phenotypic spectrum potentially associated with XLMTM, but the possible association needs to be confirmed by additional cases.
Collapse
|
30
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Congenital muscular dystrophies and congenital myopathies are a heterogeneous group of disorders resulting in hypotonia, muscle weakness, and dystrophic or myopathic features on muscle biopsy. This article summarizes the clinical and genetic aspects of these disorders. RECENT FINDINGS Historically, diagnoses of congenital muscular dystrophy and congenital myopathy have been made by clinical features and histopathology; however, recent advances in genetics have changed diagnostic practice by relying more heavily on genetic findings. This article reviews the clinical and genetic features of the most common congenital muscular dystrophies including laminin subunit alpha 2 (LAMA2)-related (merosin deficient), collagen VI-related, and α-dystroglycan-related congenital muscular dystrophies and reviews the most common congenital myopathies including nemaline rod, core, and centronuclear myopathies. With the increasing accessibility of genetic testing, the number of genes found to be associated with these disorders has increased dramatically. A wide spectrum of severity and onset (from birth to adulthood) exist across all subtypes. Progression and other features are variable depending on the subtype and severity of the specific genetic mutation. SUMMARY Congenital muscular dystrophy and congenital myopathy are increasingly recognized disorders. A growing appreciation for the breadth of phenotypic variability and overlap between established subtypes has challenged long-standing phenotypic and histopathologic classifications of these disorders but has driven a greater understanding of pathogenesis and opened the door to the development of novel treatments.
Collapse
|
32
|
A mutation in MTM1 causes X-Linked myotubular myopathy in Boykin spaniels. Neuromuscul Disord 2020; 30:353-359. [PMID: 32417001 DOI: 10.1016/j.nmd.2020.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to report the findings of clinical and genetic evaluation of a 3-month old male Boykin spaniel (the proband) that presented with progressive weakness. The puppy underwent a physical and neurological examination, serum biochemistry and complete blood cell count, electrophysiological testing, muscle biopsy and whole genome sequencing. Clinical evaluation revealed generalized neuromuscular weakness with tetraparesis and difficulty holding the head up and a dropped jaw. There was diffuse spontaneous activity on electromyography, most severe in the cervical musculature. Nerve conduction studies were normal, the findings were interpreted as consistent with a myopathy. Skeletal muscle was grossly abnormal on biopsy and there were necklace fibers and abnormal triad structure localization on histopathology, consistent with myotubular myopathy. Whole genome sequencing revealed a premature stop codon in exon 13 of MTM1 (ChrX: 118,903,496 C > T, c.1467C>T, p.Arg512X). The puppy was humanely euthanized at 5 months of age. The puppy's dam was heterozygous for the variant, and 3 male puppies from a subsequent litter all of which died by 2 weeks of age were hemizygous for the variant. This naturally occurring mutation in Boykin spaniels causes a severe form of X-linked myotubular myopathy, comparable to the human counterpart.
Collapse
|
33
|
Schartner V, Laporte J, Böhm J. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies. J Neuromuscul Dis 2020; 6:289-305. [PMID: 31356215 DOI: 10.3233/jnd-180314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle contraction requires specialized membrane structures with precise geometry and relies on the concerted interplay of electrical stimulation and Ca2+ release, known as excitation-contraction coupling (ECC). The membrane structure hosting ECC is called triad in skeletal muscle and dyad in cardiac muscle, and structural or functional defects of triads and dyads have been observed in a variety of myopathies and cardiomyopathies. Based on their function, the proteins localized at the triad/dyad can be classified into three molecular pathways: the Ca2+ release complex (CRC), store-operated Ca2+ entry (SOCE), and membrane remodeling. All three are mechanistically linked, and consequently, aberrations in any of these pathways cause similar disease entities. This review provides an overview of the clinical and genetic spectrum of triad and dyad defects with a main focus of attention on the underlying pathomechanisms.
Collapse
Affiliation(s)
- Vanessa Schartner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
34
|
Cocanougher BT, Flynn L, Yun P, Jain M, Waite M, Vasavada R, Wittenbach JD, de Chastonay S, Chhibber S, Innes AM, MacLaren L, Mozaffar T, Arai AE, Donkervoort S, Bönnemann CG, Foley AR. Adult MTM1-related myopathy carriers: Classification based on deep phenotyping. Neurology 2019; 93:e1535-e1542. [PMID: 31541013 DOI: 10.1212/wnl.0000000000008316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/13/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To better characterize adult myotubularin 1 (MTM1)-related myopathy carriers and recommend a phenotypic classification. METHODS This cohort study was performed at the NIH Clinical Center. Participants were required to carry a confirmed MTM1 mutation and were recruited via the Congenital Muscle Disease International Registry (n = 8), a traveling local clinic of the Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH and Cure CMD (n = 1), and direct physician referral (n = 1). Neuromuscular examinations, muscle MRI, dynamic breathing MRI, cardiac MRI, pulmonary function tests (PFTs), physical therapy assessments including the Motor Function Measure 32 (MFM-32) scale, and X chromosome inactivation (XCI) studies were performed. RESULTS Phenotypic categories were proposed based on ambulatory status and muscle weakness. Carriers were categorized as severe (nonambulatory; n = 1), moderate (minimal independent ambulation/assisted ambulation; n = 3), mild (independent ambulation but with evidence of muscle weakness; n = 4), and nonmanifesting (no evidence of muscle weakness; n = 2). Carriers with more severe muscle weakness exhibited greater degrees of respiratory insufficiency and abnormal signal on muscle imaging. Skeletal asymmetries were evident in both manifesting and nonmanifesting carriers. Skewed XCI did not explain phenotypic severity. CONCLUSION This work illustrates the phenotypic range of MTM1-related myopathy carriers in adulthood and recommends a phenotypic classification. This classification, defined by ambulatory status and muscle weakness, is supported by muscle MRI, PFT, and MFM-32 scale composite score findings, which may serve as markers of disease progression and outcome measures in future gene therapy or other clinical trials.
Collapse
Affiliation(s)
- Benjamin T Cocanougher
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Lauren Flynn
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Pomi Yun
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Minal Jain
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Melissa Waite
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Ruhi Vasavada
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Jason D Wittenbach
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Sabine de Chastonay
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Sameer Chhibber
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - A Micheil Innes
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Linda MacLaren
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Tahseen Mozaffar
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Andrew E Arai
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Sandra Donkervoort
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Carsten G Bönnemann
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - A Reghan Foley
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine.
| |
Collapse
|
35
|
Abstract
The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.
Collapse
Affiliation(s)
- Katarina Pelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Parikh S, Karaa A, Goldstein A, Bertini ES, Chinnery PF, Christodoulou J, Cohen BH, Davis RL, Falk MJ, Fratter C, Horvath R, Koenig MK, Mancuso M, McCormack S, McCormick EM, McFarland R, Nesbitt V, Schiff M, Steele H, Stockler S, Sue C, Tarnopolsky M, Thorburn DR, Vockley J, Rahman S. Diagnosis of 'possible' mitochondrial disease: an existential crisis. J Med Genet 2019; 56:123-130. [PMID: 30683676 DOI: 10.1136/jmedgenet-2018-105800] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 02/02/2023]
Abstract
Primary genetic mitochondrial diseases are often difficult to diagnose, and the term 'possible' mitochondrial disease is used frequently by clinicians when such a diagnosis is suspected. There are now many known phenocopies of mitochondrial disease. Advances in genomic testing have shown that some patients with a clinical phenotype and biochemical abnormalities suggesting mitochondrial disease may have other genetic disorders. In instances when a genetic diagnosis cannot be confirmed, a diagnosis of 'possible' mitochondrial disease may result in harm to patients and their families, creating anxiety, delaying appropriate diagnosis and leading to inappropriate management or care. A categorisation of 'diagnosis uncertain', together with a specific description of the metabolic or genetic abnormalities identified, is preferred when a mitochondrial disease cannot be genetically confirmed.
Collapse
Affiliation(s)
- Sumit Parikh
- Mitochondrial Medicine Center, Neurologic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amel Karaa
- Genetics Unit, Mitochondrial Disease Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Neurodevelopmental Genomics Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Bruce H Cohen
- Department of Pediatrics and Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA.,Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ryan L Davis
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurogenetics, Koling Institute, University of Sydney and Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carl Fratter
- NHS Specialized Services for Rare Mitochondrial Disorders of Adults and Children UK, Oxford, UK.,Oxford Medical Genetics Laboratories, Oxford University, Oxford, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mary Kay Koenig
- Department of Pediatrics, Mitochondrial Center, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Michaelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Shana McCormack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Robert McFarland
- Institute of Neurosciences, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
| | - Victoria Nesbitt
- Institute of Neurosciences, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Oxford University Hospitals, Oxford, UK
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert-Debré University Hospital, APHP, UMR1141, PROTECT, INSERM, Université Paris-Diderot, Paris, France
| | - Hannah Steele
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurology, Sunderland Royal Hospital, Sunderland, UK
| | - Silvia Stockler
- Department of Pediatrics, Division of Biochemical Diseases, University of British Columbia, Vancouver, Canada
| | - Carolyn Sue
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurogenetics, Koling Institute, University of Sydney and Royal North Shore Hospital, Sydney, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, NewSouth Wales, Australia
| | - Mark Tarnopolsky
- Department of Pediatrics, Neuromuscular and Neurometabolic Clinic, McMaster University, Hamilton, Ontario, Canada
| | - David R Thorburn
- Royal Children's Hospital, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine; Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK.,Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Tasfaout H, Cowling BS, Laporte J. Centronuclear myopathies under attack: A plethora of therapeutic targets. J Neuromuscul Dis 2019; 5:387-406. [PMID: 30103348 PMCID: PMC6218136 DOI: 10.3233/jnd-180309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centronuclear myopathies are a group of congenital myopathies characterized by severe muscle weakness, genetic heterogeneity, and defects in the structural organization of muscle fibers. Their names are derived from the central position of nuclei on biopsies, while they are at the fiber periphery under normal conditions. No specific therapy exists yet for these debilitating diseases. Mutations in the myotubularin phosphoinositides phosphatase, the GTPase dynamin 2, or amphiphysin 2 have been identified to cause respectively X-linked centronuclear myopathies (also called myotubular myopathy) or autosomal dominant and recessive forms. Mutations in additional genes, as RYR1, TTN, SPEG or CACNA1S, were linked to phenotypes that can overlap with centronuclear myopathies. Numerous animal models of centronuclear myopathies have been studied over the last 15 years, ranging from invertebrate to large mammalian models. Their characterization led to a partial understanding of the pathomechanisms of these diseases and allowed the recent validation of therapeutic proof-of-concepts. Here, we review the different therapeutic strategies that have been tested so far for centronuclear myopathies, some of which may be translated to patients.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Belinda S. Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Correspondence to: Jocelyn Laporte, Tel.: 33 0 388653412; E-mail:
| |
Collapse
|
38
|
Gayi E, Neff LA, Massana Muñoz X, Ismail HM, Sierra M, Mercier T, Décosterd LA, Laporte J, Cowling BS, Dorchies OM, Scapozza L. Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. Nat Commun 2018; 9:4848. [PMID: 30451843 PMCID: PMC6243013 DOI: 10.1038/s41467-018-07058-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM, also known as XLCNM) is a severe congenital muscular disorder due to mutations in the myotubularin gene, MTM1. It is characterized by generalized hypotonia, leading to neonatal death of most patients. No specific treatment exists. Here, we show that tamoxifen, a well-known drug used against breast cancer, rescues the phenotype of Mtm1-deficient mice. Tamoxifen increases lifespan several-fold while improving overall motor function and preventing disease progression including lower limb paralysis. Tamoxifen corrects functional, histological and molecular hallmarks of XLMTM, with improved force output, myonuclei positioning, myofibrillar structure, triad number, and excitation-contraction coupling. Tamoxifen normalizes the expression level of the XLMTM disease modifiers DNM2 and PI3KC2B, likely contributing to the phenotypic rescue. Our findings demonstrate that tamoxifen is a promising candidate for clinical evaluation in XLMTM patients.
Collapse
MESH Headings
- Animals
- Class II Phosphatidylinositol 3-Kinases/genetics
- Class II Phosphatidylinositol 3-Kinases/metabolism
- Disease Models, Animal
- Disease Progression
- Dynamin II/genetics
- Dynamin II/metabolism
- Electric Stimulation
- Excitation Contraction Coupling/drug effects
- Female
- Gene Expression/drug effects
- Genes, Lethal
- Humans
- Longevity/drug effects
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protective Agents/pharmacology
- Protein Tyrosine Phosphatases, Non-Receptor/deficiency
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Elinam Gayi
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Laurence A Neff
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Xènia Massana Muñoz
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, 67404, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Hesham M Ismail
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Marta Sierra
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Thomas Mercier
- Division and Laboratory of Clinical Pharmacology, Service of Biomedicine, Department of Laboratories, Lausanne University Hospital, Lausanne, 1011, Switzerland
| | - Laurent A Décosterd
- Division and Laboratory of Clinical Pharmacology, Service of Biomedicine, Department of Laboratories, Lausanne University Hospital, Lausanne, 1011, Switzerland
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, 67404, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, 67404, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland.
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland.
| |
Collapse
|
39
|
Copy Number Variants Account for a Tiny Fraction of Undiagnosed Myopathic Patients. Genes (Basel) 2018; 9:genes9110524. [PMID: 30373198 PMCID: PMC6267442 DOI: 10.3390/genes9110524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have led to an increase in the diagnosis of heterogeneous genetic conditions. However, over 50% of patients with a genetically inherited disease are still without a diagnosis. In these cases, different hypotheses are usually postulated, including variants in novel genes or elusive mutations. Although the impact of copy number variants (CNVs) in neuromuscular disorders has been largely ignored to date, missed CNVs are predicted to have a major role in disease causation as some very large genes, such as the dystrophin gene, have prone-to-deletion regions. Since muscle tissues express several large disease genes, the presence of elusive CNVs needs to be comprehensively assessed following an accurate and systematic approach. In this multicenter cohort study, we analyzed 234 undiagnosed myopathy patients using a custom array comparative genomic hybridization (CGH) that covers all muscle disease genes at high resolution. Twenty-two patients (9.4%) showed non-polymorphic CNVs. In 12 patients (5.1%), the identified CNVs were considered responsible for the observed phenotype. An additional ten patients (4.3%) presented candidate CNVs not yet proven to be causative. Our study indicates that deletions and duplications may account for 5⁻9% of genetically unsolved patients. This strongly suggests that other mechanisms of disease are yet to be discovered.
Collapse
|
40
|
Zhao Y, Zhao Z, Shen H, Bing Q, Hu J. Characterization and genetic diagnosis of centronuclear myopathies in seven Chinese patients. Neurol Sci 2018; 39:2043-2051. [PMID: 30232666 DOI: 10.1007/s10072-018-3534-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/09/2018] [Indexed: 11/24/2022]
Abstract
Centronuclear myopathies (CNMs) are a group of clinically and genetically heterogeneous muscle disorders. Here, we report a cohort of seven CNM patients with their clinical, histological, and morphological features. In addition, using the next-generation sequencing (NGS) technique (5/7 patients), we identified small indels: intronic, exonic, and missense mutations in MTM1, DNM2, and RYR1 genes. Further genetic studies revealed skewed X-chromosome inactivation in two female patients carrying MTM1 mutations. Based on the results of genetic analysis, these seven patients were classified as (1) X-linked recessive myotubular myopathy (patients 1-3) with MTM1 mutations and mild phenotype, (2) the autosomal dominant CNM (patients 4-6) with DNM2 mutations, and (3) the autosomal recessive CNM (patient 7) with RYR1 mutations. In all patients, histological findings featured a high proportion of fibers with central nuclei. Radial arrangement of the sarcoplasmic strands was observed in DNM2-CNM and RYR1-CNM patients. Muscle magnetic resonance imaging (MRI) revealed a proximal pattern of involvement presented in both MTM1-CNM and RYR1-CNM patients. A distal pattern of involvement was present in DNM2-CNM patients. Our findings thereby identified a number of novel features that expand the reported clinicopathological phenotype of CNMs in China.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Zhe Zhao
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Hongrui Shen
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qi Bing
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Jing Hu
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
41
|
An integrated modelling methodology for estimating the prevalence of centronuclear myopathy. Neuromuscul Disord 2018; 28:766-777. [DOI: 10.1016/j.nmd.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/24/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
|
42
|
Rinnenthal JL, Dittmayer C, Irlbacher K, Wacker I, Schröder R, Goebel HH, Butori C, Villa L, Sacconi S, Stenzel W. New variant of necklace fibres display peculiar lysosomal structures and mitophagy. Neuromuscul Disord 2018; 28:846-856. [PMID: 30149909 DOI: 10.1016/j.nmd.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/20/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Here, we describe a new variant of necklace fibres with specific myopathological features that have not been described thus far. They were observed in two patients, from two independent families with identical DNM2 (dynamin 2) mutation (c.1106 G > A (p.Arg369Gln)), displaying mildly heterogeneous clinical phenotypes. The variant is characterized by lysosomal inclusions, arranged in a necklace pattern, containing homogenous material, devoid of myonuclei. The so-called necklace region has a certain characteristic distance to the sarcolemma. Electron microscopy, including three dimensional reconstructions of serial section images highlights their ultrastructural properties and relation to neighbouring organelles. This new pattern is compared to the previously reported patterns in muscle biopsies containing necklace fibres associated with MTM1- and DNM2-mutations.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- Department of Pathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kerstin Irlbacher
- Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Irene Wacker
- Cryo EM, CAM, Universität Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Rasmus Schröder
- Cryo EM, BioQuant, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Catherine Butori
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Luisa Villa
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, CHU Nice, 30, Avenue de la Voie Romaine, France
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
43
|
García-García J, Fernández-García MA, Blanco-Arias P, Díaz-Maroto-Cicuendez MI, Salmerón-Martínez F, Hidalgo-Olivares VM, Olivé M. Non-compaction cardiomyopathy and early respiratory failure in an adult symptomatic female carrier of centronuclear myopathy caused by a MTM1 mutation. Neuromuscul Disord 2018; 28:952-955. [PMID: 30241883 DOI: 10.1016/j.nmd.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a rare neuromuscular condition caused by mutations in the MTM1 gene. Female carriers are believed to be usually asymptomatic; nevertheless, recent reports have displayed a wide a spectrum of clinical involvement in females suggesting that MTM1 mutations might be underestimated in this population. Here we report a 55-year-old woman manifesting with an abrupt respiratory decline, whose respiratory function tests revealed a severe restrictive ventilatory defect. The neurological examination identified mild proximal leg weakness and her cardiac evaluation showed a non-compaction cardiomyopathy with normal left ventricle function. Muscle biopsy was consistent with centronuclear myopathy. Next-generation sequencing of 49 genes related to congenital myopathies allowed the identification of a 4 bp deletion in the MTM1 gene, leading to a truncating mutation previously described in males but for the first time reported in a female patient.
Collapse
Affiliation(s)
- J García-García
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Spain
| | | | - P Blanco-Arias
- Neurology Department, Health in Code S.L., A Coruña, Spain
| | | | - F Salmerón-Martínez
- Cardiology Department, Complejo Hospitalario Universitario de Albacete, Spain
| | | | - M Olivé
- Pathology Department and Neuromuscular Unit, Bellvitge Biomedical Research Institute-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
44
|
Penon M, Zahed H, Berger V, Su I, Shieh JT. Using exome sequencing to decipher family history in a healthy individual: Comparison of pathogenic and population MTM1 variants. Mol Genet Genomic Med 2018; 6:722-727. [PMID: 30047259 PMCID: PMC6160706 DOI: 10.1002/mgg3.405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background When a family encounters the loss of a child early in life, extensive genetic testing of the affected neonate is sometimes not performed or not possible. However, the increasing availability of genomic sequencing may allow for direct application to families in cases where there is a condition inherited from parental gene(s). When neonatal testing is not possible, it is feasible to perform family testing as long as there is optimal interpretation of the genomic information. Here, we present an example of a healthy adult woman with a history of recurrent male neonatal losses due to severe respiratory distress who presented to Medical Genetics for evaluation. A family history of additional male neonatal loss was present, suggesting a potential inherited genetic etiology. Methods Although there was no DNA available from the neonates, by performing exome sequencing on the healthy adult woman, we found a missense variant in MTM1 as a potential candidate, which was deemed pathogenic based on multiple criteria including past report. Results By performing an analysis of all known MTM1‐disease associated mutations and control population variation, we can also better infer the effects of missense variations on MTM1, as not all variants are truncating. MTM1‐X‐linked myotubular myopathy is a condition that leads to male perinatal respiratory failure and a high risk for early mortality. Conclusions The application of genetic testing in the healthy population here highlights the broader utility of genomic sequencing in evaluating unexplained recurrent neonatal loss, especially when genetic testing is not available on the affected neonates.
Collapse
Affiliation(s)
- Monica Penon
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California
| | - Hengameh Zahed
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California
| | - Victoria Berger
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California.,Department of Obstetrics, Gynecology and Reproductive Science, University of California San Francisco, San Francisco, California
| | - Irene Su
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California
| | - Joseph T Shieh
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California.,Institute for Human Genetics, University of California San Francisco, San Francisco, California
| |
Collapse
|
45
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Harris E, Topf A, Barresi R, Hudson J, Powell H, Tellez J, Hicks D, Porter A, Bertoli M, Evangelista T, Marini-Betollo C, Magnússon Ó, Lek M, MacArthur D, Bushby K, Lochmüller H, Straub V. Exome sequences versus sequential gene testing in the UK highly specialised Service for Limb Girdle Muscular Dystrophy. Orphanet J Rare Dis 2017; 12:151. [PMID: 28877744 PMCID: PMC5588739 DOI: 10.1186/s13023-017-0699-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Limb girdle muscular dystrophies are a group of rare and genetically heterogeneous diseases that share proximal weakness as a common feature; however they are often lacking very specific phenotypic features to allow an accurate differential diagnosis based on the clinical signs only, limiting the diagnostic rate using phenotype driven genetic testing. Next generation sequencing provides an opportunity to obtain molecular diagnoses for undiagnosed patients, as well as identifying novel genetic causes of muscle diseases. We performed whole exome sequencing (WES) on 104 affected individuals from 75 families in who standard gene by gene testing had not yielded a diagnosis. For comparison we also evaluated the diagnostic rate using sequential gene by gene testing for 91 affected individuals from 84 families over a 2 year period. RESULTS Patients selected for WES had undergone more extensive prior testing than those undergoing standard genetic testing and on average had had 8 genes screened already. In this extensively investigated cohort WES identified the genetic diagnosis in 28 families (28/75, 37%), including the identification of the novel gene ZAK and two unpublished genes. WES of a single affected individual with sporadic disease yielded a diagnosis in 13/38 (34%) of cases. In comparison, conventional gene by gene testing provided a genetic diagnosis in 28/84 (33%) families. Titinopathies and collagen VI related dystrophy were the most frequent diagnoses made by WES. Reasons why mutations in known genes were not identified previously included atypical phenotypes, reassignment of pathogenicity of variants, and in one individual mosaicism for a COL6A1 mutation which was undetected by prior direct sequencing. CONCLUSION WES was able to overcome many limitations of standard testing and achieved a higher rate of diagnosis than standard testing even in this cohort of extensively investigated patients. Earlier application of WES is therefore likely to yield an even higher diagnostic rate. We obtained a high diagnosis rate in simplex cases and therefore such individuals should be included in exome or genome sequencing projects. Disease due to somatic mosaicism may be increasingly recognised due to the increased sensitivity of next generation sequencing techniques to detect low level mosaicism.
Collapse
Affiliation(s)
- Elizabeth Harris
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ana Topf
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rita Barresi
- Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4AZ, UK
| | - Judith Hudson
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Powell
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - James Tellez
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Porter
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Marta Bertoli
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Teresinha Evangelista
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Chiara Marini-Betollo
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | | | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
| | - Daniel MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Hanns Lochmüller
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK. .,Newcastle University John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle upon Tyne, UK.
| |
Collapse
|