1
|
Sabir MS, Hossain MS, Pollard L, Huizing M, Gahl WA, Platt FM, Malicdan MCV. Lack of significant ganglioside changes in Slc17a5 heterozygous mice: Relevance to FSASD and Parkinson's disease. Biochem Biophys Rep 2025; 42:101979. [PMID: 40144541 PMCID: PMC11937675 DOI: 10.1016/j.bbrep.2025.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Large population-based studies of Parkinson's disease (PD) have identified susceptibility genes, including SLC17A5. Biallelic mutations in SLC17A5, encoding the lysosomal sialic acid transporter sialin, cause the rare neurodegenerative disease, free sialic acid storage disorder (FSASD). To explore a potential biochemical link between FSASD and PD, we investigated ganglioside concentrations in a novel mouse model harboring the Slc17a5 p.Arg39Cys (p.R39C) variant. Our analysis revealed no significant alterations in ganglioside concentrations in heterozygous p.R39C mice, warranting further studies into other potential links between PD and sialin defects.
Collapse
Affiliation(s)
- Marya S. Sabir
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Mahin S. Hossain
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - May Christine V. Malicdan
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Abstract
Both genetic and environmental factors modulate the risk of Parkinson's disease. In this article, all these pathophysiologic processes that contribute to damages at the tissue, cellular, organelle, and molecular levels, and their effects are talked about.
Collapse
Affiliation(s)
- Bin Xiao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - ZhiDong Zhou
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - YinXia Chao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
3
|
Sabir MS, Makarious MB, Huizing M, Gahl WA, Platt FM, Malicdan MCV. Comprehensive analysis of SLC17A5 variants in large European cohorts reveals no association with Parkinson's disease risk. Parkinsonism Relat Disord 2025; 134:107790. [PMID: 40088783 DOI: 10.1016/j.parkreldis.2025.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and α-synuclein aggregation. Aging is the primary risk factor, with both rare and common genetic variants playing a role. Previous studies have implicated lysosomal storage disorder (LSD)-related genes, including SLC17A5, in PD susceptibility. OBJECTIVE This study aimed to investigate the association of SLC17A5 variants, including rare and common variants and the FSASD-associated p.Arg39Cys missense variant, with PD risk in large European ancestry cohorts. METHODS Rare variant burden analyses were performed at minor allele frequency (MAF) thresholds of ≤1 % and ≤0.1 % in 7,184 PD cases and 51,650 controls using whole-genome and whole-exome sequencing data. Association testing of the p.Arg39Cys variant was conducted across five cohorts, encompassing both Finnish and non-Finnish Europeans. Common variant associations were examined using summary statistics from the largest European GWAS of PD. RESULTS No significant association was observed between rare SLC17A5 variants and PD at either MAF threshold. The p.Arg39Cys variant, though enriched in Finnish Europeans, showed no significant association with PD across several cohorts. Similarly, common SLC17A5 variants (MAF ≥1%) were not associated with PD risk. CONCLUSION Our findings do not support a role for SLC17A5 variants in PD susceptibility. While lysosomal dysfunction is central to PD pathogenesis, its contribution appears pathway-specific, with SLC17A5 unlikely to influence risk. Larger, multiethnic studies and functional analyses are needed to further investigate sialic acid metabolism in PD and related disorders.
Collapse
Affiliation(s)
- Marya S Sabir
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; NIH Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Mary B Makarious
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA; DataTecnica LLC, Washington, DC, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - May Christine V Malicdan
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
5
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
6
|
Tan MM, Iwaki H, Bandres-Ciga S, Sosero Y, Shoai M, Brockmann K, Williams NM, Alcalay RN, Maple-Grødem J, Alves G, Tysnes OB, Auinger P, Eberly S, Heutink P, Simon DK, Kieburtz K, Hardy J, Williams-Gray CH, Grosset DG, Corvol JC, Gan-Or Z, Toft M, Pihlstrøm L. Polygenic scores for disease risk are not associated with clinical outcomes in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.31.25321395. [PMID: 39974079 PMCID: PMC11838632 DOI: 10.1101/2025.01.31.25321395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Polygenic risk scores (PRS) in Parkinson's disease (PD) are associated with disease risk. Recently, pathway-specific PRS have been created to take advantage of annotations inking variants to biological pathways or cell types. Here, we investigated 8 biological pathways or regions of open chromatin using pathway-specific PRS: alpha-synuclein pathway, adaptive immunity, innate immunity, lysosomal pathway1, endocytic membrane-trafficking pathway, mitochondrial pathway, microglial open chromatin single nucleotide polymorphisms (SNPs), and monocyte open chromatin SNPs. We analysed 7,402 PD patients across 18 'in-person' PD cohorts, and 6,717 patients from the online Fox Insight study. We did not find any significant associations between the 8 pathway-specific PRSs and 8 clinical outcomes in PD. Though this may be due to a lack of statistical power and limited sample size, it may also suggest that the genetic architecture of sporadic PD risk is different from the genetics of PD progression and clinical outcomes.
Collapse
Affiliation(s)
- Manuela Mx Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Yuri Sosero
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Centre, Tel Aviv School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Jodi Maple-Grødem
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University in Stavanger, Stavanger, Norway
| | - Guido Alves
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University in Stavanger, Stavanger, Norway
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Peggy Auinger
- Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, New York, USA
| | - Shirley Eberly
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases-Tubingen, Tuebingen, Germany
- HIH Tuebingen, Tubingen, Tuebingen, Germany
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karl Kieburtz
- Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, New York, USA
| | - John Hardy
- UCL Movement Disorders Centre, University College London, London, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Jean-Christophe Corvol
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Moll M, Hecker J, Platig J, Zhang J, Ghosh AJ, Pratte KA, Wang RS, Hill D, Konigsberg IR, Chiles JW, Hersh CP, Castaldi PJ, Glass K, Dy JG, Sin DD, Tal-Singer R, Mouded M, Rennard SI, Anderson GP, Kinney GL, Bowler RP, Curtis JL, McDonald ML, Silverman EK, Hobbs BD, Cho MH. Polygenic and transcriptional risk scores identify chronic obstructive pulmonary disease subtypes in the COPDGene and ECLIPSE cohort studies. EBioMedicine 2024; 110:105429. [PMID: 39509750 PMCID: PMC11570824 DOI: 10.1016/j.ebiom.2024.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. We aimed to define high-risk COPD subtypes using genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. METHODS We defined high-risk groups based on PRS and TRS quantiles by maximising differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. FINDINGS We examined two high-risk omics-defined groups in non-overlapping test sets (n = 1133 NHW COPDGene, n = 299 African American (AA) COPDGene, n = 468 ECLIPSE). We defined "high activity" (low PRS, high TRS) and "severe risk" (high PRS, high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signalling processes compared to a low-risk (low PRS, low TRS) subgroup. "High activity" but not "severe risk" participants had greater prospective FEV1 decline (COPDGene: -51 mL/year; ECLIPSE: -40 mL/year) and proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. INTERPRETATION Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02123, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - John Platig
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Jingzhou Zhang
- The Pulmonary Center, Boston University Medical Center, Boston, MA 02118, USA
| | - Auyon J Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katherine A Pratte
- Department of Biostatistics, National Jewish Health, Denver, CO, 80206, USA
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Davin Hill
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joe W Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer G Dy
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, and Department of Medicine (Respiratory Division), University of British Columbia, Vancouver, BC, Canada
| | - Ruth Tal-Singer
- Global Allergy and Airways Patient Platform, Vienna, Austria
| | - Majd Mouded
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Stephen I Rennard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Nebraska, Omaha, NE, 68198, USA
| | - Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA; Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, 48109, USA
| | - Merry-Lynn McDonald
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 701, 19th Street S., LHRB 440, Birmingham, AL, 35233, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | | | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Lim SY, Tan AH, Ahmad-Annuar A, Okubadejo NU, Lohmann K, Morris HR, Toh TS, Tay YW, Lange LM, Bandres-Ciga S, Mata I, Foo JN, Sammler E, Ooi JCE, Noyce AJ, Bahr N, Luo W, Ojha R, Singleton AB, Blauwendraat C, Klein C. Uncovering the genetic basis of Parkinson's disease globally: from discoveries to the clinic. Lancet Neurol 2024; 23:1267-1280. [PMID: 39447588 DOI: 10.1016/s1474-4422(24)00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Njideka Ulunma Okubadejo
- College of Medicine, University of Lagos and Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology, London, UK
| | - Tzi Shin Toh
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lara M Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ignacio Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK; Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Natascha Bahr
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Rajeev Ojha
- Department of Neurology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
9
|
Saez-Atienzar S, Souza CDS, Chia R, Beal SN, Lorenzini I, Huang R, Levy J, Burciu C, Ding J, Gibbs JR, Jones A, Dewan R, Pensato V, Peverelli S, Corrado L, van Vugt JJFA, van Rheenen W, Tunca C, Bayraktar E, Xia M, Iacoangeli A, Shatunov A, Tiloca C, Ticozzi N, Verde F, Mazzini L, Kenna K, Al Khleifat A, Opie-Martin S, Raggi F, Filosto M, Piccinelli SC, Padovani A, Gagliardi S, Inghilleri M, Ferlini A, Vasta R, Calvo A, Moglia C, Canosa A, Manera U, Grassano M, Mandrioli J, Mora G, Lunetta C, Tanel R, Trojsi F, Cardinali P, Gallone S, Brunetti M, Galimberti D, Serpente M, Fenoglio C, Scarpini E, Comi GP, Corti S, Del Bo R, Ceroni M, Pinter GL, Taroni F, Bella ED, Bersano E, Curtis CJ, Lee SH, Chung R, Patel H, Morrison KE, Cooper-Knock J, Shaw PJ, Breen G, Dobson RJB, Dalgard CL, Scholz SW, Al-Chalabi A, van den Berg LH, McLaughlin R, Hardiman O, Cereda C, Sorarù G, D'Alfonso S, Chandran S, Pal S, Ratti A, Gellera C, Johnson K, Doucet-O'Hare T, Pasternack N, Wang T, Nath A, Siciliano G, Silani V, Başak AN, Veldink JH, Camu W, Glass JD, Landers JE, Chiò A, Sattler R, Shaw CE, Ferraiuolo L, et alSaez-Atienzar S, Souza CDS, Chia R, Beal SN, Lorenzini I, Huang R, Levy J, Burciu C, Ding J, Gibbs JR, Jones A, Dewan R, Pensato V, Peverelli S, Corrado L, van Vugt JJFA, van Rheenen W, Tunca C, Bayraktar E, Xia M, Iacoangeli A, Shatunov A, Tiloca C, Ticozzi N, Verde F, Mazzini L, Kenna K, Al Khleifat A, Opie-Martin S, Raggi F, Filosto M, Piccinelli SC, Padovani A, Gagliardi S, Inghilleri M, Ferlini A, Vasta R, Calvo A, Moglia C, Canosa A, Manera U, Grassano M, Mandrioli J, Mora G, Lunetta C, Tanel R, Trojsi F, Cardinali P, Gallone S, Brunetti M, Galimberti D, Serpente M, Fenoglio C, Scarpini E, Comi GP, Corti S, Del Bo R, Ceroni M, Pinter GL, Taroni F, Bella ED, Bersano E, Curtis CJ, Lee SH, Chung R, Patel H, Morrison KE, Cooper-Knock J, Shaw PJ, Breen G, Dobson RJB, Dalgard CL, Scholz SW, Al-Chalabi A, van den Berg LH, McLaughlin R, Hardiman O, Cereda C, Sorarù G, D'Alfonso S, Chandran S, Pal S, Ratti A, Gellera C, Johnson K, Doucet-O'Hare T, Pasternack N, Wang T, Nath A, Siciliano G, Silani V, Başak AN, Veldink JH, Camu W, Glass JD, Landers JE, Chiò A, Sattler R, Shaw CE, Ferraiuolo L, Fogh I, Traynor BJ. Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data. CELL GENOMICS 2024; 4:100679. [PMID: 39437787 PMCID: PMC11605688 DOI: 10.1016/j.xgen.2024.100679] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal dementia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273 ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repurposing screen, based on gene- and expression-pattern matching and information about the genetic variants influencing onset age among C9orf72 carriers, identified acamprosate, a γ-aminobutyric acid analog, as a potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuroprotective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our work highlights the potential value of genomics in repurposing drugs in situations where the underlying pathomechanisms are inherently complex. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Ohio State University, Columbus, OH 43210, USA.
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Selina N Beal
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ileana Lorenzini
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA
| | - Jennifer Levy
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Camelia Burciu
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Ashley Jones
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ramita Dewan
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ceren Tunca
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Elif Bayraktar
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre and Dementia Unit, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Letizia Mazzini
- Amyotrophic Lateral Sclerosis Center, Department of Neurology "Maggiore della Carità" University Hospital, Novara, Italy
| | - Kevin Kenna
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Sarah Opie-Martin
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Flavia Raggi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Massimiliano Filosto
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Cotti Piccinelli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Gabriele Mora
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Christian Lunetta
- Department of Neurorehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Milan, Milan, Italy; NEMO Clinical Center Milano, Fondazione Serena Onlus, Milan, Italy
| | - Raffaella Tanel
- Operative Unit of Neurology, S. Chiara Hospital, Trento, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Salvatore Gallone
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Maura Brunetti
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Ceroni
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Giuseppe Lauria Pinter
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Enrica Bersano
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; "L. Sacco" Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Charles J Curtis
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Sang Hyuck Lee
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Raymond Chung
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Karen E Morrison
- School of Medicine, Dentistry, and Biomedical Sciences, Faculty of Medicine Health and Life Sciences, Queen's University, Belfast, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, and the NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, and the NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Gerome Breen
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK; Health Data Research UK London, University College London, London, UK; Institute of Health Informatics, University College London, London, UK; NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, King's College Hospital, London SE5 9RS, UK
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Russell McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK; Centre for Neuroregeneration and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Kory Johnson
- Bioinformatics Section, Information Technology Program (ITP), Division of Intramural Research (DIR), National Institute of Neurological Disorders & Stroke, NIH, Bethesda, MD 20892, USA
| | - Tara Doucet-O'Hare
- Neuro-oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Nicholas Pasternack
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Ayşe Nazlı Başak
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - William Camu
- ALS Center, CHU Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Isabella Fogh
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Shani S, Gana-Weisz M, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Orr-Urtreger A, Goldstein O. P2RX7, an adaptive immune response gene, is associated with Parkinson's disease risk and age at onset. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1575-1583. [PMID: 39957192 DOI: 10.1177/1877718x241296015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND The adaptive immune response has a role in Parkinson's disease (PD). Patients with LRRK2 or GBA1 mutations often exhibit distinct clinical characteristics. OBJECTIVE To evaluate the involvement of adaptive immune response genes in three PD groups: GBA1-PD, LRRK2-PD, and non-carrier (NC)-PD. METHODS Differentially expressed genes (DEGs) associated with PD were identified using four datasets. Of them, adaptive immune response genes were evaluated using whole-genome-sequencing of 201 unrelated Ashkenazi-Jewish (AJ) PD patients. Potential pathogenic variants were identified, and P2RX7 variants were assessed in 1200 AJ-PD patients. Burden analysis of rare variants (allele frequencies (AF) < 0.01) on disease risk, and association analyses of common variants (AF ≥ 0.01) with disease risk and age-at-onset (AAO) were conducted. AFs were compared to AJ-non-neuro cases reported in gnomAD. Variants associated with PD were further examined in an independent AJ cohort from AMP-PD. RESULTS Of the four adaptive immune DEGs identified, CD8B2, P2RX7, IL27RA, and ZC3H12A, three common variants in P2RX7 were statistically significant: Tyr155His was associated with NC-PD (allelic OR = 1.15, p = 0.015) ; Arg276His was associated with LRRK2-PD (allelic OR = 2.10, p = 0.037), while Glu496Ala was associated with earlier AAO in LRRK2-PD (p = 0.014). Burden analysis showed no significant effect on PD-risk. In the AMP-PD cohort, odds ratios of the two risk variants were similar to the primary cohort, but did not reach significance, probably due to small control sample size (n = 263). CONCLUSIONS Common variants within P2RX7 are likely associated with PD-risk and earlier AAO. These findings further suggest P2RX7's involvement in PD and its potential interplay with LRRK2.
Collapse
Affiliation(s)
- Shachar Shani
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Avi Orr-Urtreger
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Goldstein
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
11
|
Sosero YL, Bandres-Ciga S, Ferwerda B, Tocino MTP, Belloso DR, Gómez-Garre P, Faouzi J, Taba P, Pavelka L, Marques TM, Gomes CPC, Kolodkin A, May P, Milanowski LM, Wszolek ZK, Uitti RJ, Heutink P, van Hilten JJ, Simon DK, Eberly S, Alvarez I, Krohn L, Yu E, Freeman K, Rudakou U, Ruskey JA, Asayesh F, Menéndez-Gonzàlez M, Pastor P, Ross OA, Krüger R, Corvol JC, Koks S, Mir P, De Bie RM, Iwaki H, Gan-Or Z. Dopamine Pathway and Parkinson's Risk Variants Are Associated with Levodopa-Induced Dyskinesia. Mov Disord 2024; 39:1773-1783. [PMID: 39132902 PMCID: PMC11490412 DOI: 10.1002/mds.29960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. OBJECTIVES Our goal was to investigate the effects of genetic variants on risk and time to LID. METHODS We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores (PRS) including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1612 PD patients with and 3175 without LID. RESULTS We found that GBA1 variants were associated with LID risk (odds ratio [OR] = 1.65; 95% confidence interval [CI], 1.21-2.26; P = 0.0017) and LRRK2 variants with reduced time to LID onset (hazard ratio [HR] = 1.42; 95% CI, 1.09-1.84; P = 0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile = 1.27; 95% CI, 1.03-1.56; P = 0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile = 1.38; 95% CI, 1.07-1.79; P = 0.0128; HRfourth_quartile = 1.38; 95% CI = 1.06-1.78; P = 0.0147). CONCLUSIONS This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuri L. Sosero
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes on Health, Bethesda, MD, USA
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Maria T. P. Tocino
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dìaz R. Belloso
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Johann Faouzi
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
- CREST, ENSAI, Campus de Ker-Lann, 51 Rue Blaise Pascal – BP 37203 35172 Bruz Cedex, France
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
| | - Tainà M. Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P. C. Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexey Kolodkin
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Patrick May
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
| | - Lukasz M Milanowski
- Department of Neurology Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | - Ryan J. Uitti
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | | | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Shirley Eberly
- Department of Biostatistics and Computational Biology at the University of Rochester School of Medicine and Dentistry
| | - Ignacio Alvarez
- Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Kathryn Freeman
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Manuel Menéndez-Gonzàlez
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Calle Julián Clavería s/n, 33006 Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Avenida Roma s/n, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida Roma s/n, 33011 Oviedo, Spain
| | - Pau Pastor
- Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Owen A. Ross
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Christophe Corvol
- CREST, ENSAI, Campus de Ker-Lann, 51 Rue Blaise Pascal – BP 37203 35172 Bruz Cedex, France
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rob M.A. De Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes on Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, District of Columbia, USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
13
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Arena G, Landoulsi Z, Grossmann D, Payne T, Vitali A, Delcambre S, Baron A, Antony P, Boussaad I, Bobbili DR, Sreelatha AAK, Pavelka L, J Diederich N, Klein C, Seibler P, Glaab E, Foltynie T, Bandmann O, Sharma M, Krüger R, May P, Grünewald A. Polygenic Risk Scores Validated in Patient-Derived Cells Stratify for Mitochondrial Subtypes of Parkinson's Disease. Ann Neurol 2024; 96:133-149. [PMID: 38767023 DOI: 10.1002/ana.26949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE The aim of our study is to better understand the genetic architecture and pathological mechanisms underlying neurodegeneration in idiopathic Parkinson's disease (iPD). We hypothesized that a fraction of iPD patients may harbor a combination of common variants in nuclear-encoded mitochondrial genes ultimately resulting in neurodegeneration. METHODS We used mitochondria-specific polygenic risk scores (mitoPRSs) and created pathway-specific mitoPRSs using genotype data from different iPD case-control datasets worldwide, including the Luxembourg Parkinson's Study (412 iPD patients and 576 healthy controls) and COURAGE-PD cohorts (7,270 iPD cases and 6,819 healthy controls). Cellular models from individuals stratified according to the most significant mitoPRS were subsequently used to characterize different aspects of mitochondrial function. RESULTS Common variants in genes regulating Oxidative Phosphorylation (OXPHOS-PRS) were significantly associated with a higher PD risk in independent cohorts (Luxembourg Parkinson's Study odds ratio, OR = 1.31[1.14-1.50], p-value = 5.4e-04; COURAGE-PD OR = 1.23[1.18-1.27], p-value = 1.5e-29). Functional analyses in fibroblasts and induced pluripotent stem cells-derived neuronal progenitors revealed significant differences in mitochondrial respiration between iPD patients with high or low OXPHOS-PRS (p-values < 0.05). Clinically, iPD patients with high OXPHOS-PRS have a significantly earlier age at disease onset compared to low-risk patients (false discovery rate [FDR]-adj p-value = 0.015), similar to prototypic monogenic forms of PD. Finally, iPD patients with high OXPHOS-PRS responded more effectively to treatment with mitochondrially active ursodeoxycholic acid. INTERPRETATION OXPHOS-PRS may provide a precision medicine tool to stratify iPD patients into a pathogenic subgroup genetically defined by specific mitochondrial impairment, making these individuals eligible for future intelligent clinical trial designs. ANN NEUROL 2024;96:133-149.
Collapse
Affiliation(s)
- Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zied Landoulsi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Thomas Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Armelle Vitali
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dheeraj Reddy Bobbili
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Lukas Pavelka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Nico J Diederich
- Department of Neurosciences, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Wilkerson MD, Hupalo D, Gray JC, Zhang X, Wang J, Girgenti MJ, Alba C, Sukumar G, Lott NM, Naifeh JA, Aliaga P, Kessler RC, Turner C, Pollard HB, Dalgard CL, Ursano RJ, Stein MB. Uncommon Protein-Coding Variants Associated With Suicide Attempt in a Diverse Sample of U.S. Army Soldiers. Biol Psychiatry 2024; 96:15-25. [PMID: 38141912 DOI: 10.1016/j.biopsych.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Suicide is a societal and public health concern of global scale. Identifying genetic risk factors for suicide attempt can characterize underlying biology and enable early interventions to prevent deaths. Recent studies have described common genetic variants for suicide-related behaviors. Here, we advance this search for genetic risk by analyzing the association between suicide attempt and uncommon variation exome-wide in a large, ancestrally diverse sample. METHODS We sequenced whole genomes of 13,584 soldiers from the Army STARRS (Army Study to Assess Risk and Resilience in Servicemembers), including 979 individuals with a history of suicide attempt. Uncommon, nonsilent protein-coding variants were analyzed exome-wide for association with suicide attempt using gene-collapsed and single-variant analyses. RESULTS We identified 19 genes with variants enriched in individuals with history of suicide attempt, either through gene-collapsed or single-variant analysis (Bonferroni padjusted < .05). These genes were CIB2, MLF1, HERC1, YWHAE, RCN2, VWA5B1, ATAD3A, NACA, EP400, ZNF585A, LYST, RC3H2, PSD3, STARD9, SGMS1, ACTR6, RGS7BP, DIRAS2, and KRTAP10-1. Most genes had variants across multiple genomic ancestry groups. Seventeen of these genes were expressed in healthy brain tissue, with 9 genes expressed at the highest levels in the brain versus other tissues. Brains from individuals deceased from suicide aberrantly expressed RGS7BP (padjusted = .035) in addition to nominally significant genes including YWHAE and ACTR6, all of which have reported associations with other mental disorders. CONCLUSIONS These results advance the molecular characterization of suicide attempt behavior and support the utility of whole-genome sequencing for complementing the findings of genome-wide association studies in suicide research.
Collapse
Affiliation(s)
- Matthew D Wilkerson
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Daniel Hupalo
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Joshua C Gray
- Department of Medical and Clinical Psychology, Uniformed Services University, Bethesda, Maryland
| | - Xijun Zhang
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Jiawei Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Camille Alba
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Gauthaman Sukumar
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Nathaniel M Lott
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland
| | - James A Naifeh
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland
| | - Pablo Aliaga
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Clesson Turner
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland
| | - Harvey B Pollard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Clifton L Dalgard
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California; Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
16
|
Hu R, Wang R, Yuan J, Lin Z, Hutchins E, Landin B, Liao Z, Liu G, Scherzer CR, Dong X. Transcriptional pathobiology and multi-omics predictors for Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599639. [PMID: 38948706 PMCID: PMC11212969 DOI: 10.1101/2024.06.18.599639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Early diagnosis and biomarker discovery to bolster the therapeutic pipeline for Parkinson's disease (PD) are urgently needed. In this study, we leverage the large-scale whole-blood total RNA-seq dataset from the Accelerating Medicine Partnership in Parkinson's Disease (AMP PD) program to identify PD-associated RNAs, including both known genes and novel circular RNAs (circRNA) and enhancer RNAs (eRNAs). There were 1,111 significant marker RNAs, including 491 genes, 599 eRNAs, and 21 circRNAs, that were first discovered in the PPMI cohort (FDR < 0.05) and confirmed in the PDBP/BioFIND cohorts (nominal p < 0.05). Functional enrichment analysis showed that the PD-associated genes are involved in neutrophil activation and degranulation, as well as the TNF-alpha signaling pathway. We further compare the PD-associated genes in blood with those in post-mortem brain dopamine neurons in our BRAINcode cohort. 44 genes show significant changes with the same direction in both PD brain neurons and PD blood, including neuroinflammation-associated genes IKBIP, CXCR2, and NFKBIB. Finally, we built a novel multi-omics machine learning model to predict PD diagnosis with high performance (AUC = 0.89), which was superior to previous studies and might aid the decision-making for PD diagnosis in clinical practice. In summary, this study delineates a wide spectrum of the known and novel RNAs linked to PD and are detectable in circulating blood cells in a harmonized, large-scale dataset. It provides a generally useful computational framework for further biomarker development and early disease prediction.
Collapse
Affiliation(s)
- Ruifeng Hu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ruoxuan Wang
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jie Yuan
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zechuan Lin
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | | | - Zhixiang Liao
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganqiang Liu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Clemens R. Scherzer
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xianjun Dong
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
17
|
Magrinelli F, Tesson C, Angelova PR, Salazar-Villacorta A, Rodriguez JA, Scardamaglia A, Chung BHY, Jaconelli M, Vona B, Esteras N, Kwong AKY, Courtin T, Maroofian R, Alavi S, Nirujogi R, Severino M, Lewis PA, Efthymiou S, O’Callaghan B, Buchert R, Sofan L, Lis P, Pinon C, Breedveld GJ, Chui MMC, Murphy D, Pitz V, Makarious MB, Cassar M, Hassan BA, Iftikhar S, Rocca C, Bauer P, Tinazzi M, Svetel M, Samanci B, Hanağası HA, Bilgiç B, Obeso JA, Kurtis MM, Cogan G, Başak AN, Kiziltan G, Gül T, Yalçın G, Elibol B, Barišić N, Ng EWS, Fan SS, Hershkovitz T, Weiss K, Raza Alvi J, Sultan T, Azmi Alkhawaja I, Froukh T, E Alrukban HA, Fauth C, Schatz UA, Zöggeler T, Zech M, Stals K, Varghese V, Gandhi S, Blauwendraat C, Hardy JA, Lesage S, Bonifati V, Haack TB, Bertoli-Avella AM, Steinfeld R, Alessi DR, Steller H, Brice A, Abramov AY, Bhatia KP, Houlden H. PSMF1 variants cause a phenotypic spectrum from early-onset Parkinson's disease to perinatal lethality by disrupting mitochondrial pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24308302. [PMID: 39148840 PMCID: PMC11326324 DOI: 10.1101/2024.06.19.24308302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Dissecting biological pathways highlighted by Mendelian gene discovery has provided critical insights into the pathogenesis of Parkinson's disease (PD) and neurodegeneration. This approach ultimately catalyzes the identification of potential biomarkers and therapeutic targets. Here, we identify PSMF1 as a new gene implicated in PD and childhood neurodegeneration. We find that biallelic PSMF1 missense and loss-of-function variants co-segregate with phenotypes from early-onset PD and parkinsonism to perinatal lethality with neurological manifestations across 15 unrelated pedigrees with 22 affected subjects, showing clear genotype-phenotype correlation. PSMF1 encodes the proteasome regulator PSMF1/PI31, a highly conserved, ubiquitously expressed partner of the 20S proteasome and neurodegeneration-associated F-box-O 7 and valosin-containing proteins. We demonstrate that PSMF1 variants impair mitochondrial membrane potential, dynamics and mitophagy in patient-derived fibroblasts. Additionally, we develop models of psmf1 knockdown Drosophila and Psmf1 conditional knockout mouse exhibiting age-dependent motor impairment, with diffuse gliosis in mice. These findings unequivocally link defective PSMF1 to early-onset PD and neurodegeneration and suggest mitochondrial dysfunction as a mechanistic contributor.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Christelle Tesson
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ainara Salazar-Villacorta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jose A. Rodriguez
- Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Genome Institute, Hong Kong SAR, China
| | - Matthew Jaconelli
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Göttingen, Germany
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Anna Ka-Yee Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Courtin
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Raja Nirujogi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Patrick A. Lewis
- Royal Veterinary College, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Linda Sofan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Pawel Lis
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Chloé Pinon
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J. Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Man-Chun Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Marlene Cassar
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Sana Iftikhar
- Department of Real-World evidence studies, CENTOGENE GmbH, Rostock, Germany
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter Bauer
- Department of Medical Genetics, CENTOGENE GmbH, Rostock, Germany
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Svetel
- Movement Disorders Department, Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haşmet A. Hanağası
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgiç
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - José A. Obeso
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- University CEU-San Pablo, Madrid, Spain
| | - Monica M. Kurtis
- Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Guillaume Cogan
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ayşe Nazlı Başak
- Koç University, School of Medicine, Research Center for Translational Medicine KUTTAM-Neurodegeneration Research Laboratory NDAL, Istanbul, Turkey
| | - Güneş Kiziltan
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tuğçe Gül
- Koç University, School of Medicine, Research Center for Translational Medicine KUTTAM-Neurodegeneration Research Laboratory NDAL, Istanbul, Turkey
| | - Gül Yalçın
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Bülent Elibol
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nina Barišić
- Department of Pediatrics, University of Zagreb Medical School and University Hospital Center Zagreb, Zagreb, Croatia
| | - Earny Wei-Sen Ng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sze-Shing Fan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tova Hershkovitz
- The Genetics Institute, Galilee Medical Center, Nahariya, Israel
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Javeria Raza Alvi
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Tipu Sultan
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Issam Azmi Alkhawaja
- Pediatric Neurology Unit, Pediatric Department, Albashir Hospital, Amman, Jordan
| | - Tawfiq Froukh
- Department of Biotechnology and Genetics Engineering, Philadelphia University, Jordan
| | | | - Christine Fauth
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ulrich A. Schatz
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Thomas Zöggeler
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Zech
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Vinod Varghese
- All Wales Medical Genomics Service, Cardiff, United Kingdom
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John A. Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Suzanne Lesage
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Robert Steinfeld
- Department of Pediatrics and Pediatric Neurology, University of Göttingen, Göttingen, Germany
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hermann Steller
- Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Moll M, Hecker J, Platig J, Zhang J, Ghosh AJ, Pratte KA, Wang RS, Hill D, Konigsberg IR, Chiles JW, Hersh CP, Castaldi PJ, Glass K, Dy JG, Sin DD, Tal-Singer R, Mouded M, Rennard SI, Anderson GP, Kinney GL, Bowler RP, Curtis JL, McDonald ML, Silverman EK, Hobbs BD, Cho MH. Polygenic and transcriptional risk scores identify chronic obstructive pulmonary disease subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307621. [PMID: 38826461 PMCID: PMC11142287 DOI: 10.1101/2024.05.20.24307621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.
Collapse
|
19
|
Nazeen S, Wang X, Zielinski D, Lam I, Hallacli E, Xu P, Ethier E, Strom R, Zanella CA, Nithianandam V, Ritter D, Henderson A, Saurat N, Afroz J, Nutter-Upham A, Benyamini H, Copty J, Ravishankar S, Morrow A, Mitchel J, Neavin D, Gupta R, Farbehi N, Grundman J, Myers RH, Scherzer CR, Trojanowski JQ, Van Deerlin VM, Cooper AA, Lee EB, Erlich Y, Lindquist S, Peng J, Geschwind DH, Powell J, Studer L, Feany MB, Sunyaev SR, Khurana V. Deep sequencing of proteotoxicity modifier genes uncovers a Presenilin-2/beta-amyloid-actin genetic risk module shared among alpha-synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583145. [PMID: 38496508 PMCID: PMC10942362 DOI: 10.1101/2024.03.03.583145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aβ) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aβ modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aβ toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Wang
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dina Zielinski
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Isabel Lam
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erinc Hallacli
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ping Xu
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ethier
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronya Strom
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dylan Ritter
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Alexander Henderson
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Jalwa Afroz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | - Hadar Benyamini
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Joseph Copty
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Autumn Morrow
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jonathan Mitchel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA
| | - Drew Neavin
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Renuka Gupta
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jennifer Grundman
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Clemens R Scherzer
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Antony A Cooper
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Yaniv Erlich
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan Lindquist
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute, Program in Neurogenetics, Department of Neurology and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Powell
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vikram Khurana
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
20
|
Yu E, Larivière R, Thomas RA, Liu L, Senkevich K, Rahayel S, Trempe JF, Fon EA, Gan-Or Z. Machine learning nominates the inositol pathway and novel genes in Parkinson's disease. Brain 2024; 147:887-899. [PMID: 37804111 PMCID: PMC10907089 DOI: 10.1093/brain/awad345] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
There are 78 loci associated with Parkinson's disease in the most recent genome-wide association study (GWAS), yet the specific genes driving these associations are mostly unknown. Herein, we aimed to nominate the top candidate gene from each Parkinson's disease locus and identify variants and pathways potentially involved in Parkinson's disease. We trained a machine learning model to predict Parkinson's disease-associated genes from GWAS loci using genomic, transcriptomic and epigenomic data from brain tissues and dopaminergic neurons. We nominated candidate genes in each locus and identified novel pathways potentially involved in Parkinson's disease, such as the inositol phosphate biosynthetic pathway (INPP5F, IP6K2, ITPKB and PPIP5K2). Specific common coding variants in SPNS1 and MLX may be involved in Parkinson's disease, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 and the polyol/inositol phosphate biosynthetic pathway are associated with the disease. Functional studies are needed to further analyse the involvements of these genes and pathways in Parkinson's disease.
Collapse
Affiliation(s)
- Eric Yu
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Rhalena A Thomas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital (The Neuro), Montreal, Quebec H3A 2B4, Canada
| | - Lang Liu
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
| | - Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Shady Rahayel
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital (The Neuro), Montreal, Quebec H3A 2B4, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
21
|
Kon T, Lee S, Martinez-Valbuena I, Yoshida K, Tanikawa S, Lang AE, Kovacs GG. Molecular Behavior of α-Synuclein Is Associated with Membrane Transport, Lipid Metabolism, and Ubiquitin-Proteasome Pathways in Lewy Body Disease. Int J Mol Sci 2024; 25:2676. [PMID: 38473923 DOI: 10.3390/ijms25052676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Neurology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki 036-8562, Japan
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Satoshi Tanikawa
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Edmond J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
- Edmond J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
- Krembil Brain Institute, University of Toronto, 60 Leonard Ave., Toronto, ON M5T 0S8, Canada
| |
Collapse
|
22
|
Xu X, Wang H, Bennett DA, Zhang QY, Meng XY, Zhang HY. Characterization of brain resilience in Alzheimer's disease using polygenic risk scores and further improvement by integrating mitochondria-associated loci. J Adv Res 2024; 56:113-124. [PMID: 36921896 PMCID: PMC10834825 DOI: 10.1016/j.jare.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Identification of high-risk people for Alzheimer's disease (AD) is critical for prognosis and early management. Longitudinal epidemiologic studies have observed heterogeneity in the brain and cognitive aging. Brain resilience was described as above-expected cognitive function. The "resilience" framework has been shown to correlate with individual characteristics such as genetic factors and age. Besides, accumulative evidence has confirmed the association of mitochondria with the pathogenesis of AD. However, it is challenging to assess resilience through genetic metrics, in particular incorporating mitochondria-associated loci. OBJECTIVES In this paper, we first demonstrated that polygenic risk scores (PRS) could characterize individuals' resilience levels. Then, we indicated that mitochondria-associated loci could improve the performance of PRSs, providing more reliable measurements for the prevention and diagnosis of AD. METHODS The discovery (N = 1,550) and independent validation samples (N = 2,090) were used to construct nine types of PRSs containing mitochondria-related loci (PRSMT) from both biological and statistical aspects and combined them with known AD risk loci derived from genome-wide association studies (GWAS).Individuals' levels of brain resilience were comprehensively measured by linear regression models using eight pathological characteristics. RESULTS It was found that PRSs could characterize brain resilience levels (e.g., Pearson correlation test Pmin = 7.96×10-9). Moreover, the performance of PRS models could be efficiently improved by incorporating a small number of mitochondria-related loci (e.g., Pearson correlation test P improved from 1.41×10-3 to 6.09×10-6). PRSs' ability to characterize brain resilience was validated. More importantly, by incorporating some mitochondria-related loci, the performance of PRSs in measuring brain resilience could be significantly improved. CONCLUSION Our findings imply that mitochondria may play an important role in brain resilience, and targeting mitochondria may open a new door to AD prevention and therapy.
Collapse
Affiliation(s)
- Xuan Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Yu Meng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; College of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi 445000, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Wang S, Zheng X, Ou R, Wei Q, Lin J, Yang T, Xiao Y, Jiang Q, Li C, Shang H. Rare variant analysis of UQCRC1 in Chinese patients with early-onset Parkinson's disease. Neurobiol Aging 2024; 134:40-42. [PMID: 37984314 DOI: 10.1016/j.neurobiolaging.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 11/22/2023]
Abstract
Mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) gene has been identified as a causative gene for autosomal dominant Parkinson's disease (PD), with the p.Y314S variant potentially associated with polyneuropathy in PD patients. The objectives of our study were to screen for UQCRC1 variants in Chinese patients with early-onset PD (EOPD) and explore the role of UQCRC1 in EOPD. We investigated the rare variants in 913 EOPD patients in our cohort using whole-exome sequencing, assessing their link to PD at both allele and gene levels. A total of 7 rare variants (minor allele frequency < 0.1%) of UQCRC1 were identified. However, no excessive burden of rare UQCRC1 variants was suggested in the EOPD patients. Further analysis with larger sample size and diverse regions is needed to determine the role of UQCRC1 in PD.
Collapse
Affiliation(s)
- Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Pitz V, Makarious MB, Bandres-Ciga S, Iwaki H, Singleton AB, Nalls M, Heilbron K, Blauwendraat C. Analysis of rare Parkinson's disease variants in millions of people. NPJ Parkinsons Dis 2024; 10:11. [PMID: 38191580 PMCID: PMC10774311 DOI: 10.1038/s41531-023-00608-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. We assessed a total of 27,590 PD cases, 6701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. The meta-analysis resulted in five significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. Another eight variants are strong candidate variants for their association with PD. Here, we provide the largest rare variant meta-analysis to date, providing information on confirmed and newly identified variants for their association with PD using several large databases. Additionally we also show the complexities of studying rare variants in large-scale cohorts.
Collapse
Affiliation(s)
- Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hirotaka Iwaki
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | | | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Landoulsi Z, Pachchek S, Bobbili DR, Pavelka L, May P, Krüger R, the NCER-PD Consortium. Genetic landscape of Parkinson's disease and related diseases in Luxembourg. Front Aging Neurosci 2023; 15:1282174. [PMID: 38173558 PMCID: PMC10761438 DOI: 10.3389/fnagi.2023.1282174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Objectives To explore the genetic architecture of PD in the Luxembourg Parkinson's Study including cohorts of healthy people and patients with Parkinson's disease (PD) and atypical parkinsonism (AP). Methods 809 healthy controls, 680 PD and 103 AP were genotyped using the Neurochip array. We screened and validated rare single nucleotide variants (SNVs) and copy number variants (CNVs) within seven PD-causing genes (LRRK2, SNCA, VPS35, PRKN, PARK7, PINK1 and ATP13A2). Polygenic risk scores (PRSs) were generated using the latest genome-wide association study for PD. We then estimated the role of common variants in PD risk by applying gene-set-specific PRSs. Results We identified 60 rare SNVs in seven PD-causing genes, nine of which were pathogenic in LRRK2, PINK1 and PRKN. Eleven rare CNVs were detected in PRKN including seven duplications and four deletions. The majority of PRKN SNVs and CNVs carriers were heterozygous and not differentially distributed between cases and controls. The PRSs were significantly associated with PD and identified specific molecular pathways related to protein metabolism and signal transduction as drivers of PD risk. Conclusion We performed a comprehensive genetic characterization of the deep-phenotyped individuals of the Luxembourgish Parkinson's Study. Heterozygous SNVs and CNVs in PRKN were not associated with higher PD risk. In particular, we reported novel digenic variants in PD related genes and rare LRRK2 SNVs in AP patients. Our findings will help future studies to unravel the genetic complexity of PD.
Collapse
Affiliation(s)
- Zied Landoulsi
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sinthuja Pachchek
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dheeraj Reddy Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | | |
Collapse
|
26
|
Hicks AR, Reynolds RH, O’Callaghan B, García-Ruiz S, Gil-Martínez AL, Botía J, Plun-Favreau H, Ryten M. The non-specific lethal complex regulates genes and pathways genetically linked to Parkinson's disease. Brain 2023; 146:4974-4987. [PMID: 37522749 PMCID: PMC10689904 DOI: 10.1093/brain/awad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Genetic variants conferring risks for Parkinson's disease have been highlighted through genome-wide association studies, yet exploration of their specific disease mechanisms is lacking. Two Parkinson's disease candidate genes, KAT8 and KANSL1, identified through genome-wide studies and a PINK1-mitophagy screen, encode part of the histone acetylating non-specific lethal complex. This complex localizes to the nucleus, where it plays a role in transcriptional activation, and to mitochondria, where it has been suggested to have a role in mitochondrial transcription. In this study, we sought to identify whether the non-specific lethal complex has potential regulatory relationships with other genes associated with Parkinson's disease in human brain. Correlation in the expression of non-specific lethal genes and Parkinson's disease-associated genes was investigated in primary gene co-expression networks using publicly-available transcriptomic data from multiple brain regions (provided by the Genotype-Tissue Expression Consortium and UK Brain Expression Consortium), whilst secondary networks were used to examine cell type specificity. Reverse engineering of gene regulatory networks generated regulons of the complex, which were tested for heritability using stratified linkage disequilibrium score regression. Prioritized gene targets were then validated in vitro using a QuantiGene multiplex assay and publicly-available chromatin immunoprecipitation-sequencing data. Significant clustering of non-specific lethal genes was revealed alongside Parkinson's disease-associated genes in frontal cortex primary co-expression modules, amongst other brain regions. Both primary and secondary co-expression modules containing these genes were enriched for mainly neuronal cell types. Regulons of the complex contained Parkinson's disease-associated genes and were enriched for biological pathways genetically linked to disease. When examined in a neuroblastoma cell line, 41% of prioritized gene targets showed significant changes in mRNA expression following KANSL1 or KAT8 perturbation. KANSL1 and H4K8 chromatin immunoprecipitation-sequencing data demonstrated non-specific lethal complex activity at many of these genes. In conclusion, genes encoding the non-specific lethal complex are highly correlated with and regulate genes associated with Parkinson's disease. Overall, these findings reveal a potentially wider role for this protein complex in regulating genes and pathways implicated in Parkinson's disease.
Collapse
Affiliation(s)
- Amy R Hicks
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sonia García-Ruiz
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
| | - Ana Luisa Gil-Martínez
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
- Department of Information and Communication Engineering, University of Murcia, Murcia 30100, Spain
| | - Juan Botía
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Information and Communication Engineering, University of Murcia, Murcia 30100, Spain
| | - Hélène Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, Bloomsbury, London WC1N 1EH, UK
| |
Collapse
|
27
|
Makarious MB, Lake J, Pitz V, Ye Fu A, Guidubaldi JL, Solsberg CW, Bandres-Ciga S, Leonard HL, Kim JJ, Billingsley KJ, Grenn FP, Jerez PA, Alvarado CX, Iwaki H, Ta M, Vitale D, Hernandez D, Torkamani A, Ryten M, Hardy J, UK Brain Expression Consortium (UKBEC),, Scholz SW, Traynor BJ, Dalgard CL, Ehrlich DJ, Tanaka T, Ferrucci L, Beach TG, Serrano GE, Real R, Morris HR, Ding J, Gibbs JR, Singleton AB, Nalls MA, Bhangale T, Blauwendraat C. Large-scale rare variant burden testing in Parkinson's disease. Brain 2023; 146:4622-4632. [PMID: 37348876 PMCID: PMC10629770 DOI: 10.1093/brain/awad214] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.
Collapse
Affiliation(s)
- Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Allen Ye Fu
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph L Guidubaldi
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Caroline Warly Solsberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Jonggeol Jeffrey Kim
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kimberley J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Michael Ta
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - John Hardy
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, UCL Queen Square Institute of Neurology and UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Debra J Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Data Tecnica International, Washington, DC 20812, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
28
|
Tunold JA, Tan MMX, Koga S, Geut H, Rozemuller AJM, Valentino R, Sekiya H, Martin NB, Heckman MG, Bras J, Guerreiro R, Dickson DW, Toft M, van de Berg WDJ, Ross OA, Pihlstrøm L. Lysosomal polygenic risk is associated with the severity of neuropathology in Lewy body disease. Brain 2023; 146:4077-4087. [PMID: 37247383 PMCID: PMC10545498 DOI: 10.1093/brain/awad183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-β and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-β and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.
Collapse
Affiliation(s)
- Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Rebecca Valentino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicholas B Martin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
29
|
Sosero YL, Bandres-Ciga S, Ferwerda B, Tocino MTP, Belloso DR, Gómez-Garre P, Faouzi J, Taba P, Pavelka L, Marques TM, Gomes CPC, Kolodkin A, May P, Milanowski LM, Wszolek ZK, Uitti RJ, Heutink P, van Hilten JJ, Simon DK, Eberly S, Alvarez I, Krohn L, Yu E, Freeman K, Rudakou U, Ruskey JA, Asayesh F, Menéndez-Gonzàlez M, Pastor P, Ross OA, Krüger R, Corvol JC, Koks S, Mir P, De Bie RMA, Iwaki H, Gan-Or Z. Dopamine pathway and Parkinson's risk variants are associated with levodopa-induced dyskinesia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294610. [PMID: 37790572 PMCID: PMC10543218 DOI: 10.1101/2023.08.28.23294610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. Objectives To investigate the effects of genetic variants on risk and time to LID. Methods We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID. Results We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). Conclusions This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care.
Collapse
Affiliation(s)
- Yuri L Sosero
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes on Health, Bethesda, MD, USA
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Maria T P Tocino
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dìaz R Belloso
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Johann Faouzi
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
- CREST, ENSAI, Campus de Ker-Lann, 51 Rue Blaise Pascal - BP 37203 35172 Bruz Cedex, France
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
| | - Tainà M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P C Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexey Kolodkin
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Patrick May
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
| | - Lukasz M Milanowski
- Department of Neurology Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | | | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Shirley Eberly
- Department of Biostatistics and Computational Biology at the University of Rochester School of Medicine and Dentistry
| | - Ignacio Alvarez
- Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Kathryn Freeman
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Manuel Menéndez-Gonzàlez
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Calle Julián Clavería s/n, 33006 Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Avenida Roma s/n, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida Roma s/n, 33011 Oviedo, Spain
| | - Pau Pastor
- Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Owen A Ross
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Christophe Corvol
- CREST, ENSAI, Campus de Ker-Lann, 51 Rue Blaise Pascal - BP 37203 35172 Bruz Cedex, France
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rob M A De Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes on Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, District of Columbia, USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Mohamed W. Leveraging genetic diversity to understand monogenic Parkinson's disease's landscape in AfrAbia. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2023; 12:108-122. [PMID: 37736165 PMCID: PMC10509492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Parkinson's disease may be caused by a single highly deleterious and penetrant pathogenic variant in 5-10% of cases (monogenic). Research into these mutational disorders yields important pathophysiological insights. This article examines the phenotype, genotype, pathophysiology, and geographic and ethnic distribution of genetic forms of disease. Well established Parkinson's disease (PD) causal variants can follow an autosomal dominant (SNCA, LRRK2, and VPS35) and autosomal recessive pattern of inheritance (PRKN, PINK1, and DJ). Parkinson's disease is a worldwide condition, yet the AfrAbia population is understudied in this regard. No prevalence or incidence investigations have been conducted yet. Few studies on genetic risk factors for PD in AfrAbia communities have been reported which supported the notion that the prevalence and incidence rates of PD in AfrAbia are generally lower than those reported for European and North American populations. There have been only a handful of documented genetic studies of PD in AfrAbia and very limited cohort and case-control research studies on PD have been documented. In this article, we provide a summary of prior conducted research on monogenic PD in Africa and highlight data gaps and promising new research directions. We emphasize that monogenic Parkinson's disease is influenced by distinctions in ethnicity and geography, thereby reinforcing the need for global initiatives to aggregate large numbers of patients and identify novel candidate genes. The current article increases our knowledge of the genetics of Parkinson's disease (PD) and helps to further our knowledge on the genetic factors that contribute to PD, such as the lower penetrance and varying clinical expressivity of known genetic variants, particularly in AfrAbian PD patients.
Collapse
Affiliation(s)
- Wael Mohamed
- Basic Medical Science Department, Kulliyah of Medicine, International Islamic University Malaysia Kuantan, Pahang, Malaysia
| |
Collapse
|
31
|
Wolff A, Schumacher NU, Pürner D, Machetanz G, Demleitner AF, Feneberg E, Hagemeier M, Lingor P. Parkinson's disease therapy: what lies ahead? J Neural Transm (Vienna) 2023; 130:793-820. [PMID: 37147404 PMCID: PMC10199869 DOI: 10.1007/s00702-023-02641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
The worldwide prevalence of Parkinson's disease (PD) has been constantly increasing in the last decades. With rising life expectancy, a longer disease duration in PD patients is observed, further increasing the need and socioeconomic importance of adequate PD treatment. Today, PD is exclusively treated symptomatically, mainly by dopaminergic stimulation, while efforts to modify disease progression could not yet be translated to the clinics. New formulations of approved drugs and treatment options of motor fluctuations in advanced stages accompanied by telehealth monitoring have improved PD patients care. In addition, continuous improvement in the understanding of PD disease mechanisms resulted in the identification of new pharmacological targets. Applying novel trial designs, targeting of pre-symptomatic disease stages, and the acknowledgment of PD heterogeneity raise hopes to overcome past failures in the development of drugs for disease modification. In this review, we address these recent developments and venture a glimpse into the future of PD therapy in the years to come.
Collapse
Affiliation(s)
- Andreas Wolff
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Nicolas U Schumacher
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Dominik Pürner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Gerrit Machetanz
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Antonia F Demleitner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Emily Feneberg
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Maike Hagemeier
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
32
|
Senkevich K, Alipour P, Chernyavskaya E, Yu E, Noyce AJ, Gan-Or Z. Potential Protective Link Between Type I Diabetes and Parkinson's Disease Risk and Progression. Mov Disord 2023. [PMID: 37148456 DOI: 10.1002/mds.29424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Epidemiological studies suggested an association between Parkinson's disease (PD) and type 2 diabetes, but less is known about type 1 diabetes (T1D) and PD. OBJECTIVE This study sought to explore the association between T1D and PD. METHODS We used Mendelian randomization, linkage disequilibrium score regression, and multi-tissue transcriptome-wide analysis to examine the association between PD and T1D. RESULTS Mendelian randomization showed a potentially protective role of T1D for PD risk (odds ratio [OR], 0.97; 95% confidence interval [CI], 0.94-0.99; P = 0.039), as well as motor (OR, 0.94; 95% CI, 0.88-0.99; P = 0.044) and cognitive progression (OR, 1.50; 95% CI, 1.08-2.09; P = 0.015). We further found a negative genetic correlation between T1D and PD (rg = -0.17; P = 0.016), and we identified eight genes in cross-tissue transcriptome-wide analysis that were associated with both traits. CONCLUSIONS Our results suggest a potential genetic link between T1D and PD risk and progression. Larger comprehensive epidemiological and genetic studies are required to validate our findings. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Konstantin Senkevich
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Paria Alipour
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | | | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
33
|
Shani S, Goldstein O, Gana-Weisz M, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Orr-Urtreger A. Variants in PSMB9 and FGR differentially affect Parkinson's disease risk in GBA and LRRK2 mutation carriers. Parkinsonism Relat Disord 2023; 111:105398. [PMID: 37116292 DOI: 10.1016/j.parkreldis.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION Recent studies found an association between Parkinson's disease (PD) and alterations in the innate immune system. However, whether the involvement of this system in two of the known genetic forms of PD, GBA-PD and LRRK2-PD, and in patients who do not carry these mutations is different, is yet to be determined. We aimed to test if genetic variations in the innate immune genes are differentially associated with PD in these subgroups. METHODS Innate immune genes were identified and classified into sub-lists according to Reactome pathways. Whole-genome-sequencing (WGS) was performed on 201 unrelated Ashkenazi-Jewish (AJ) PD patients including 104 GBA-PD, 32 LRRK2-PD, and 65 non-carriers-PD (NC-PD). To identify genes with different burden between these subgroups of PD, gene-based Sequence kernel association optimal unified test (SKAT-O) analysis was performed on innate immune pathways. Candidate variants within the significant genes were further genotyped in a cohort of 1200 unrelated, consecutively recruited, AJ-PD patients, and to evaluate their association with PD-risk their allele frequencies were compared to AJ-non-neuro cases in gnomAD database, in a stratified and un-stratified manner. RESULTS SKAT-O analysis showed significantly different burden for PSMB9 (GBA-PD versus NC-PD) and FGR (GBA-PD versus LRRK2-PD). Two candidate variants in PSMB9 showed an association with GBA-PD-risk and NC-PD-risk while one FGR variant showed an association with LRRK2-PD-risk. CONCLUSION Our data supports differential involvement of innate immunity risk alleles in PD and emphasizes the differences between the GBA- and LRRK2-PD subgroups.
Collapse
Affiliation(s)
- Shachar Shani
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orly Goldstein
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Mali Gana-Weisz
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Brain Division Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Avi Orr-Urtreger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
35
|
Balusu S, Praschberger R, Lauwers E, De Strooper B, Verstreken P. Neurodegeneration cell per cell. Neuron 2023; 111:767-786. [PMID: 36787752 DOI: 10.1016/j.neuron.2023.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
The clinical definition of neurodegenerative diseases is based on symptoms that reflect terminal damage of specific brain regions. This is misleading as it tells little about the initial disease processes. Circuitry failures that underlie the clinical symptomatology are themselves preceded by clinically mostly silent, slowly progressing multicellular processes that trigger or are triggered by the accumulation of abnormally folded proteins such as Aβ, Tau, TDP-43, and α-synuclein, among others. Methodological advances in single-cell omics, combined with complex genetics and novel ways to model complex cellular interactions using induced pluripotent stem (iPS) cells, make it possible to analyze the early cellular phase of neurodegenerative disorders. This will revolutionize the way we study those diseases and will translate into novel diagnostics and cell-specific therapeutic targets, stopping these disorders in their early track before they cause difficult-to-reverse damage to the brain.
Collapse
Affiliation(s)
- Sriram Balusu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium; UK Dementia Research Institute, London, UK.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
36
|
Leonard HL, Murtadha R, Martinez-Carrasco A, Jama A, Müller-Nedebock AC, Gil-Martinez AL, Illarionova A, Moore A, Bustos BI, Jadhav B, Huxford B, Storm C, Towns C, Vitale D, Chetty D, Yu E, Grenn FP, Salazar G, Rateau G, Iwaki H, Elsayed I, Foote IF, Jansen van Rensburg Z, Kim JJ, Yuan J, Lake J, Brolin K, Senkevich K, Wu L, Tan MMX, Periñán MT, Makarious MB, Ta M, Pillay NS, Betancor OL, Reyes-Pérez PR, Alvarez Jerez P, Saini P, Al-Ouran R, Sivakumar R, Real R, Reynolds RH, Hu R, Abrahams S, Rao SC, Antar T, Leal TP, Iankova V, Scotton WJ, Song Y, Singleton A, Nalls MA, Dey S, Bandres-Ciga S, Blauwendraat C, Noyce AJ. The IPDGC/GP2 Hackathon - an open science event for training in data science, genomics, and collaboration using Parkinson's disease data. NPJ Parkinsons Dis 2023; 9:33. [PMID: 36871034 PMCID: PMC9984758 DOI: 10.1038/s41531-023-00472-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Open science and collaboration are necessary to facilitate the advancement of Parkinson's disease (PD) research. Hackathons are collaborative events that bring together people with different skill sets and backgrounds to generate resources and creative solutions to problems. These events can be used as training and networking opportunities, thus we coordinated a virtual 3-day hackathon event, during which 49 early-career scientists from 12 countries built tools and pipelines with a focus on PD. Resources were created with the goal of helping scientists accelerate their own research by having access to the necessary code and tools. Each team was allocated one of nine different projects, each with a different goal. These included developing post-genome-wide association studies (GWAS) analysis pipelines, downstream analysis of genetic variation pipelines, and various visualization tools. Hackathons are a valuable approach to inspire creative thinking, supplement training in data science, and foster collaborative scientific relationships, which are foundational practices for early-career researchers. The resources generated can be used to accelerate research on the genetics of PD.
Collapse
Affiliation(s)
- Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Washington, DC, USA.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Ruqaya Murtadha
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alina Jama
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Amica Corda Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Ana-Luisa Gil-Martinez
- Department of Neurodegenerative Disease, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | | | - Anni Moore
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bernabe I Bustos
- The Ken & Ruth Davee Department of Neurology and Simpson Querrey Center of Neurogenetics, Feinberg Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, New York, NY, 10029, USA
| | - Brook Huxford
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Catherine Storm
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clodagh Towns
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Devina Chetty
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eric Yu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Gabriela Salazar
- INNCOSYS, Col. Morelos Second Section, 50120, Toluca de Lerdo, México
| | - Geoffrey Rateau
- Institut du Cerveau - Institute of Brain and Spine (ICM), Hôpital Pitié, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Inas Elsayed
- Faculty of pharmacy, University of Gezira, Wad Medani, P.O. Box 20, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, P.O. Box 20, Sudan
| | - Isabelle Francesca Foote
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Unit for Psychological Medicine, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Zuné Jansen van Rensburg
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jonggeol Jeff Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Jie Yuan
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kajsa Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Konstantin Senkevich
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manuela M X Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- CIBERNED, Madrid, Spain
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael Ta
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Nikita Simone Pillay
- South African National Bioinformatics Institute (SANBI), South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Oswaldo Lorenzo Betancor
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paula R Reyes-Pérez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de, México, Juriquilla, México
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prabhjyot Saini
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
| | - Rami Al-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Regina H Reynolds
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Ruifneg Hu
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shameemah Abrahams
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Shilpa C Rao
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tarek Antar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Thiago Peixoto Leal
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Vassilena Iankova
- Department of Neurology With Friedrich Baur Institut, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - William J Scotton
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Yeajin Song
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Sumit Dey
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| |
Collapse
|
37
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
38
|
Li J, Amoh BK, McCormick E, Tarkunde A, Zhu KF, Perez A, Mair M, Moore J, Shulman JM, Al-Ramahi I, Botas J. Integration of transcriptome-wide association study with neuronal dysfunction assays provides functional genomics evidence for Parkinson's disease genes. Hum Mol Genet 2023; 32:685-695. [PMID: 36173927 PMCID: PMC9896475 DOI: 10.1093/hmg/ddac230] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have markedly advanced our understanding of the genetics of Parkinson's disease (PD), but they currently do not account for the full heritability of PD. In many cases it is difficult to unambiguously identify a specific gene within each locus because GWAS does not provide functional information on the identified candidate loci. Here we present an integrative approach that combines transcriptome-wide association study (TWAS) with high-throughput neuronal dysfunction analyses in Drosophila to discover and validate candidate PD genes. We identified 160 candidate genes whose misexpression is associated with PD risk via TWAS. Candidates were validated using orthogonal in silico methods and found to be functionally related to PD-associated pathways (i.e. endolysosome). We then mimicked these TWAS-predicted transcriptomic alterations in a Drosophila PD model and discovered that 50 candidates can modulate α-Synuclein(α-Syn)-induced neurodegeneration, allowing us to nominate new genes in previously known PD loci. We also uncovered additional novel PD candidate genes within GWAS suggestive loci (e.g. TTC19, ADORA2B, LZTS3, NRBP1, HN1L), which are also supported by clinical and functional evidence. These findings deepen our understanding of PD, and support applying our integrative approach to other complex trait disorders.
Collapse
Affiliation(s)
- Jiayang Li
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Bismark Kojo Amoh
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emma McCormick
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akash Tarkunde
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Katy Fan Zhu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alma Perez
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Megan Mair
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justin Moore
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Abstract
Parkinson's disease (PD) is clinically, pathologically, and genetically heterogeneous, resisting distillation to a single, cohesive disorder. Instead, each affected individual develops a virtually unique form of Parkinson's syndrome. Clinical manifestations consist of variable motor and nonmotor features, and myriad overlaps are recognized with other neurodegenerative conditions. Although most commonly characterized by alpha-synuclein protein pathology throughout the central and peripheral nervous systems, the distribution varies and other pathologies commonly modify PD or trigger similar manifestations. Nearly all PD is genetically influenced. More than 100 genes or genetic loci have been identified, and most cases likely arise from interactions among many common and rare genetic variants. Despite its complex architecture, insights from experimental genetic dissection coalesce to reveal unifying biological themes, including synaptic, lysosomal, mitochondrial, andimmune-mediated mechanisms of pathogenesis. This emerging understanding of Parkinson's syndrome, coupled with advances in biomarkers and targeted therapies, presages successful precision medicine strategies.
Collapse
Affiliation(s)
- Hui Ye
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Laurie A Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| | - Meigen Yu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
| | - Matthew Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA;
- Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
40
|
Morash MG, Nixon J, Shimoda LMN, Turner H, Stokes AJ, Small-Howard AL, Ellis LD. Identification of minimum essential therapeutic mixtures from cannabis plant extracts by screening in cell and animal models of Parkinson's disease. Front Pharmacol 2022; 13:907579. [PMID: 36278152 PMCID: PMC9586206 DOI: 10.3389/fphar.2022.907579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Medicinal cannabis has shown promise for the symptomatic treatment of Parkinson's disease (PD), but patient exposure to whole plant mixtures may be undesirable due to concerns around safety, consistency, regulatory issues, and psychoactivity. Identification of a subset of components responsible for the potential therapeutic effects within cannabis represents a direct path forward for the generation of anti-PD drugs. Using an in silico database, literature reviews, and cell based assays, GB Sciences previously identified and patented a subset of five cannabinoids and five terpenes that could potentially recapitulate the anti-PD attributes of cannabis. While this work represents a critical step towards harnessing the anti-PD capabilities of cannabis, polypharmaceutical drugs of this complexity may not be feasible as therapeutics. In this paper, we utilize a reductionist approach to identify minimal essential mixtures (MEMs) of these components that are amenable to pharmacological formulation. In the first phase, cell-based models revealed that the cannabinoids had the most significant positive effects on neuroprotection and dopamine secretion. We then evaluated the ability of combinations of these cannabinoids to ameliorate a 6-hydroxydopmamine (OHDA)-induced change in locomotion in larval zebrafish, which has become a well-established PD disease model. Equimolar mixtures that each contained three cannabinoids were able to significantly reverse the OHDA mediated changes in locomotion and other advanced metrics of behavior. Additional screening of sixty-three variations of the original cannabinoid mixtures identified five highly efficacious mixtures that outperformed the original equimolar cannabinoid MEMs and represent the most attractive candidates for therapeutic development. This work highlights the strength of the reductionist approach for the development of ratio-controlled, cannabis mixture-based therapeutics for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Jessica Nixon
- National Research Council of Canada, Halifax, NS, Canada
| | - Lori M. N. Shimoda
- Laboratory of Immunology and Signal Transduction, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI, United States
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI, United States
| | - Alexander J. Stokes
- Laboratory of Experimental Medicine, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | | | - Lee D. Ellis
- National Research Council of Canada, Halifax, NS, Canada
| |
Collapse
|
41
|
Kung PJ, Elsayed I, Reyes-Pérez P, Bandres-Ciga S. Immunogenetic Determinants of Parkinson’s Disease Etiology. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S13-S27. [PMID: 35367971 PMCID: PMC9535568 DOI: 10.3233/jpd-223176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson’s disease (PD) is increasingly recognised as a systemic disorder in which inflammation might play a causative role rather than being a consequence or an epiphenomenon of the neurodegenerative process. Although growing genetic evidence links the central and peripheral immune system with both monogenic and sporadic PD, our understanding on how the immune system contributes to PD pathogenesis remains a daunting challenge. In this review, we discuss recent literature aimed at exploring the role of known genes and susceptibility loci to PD pathogenesis through immune system related mechanisms. Furthermore, we outline shared genetic etiologies and interrelations between PD and autoimmune diseases and underlining challenges and limitations faced in the translation of relevant allelic and regulatory risk loci to immune-pathological mechanisms. Lastly, with the field of immunogenetics expanding rapidly, we place these insights into a future context highlighting the prospect of immune modulation as a promising disease-modifying strategy.
Collapse
Affiliation(s)
- Pin-Jui Kung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, Sudan
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Autonoma de México, Queretaro, Mexico
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Isoalantolactone (IAL) Regulates Neuro-Inflammation and Neuronal Apoptosis to Curb Pathology of Parkinson's Disease. Cells 2022; 11:cells11182927. [PMID: 36139502 PMCID: PMC9497122 DOI: 10.3390/cells11182927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which neuronal apoptosis and associated inflammation are involved in its pathogenesis. However, there is still no specific treatment that can stop PD progression. Isoalantolactone (IAL) plays a role in many inflammation-related diseases. However, its effect and mechanism in PD remain unclear. In this study, results showed that IAL administration ameliorated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD-related pathological impairment and decreased motor activity in mice. Results from in vitro mechanistic studies showed that IAL regulated apoptosis-related proteins by activating the AKT/Nrf2 pathway, thereby suppressing the apoptosis of SN4741 cells induced by N-methyl-4-phenylpyridinium Iodide (MPP+). On the other hand, IAL inhibited LPS-induced release of pro-inflammatory mediators in BV2 cells by activating the AKT/Nrf2/HO-1 pathway and inhibiting the NF-κB pathway. In addition, IAL protected SN4741 from microglial activation-mediated neurotoxicity. Taken together, these results highlight the beneficial role of IAL as a novel therapy and potential PD drug due to its pharmacological profile.
Collapse
|
43
|
Liu H, Dehestani M, Blauwendraat C, Makarious MB, Leonard H, Kim JJ, Schulte C, Noyce A, Jacobs BM, Foote I, Sharma M, Nalls M, Singleton A, Gasser T, Bandres‐Ciga S. Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors. Ann Neurol 2022; 92:270-278. [PMID: 35599344 PMCID: PMC9329258 DOI: 10.1002/ana.26416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available. METHODS We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership-Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses. RESULTS A higher polygenic resilience score was associated with a lower risk for PD (β = -0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci. INTERPRETATION The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 2022;92:270-278.
Collapse
Affiliation(s)
- Hui Liu
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Mohammad Dehestani
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
| | - Mary B. Makarious
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
- Data Tecnica InternationalGlen EchoMDUSA
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Hampton Leonard
- Data Tecnica InternationalGlen EchoMDUSA
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Jonggeol J. Kim
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Alastair Noyce
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Benjamin M. Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Isabelle Foote
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Manu Sharma
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
- Center for Genetic Epidemiology, Institute for Clinical Epidemiology and Functional BiometryUniversity of TübingenTübingenGermany
| | - Mike Nalls
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
- Data Tecnica InternationalGlen EchoMDUSA
| | - Andrew Singleton
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of Tübingen and German Center of Neurodegenerative DiseasesTübingenGermany
| | - Sara Bandres‐Ciga
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
44
|
Kim YJ, Kim K, Lee H, Jeon J, Lee J, Yoon J. The Protein-Protein Interaction Network of Hereditary Parkinsonism Genes Is a Hierarchical Scale-Free Network. Yonsei Med J 2022; 63:724-734. [PMID: 35914754 PMCID: PMC9344267 DOI: 10.3349/ymj.2022.63.8.724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Hereditary parkinsonism genes consist of causative genes of familial Parkinson's disease (PD) with a locus symbol prefix (PARK genes) and hereditary atypical parkinsonian disorders that present atypical features and limited responsiveness to levodopa (non-PARK genes). Although studies have shown that hereditary parkinsonism genes are related to idiopathic PD at the phenotypic, gene expression, and genomic levels, no study has systematically investigated connectivity among the proteins encoded by these genes at the protein-protein interaction (PPI) level. MATERIALS AND METHODS Topological measurements and physical interaction enrichment were performed to assess PPI networks constructed using some or all the proteins encoded by hereditary parkinsonism genes (n=96), which were curated using the Online Mendelian Inheritance in Man database and literature. RESULTS Non-PARK and PARK genes were involved in common functional modules related to autophagy, mitochondrial or lysosomal organization, catecholamine metabolic process, chemical synapse transmission, response to oxidative stress, neuronal apoptosis, regulation of cellular protein catabolic process, and vesicle-mediated transport in synapse. The hereditary parkinsonism proteins formed a single large network comprising 51 nodes, 83 edges, and three PPI pairs. The probability of degree distribution followed a power-law scaling behavior, with a degree exponent of 1.24 and a correlation coefficient of 0.92. LRRK2 was identified as a hub gene with the highest degree of betweenness centrality; its physical interaction enrichment score was 1.28, which was highly significant. CONCLUSION Both PARK and non-PARK genes show high connectivity at the PPI and biological functional levels.
Collapse
Affiliation(s)
- Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.
| | - Kiyong Kim
- Department of Electronic Engineering, Kyonggi University, Suwon, Korea.
| | - Heonwoo Lee
- Department of Computer Engineering, Hallym University, Chuncheon, Korea
| | - Junbeom Jeon
- Department of Computer Engineering, Hallym University, Chuncheon, Korea
| | - Jinwoo Lee
- Department of Computer Engineering, Hallym University, Chuncheon, Korea
| | - Jeehee Yoon
- Department of Computer Engineering, Hallym University, Chuncheon, Korea
| |
Collapse
|
45
|
Li J, Chaudhary D, Griessenauer CJ, Carey DJ, Zand R, Abedi V. Predicting mortality among ischemic stroke patients using pathways-derived polygenic risk scores. Sci Rep 2022; 12:12358. [PMID: 35853973 PMCID: PMC9296485 DOI: 10.1038/s41598-022-16510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
We aim to determine whether ischemic stroke(IS)-related PRSs are also associated with and further predict 3-year all-cause mortality. 1756 IS patients with European ancestry were randomly split into training (n = 1226) and testing (n = 530) groups with 3-year post-event observations. Univariate Cox proportional hazards regression model (CoxPH) was used for primary screening of individual prognostic PRSs. Only the significantly associated PRSs and clinical risk factors with the same direction for a causal relationship with IS were used to construct a multivariate CoxPH. Feature selection was conducted by the LASSO method. After feature selection, a prediction model with 11 disease-associated pathway-specific PRSs outperformed the base model, as demonstrated by a higher concordance index (0.751, 95%CI [0.693–0.809] versus 0.729, 95%CI [0.676–0.782]) in the testing sample. A PRS derived from endothelial cell apoptosis showed independent predictability in the multivariate CoxPH (Hazard Ratio = 1.193 [1.027–1.385], p = 0.021). These PRSs fine-tuned the model by better stratifying high, intermediate, and low-risk groups. Several pathway-specific PRSs were associated with clinical risk factors in an age-dependent manner and further confirmed some known etiologies of IS and all-cause mortality. In conclusion, Pathway-specific PRSs for IS are associated with all-cause mortality, and the integrated multivariate risk model provides prognostic value in this context.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA, 17822, USA
| | - Durgesh Chaudhary
- Neuroscience Institute, Geisinger Health System, Danville, PA, 17822, USA
| | - Christoph J Griessenauer
- Neuroscience Institute, Geisinger Health System, Danville, PA, 17822, USA.,Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria
| | - David J Carey
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA, 17822, USA
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, Danville, PA, 17822, USA.
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA, 17822, USA. .,Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
| |
Collapse
|
46
|
Xie A, Ensink E, Li P, Gordevičius J, Marshall LL, George S, Pospisilik JA, Aho VTE, Houser MC, Pereira PAB, Rudi K, Paulin L, Tansey MG, Auvinen P, Brundin P, Brundin L, Labrie V, Scheperjans F. Bacterial Butyrate in Parkinson's Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Mov Disord 2022; 37:1644-1653. [PMID: 35723531 PMCID: PMC9545646 DOI: 10.1002/mds.29128] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aoji Xie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Elizabeth Ensink
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Peipei Li
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Juozas Gordevičius
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Lee L Marshall
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Sonia George
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | | | - Velma T E Aho
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pedro A B Pereira
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, Ås, Norway
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Patrik Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lena Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Viviane Labrie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
Dehestani M, Liu H, Sreelatha AAK, Schulte C, Bansal V, Gasser T. Mitochondrial and autophagy-lysosomal pathway polygenic risk scores predict Parkinson's disease. Mol Cell Neurosci 2022; 121:103751. [PMID: 35710056 DOI: 10.1016/j.mcn.2022.103751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022] Open
Abstract
Polygenic Risk Scores (PRS), which allow assessing an individuals' genetic risk for a complex disease, are calculated as the weighted number of genetic risk alleles in an individual's genome, with the risk alleles and their weights typically derived from the results of genome-wide association studies (GWAS). Among a wide range of applications, PRS can be used to identify at-risk individuals and select them for further clinical follow-up. Pathway PRS are genetic scores based on single nucleotide polymorphisms (SNPs) assigned to genes involved in major disease pathways. The aim of this study is to assess the predictive utility of PRS models constructed based on SNPs corresponding to two cardinal pathways in Parkinson's disease (PD) including mitochondrial PRS (Mito PRS) and autophagy-lysosomal PRS (ALP PRS). PRS models were constructed using the clumping-and-thresholding method in a German population as prediction dataset that included 371 cases and 249 controls, using SNPs discovered by the most recent PD-GWAS. We showed that these pathway PRS significantly predict the PD status. Furthermore, we demonstrated that Mito PRS are significantly associated with later age of onset in PD patients. Our results may add to the accumulating evidence for the contribution of mitochondrial and autophagy-lysosomal pathways to PD risk and facilitate biologically relevant risk stratification of PD patients.
Collapse
Affiliation(s)
- Mohammad Dehestani
- Department of Neurodegenerative Disease, Her tie Institute for Clinical Brain Research, University of Tübingen, Germany; German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany.
| | - Hui Liu
- Department of Neurodegenerative Disease, Her tie Institute for Clinical Brain Research, University of Tübingen, Germany; German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Functional Biometry, University of Tübingen, Germany
| | - Claudia Schulte
- Department of Neurodegenerative Disease, Her tie Institute for Clinical Brain Research, University of Tübingen, Germany; German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Vikas Bansal
- German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Disease, Her tie Institute for Clinical Brain Research, University of Tübingen, Germany; German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| |
Collapse
|
48
|
Hallacli E, Kayatekin C, Nazeen S, Wang XH, Sheinkopf Z, Sathyakumar S, Sarkar S, Jiang X, Dong X, Di Maio R, Wang W, Keeney MT, Felsky D, Sandoe J, Vahdatshoar A, Udeshi ND, Mani DR, Carr SA, Lindquist S, De Jager PL, Bartel DP, Myers CL, Greenamyre JT, Feany MB, Sunyaev SR, Chung CY, Khurana V. The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell 2022; 185:2035-2056.e33. [PMID: 35688132 DOI: 10.1016/j.cell.2022.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
Abstract
Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.
Collapse
Affiliation(s)
- Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Can Kayatekin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sumaiya Nazeen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Xiou H Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Sheinkopf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shubhangi Sathyakumar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xin Jiang
- Yumanity Therapeutics, Boston, MA 02135, USA
| | - Xianjun Dong
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Genomics and Bioinformatics Hub, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics and Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON M5T 3M7, Canada
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | | | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Fernández-Santiago R, Sharma M. What have we learned from genome-wide association studies (GWAS) in Parkinson's disease? Ageing Res Rev 2022; 79:101648. [PMID: 35595184 DOI: 10.1016/j.arr.2022.101648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
After fifteen years of genome-wide association studies (GWAS) in Parkinson's disease (PD), what have we learned? Addressing this question will help catalogue the progress made towards elucidating disease mechanisms, improving the clinical utility of the identified loci, and envisioning how we can harness the strides to develop translational GWAS strategies. Here we review the advances of PD GWAS made to date while critically addressing the challenges and opportunities for next-generation GWAS. Thus, deciphering the missing heritability in underrepresented populations is currently at the reach of hand for a truly comprehensive understanding of the genetics of PD across the different ethnicities. Moreover, state-of-the-art GWAS designs hold a true potential for enhancing the clinical applicability of genetic findings, for instance, by improving disease prediction (PD risk and progression). Lastly, advanced PD GWAS findings, alone or in combination with clinical and environmental parameters, are expected to have the capacity for defining patient enriched cohorts stratified by genetic risk profiles and readily available for neuroprotective clinical trials. Overall, envisioning future strategies for advanced GWAS is currently timely and can be instrumental in providing novel genetic readouts essential for a true clinical translatability of PD genetic findings.
Collapse
|
50
|
Rideout H, Greggio E, Kortholt A, Nichols RJ. Editorial: LRRK2—Fifteen Years From Cloning to the Clinic. Front Neurosci 2022; 16:880914. [PMID: 35478845 PMCID: PMC9036085 DOI: 10.3389/fnins.2022.880914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hardy Rideout
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- *Correspondence: Hardy Rideout
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
- Elisa Greggio
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
- YETEM-Innovative Technologies Application and Research Centre, Suleyman Demirel University, Isparta, Turkey
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Italy
- Arjan Kortholt
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA, United States
- R. Jeremy Nichols
| |
Collapse
|