1
|
Lu Z, Jiang Z, Huang X, Chen Y, Feng L, Mai J, Lao L, Li L, Chen WH, Hu J. Anti-Alzheimer effects of an HDAC6 inhibitor, WY118, alone and in combination of lithium chloride: Synergistic suppression of ferroptosis via the modulation of tau phosphorylation and MAPK signaling. Eur J Pharmacol 2025; 997:177605. [PMID: 40204225 DOI: 10.1016/j.ejphar.2025.177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, and current therapies mainly offer symptomatic relief. Given that the pathophysiology of AD is multifaceted, a multimodal therapeutic strategy targeting multiple molecular pathways implicated in AD-related pathogenesis represents a pragmatic avenue for impeding the advancement of AD. In this study, we evaluated the anti-Alzheimer effects of an HDAC6 inhibitor WY118, both alone and in combination with lithium chloride (LiCl), a GSK-3β inhibitor, to synergistically suppress ferroptosis. The combination of compound WY118 and LiCl demonstrated significant synergistic effects in both cellular models of AD induced by glutamate and streptozotocin. The findings suggest that compound WY118, in particular in combination with LiCl, exhibits potent anti-Alzheimer effects by synergistically suppressing ferroptosis. Studies on the mechanism of action indicated that the combination treatment significantly reduced tau phosphorylation and inhibited p38 MAPK signaling. This combination therapy holds promise for developing more effective treatments for AD.
Collapse
Affiliation(s)
- Zhonghui Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Zixing Jiang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Xiaoling Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Yu Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Luanqi Feng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Jielin Mai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Linghui Lao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
2
|
Kavanagh T, Thierry M, Balcomb K, Ponce J, Kanshin E, Tapia-Sealey A, Halliday G, Ueberheide B, Wisniewski T, Drummond E. The interactome of tau phosphorylated at T217 in Alzheimer's disease human brain tissue. Acta Neuropathol 2025; 149:44. [PMID: 40317322 PMCID: PMC12049313 DOI: 10.1007/s00401-025-02881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
Hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated. The emerging studies suggest that phosphorylation of specific residues may alter the role of tau. The role of specific pTau species can be explored through protein interactome studies. The aim of this study was to analyse the interactome of tau phosphorylated at T217 (pT217), which biomarker studies suggest is one of the earliest accumulating tau species in AD. pT217 interactors were identified in fresh-frozen human brain tissue from 10 cases of advanced AD using affinity purification-mass spectrometry. The cases included a balanced cohort of APOE ε3/ε3 and ε4/ε4 genotypes (n = 5 each) to explore how apolipoprotein E altered phosphorylated tau interactions. The results were compared to our previous interactome dataset that profiled the interactors of PHF1-enriched tau to determine if individual pTau species have different interactomes. 23 proteins were identified as bona fide pT217 interactors, including known pTau interactor SQSTM1. pT217 enriched tau was phosphorylated at fewer residues compared to PHF1-enriched tau, suggesting an earlier stage of pathology development. Notable pT217 interactors included five subunits of the CTLH E3 ubiquitin ligase (WDR26, ARMC8, GID8, RANBP9, MAEA), which has not previously been linked to AD. In APOE ε3/ε3 cases pT217 significantly interacted with 46 proteins compared to 28 in APOE ε4/ε4 cases, but these proteins were significantly overlapped. CTLH E3 ubiquitin ligase subunits significantly interacted with phosphorylated tau in both APOE genotypes. pT217 interactions with SQSTM1, WDR26 and RANBP9 were validated using co-immunoprecipitation and immunofluorescent microscopy of post-mortem human brain tissue, which showed colocalisation of both protein interactors with tau pathology. Our results report the interactome of pT217 in human Alzheimer's disease brain tissue for the first time and highlight the CTLH E3 ubiquitin ligase complex as a significant novel interactor of pT217 tau.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Manon Thierry
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kaleah Balcomb
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jackeline Ponce
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Alexander Tapia-Sealey
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Glenda Halliday
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Beatrix Ueberheide
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Eleanor Drummond
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia.
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
3
|
Dourlen P, Kilinc D, Landrieu I, Chapuis J, Lambert JC. BIN1 and Alzheimer's disease: the tau connection. Trends Neurosci 2025; 48:349-361. [PMID: 40268578 DOI: 10.1016/j.tins.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/25/2025]
Abstract
Bridging integrator 1 (BIN1) is a ubiquitously expressed protein that plays a critical role in endocytosis, trafficking and cytoskeletal dynamics. In 2010, BIN1 gene was reported as a major genetic risk factor for Alzheimer's disease (AD), which shifted the focus on its physiological and pathophysiological roles in the brain (at a time when data available were scarce). In this review, we discuss the multiple cerebral roles of BIN1, especially in regulating synaptic function, and the strong link between BIN1 and tau pathology, supported by recent evidence ranging from genetic and clinical/postmortem observations to molecular interactions.
Collapse
Affiliation(s)
- Pierre Dourlen
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Devrim Kilinc
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Isabelle Landrieu
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France; CNRS EMR9002-BSI-Integrative Structural Biology, Lille, France
| | - Julien Chapuis
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jean-Charles Lambert
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France.
| |
Collapse
|
4
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Shrief AI, Elshenawy DS, Elsukary AE, Elekhtiar SA, Yahia OA. Behavioral and histological study on the neuroprotective effect of thymoquinone on the cerebellum in AlCl3-induced neurotoxicity in rats through modulation of oxidative stress, apoptosis, and autophagy. J Mol Histol 2025; 56:81. [PMID: 39912993 DOI: 10.1007/s10735-025-10361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Alzheimer disease (AD) is a neurodegenerative condition. Thymoquinone (TQ) is a natural compound that possesses beneficial biological effects on the brain. The present study evaluates the protective impact of TQ on the cerebellum in rats with AlCl3-induced Alzheimer's disease. Four groups were utilized. Control: 20 rats that were subdivided into two subgroups. Ia: received distilled water for 4 weeks. Ib: received corn oil via oral gavage (1 ml/kg daily) for 4 weeks. TQ group: 10 rats received TQ in corn oil via oral gavage (20 mg/kg daily) for 4 weeks. AD group:10 rats received AlCl3 in distilled water via oral gavage (300 mg/kg daily) for 4 weeks. AD & TQ group: 10 rats received both AlCl3 & TQ for 4 weeks. The grip period in the rotarod test decreased, escape latency in first three days and the entry latency period to the quadrant with the removed escape platform in the Morris water maze test increased in AD group, but when TQ was administered concurrently, there was a noteworthy improvement. Meanwhile, when compared to AD group, the addition of TQ showed a significant decrease (P < 0.05) in levels of malondialdehyde (MDA) and nitric oxide (NO), associated with a significant increase (P < 0.05) in reduced glutathione (GSH) level. Furthermore, AD & TQ group exhibited substantial preservation of the cerebellum's histological structure, the Purkinje cells number and transverse diameter showed a high significant increase (P < 0.001) and a significant increase (P < 0.05), respectively in comparison to the AD group. Using TQ showed improvement in behavioral tests, biochemical and histological findings. Thus, TQ might have therapeutic effects on Alzheimer's disease.
Collapse
Affiliation(s)
- Amira I Shrief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Horus University, New Damietta City, Egypt.
| | - Dina S Elshenawy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Elsukary
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| | - Sally A Elekhtiar
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Horus University, New Damietta City, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Ola A Yahia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| |
Collapse
|
6
|
Walkiewicz G, Ronisz A, Ospitalieri S, Tsaka G, Tomé SO, Vandenberghe R, von Arnim CAF, Rousseau F, Schymkowitz J, De Groef L, Thal DR. pTau pathology in the retina of TAU58 mice: association with ganglion cell degeneration and implications on seeding and propagation of pTau from human brain lysates. Acta Neuropathol Commun 2024; 12:194. [PMID: 39707519 DOI: 10.1186/s40478-024-01907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons. To address these questions, we (1) characterized pTau pathology in the retina of TAU58 mice, (2) determined the impact of pTau pathology on retinal ganglion cell density, and (3) used this mouse model to test whether brain lysates from AD and/or non-AD control cases induce seeding in the retina and/or propagation into the brain. TAU58 mice developed retinal pTau pathology at 6 months of age, increasing in severity and extent with age. TAU58 mice showed reduced retinal ganglion cell density compared to wild-type mice, which declined with age and pTau pathology progression. Brain lysates from non-AD Braak neurofibrillary tangle (NFT) stage I controls increased retinal pTau pathology after subretinal injection compared to phosphate-buffered saline (PBS) but did not accelerate pTau pathology in the brain. In contrast, subretinally injected AD brain lysates accelerated pTau pathology in the retina and the contralateral superior colliculus. Subretinal injection of AD brain lysates, but not of non-AD brain, induced in this context a neuroinflammatory response in the retina and in the contralateral primary visual cortex. These results lead to the following conclusions: (1) Brain lysates from AD and non-AD sources can accelerate tauopathy within the retina. (2) The anterograde propagation of pTau pathology from the retina to the brain can be triggered by subretinal injections of AD brain lysates. (3) Such subretinal injections also provoke a neuroinflammatory response in both the retina and the visual cortex. (4) The accumulation of retinal pTau is associated with the degeneration of the involved ganglion cells, indicating that retinal tauopathy might contribute to vision impairment in the elderly and underscore the retina's potential role in spreading tau pathology to the brain.
Collapse
Affiliation(s)
- Grzegorz Walkiewicz
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Alicja Ronisz
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Grigoria Tsaka
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Tomé SO, Gawor K, Thal DR. LATE-NC in Alzheimer's disease: Molecular aspects and synergies. Brain Pathol 2024; 34:e13213. [PMID: 37793659 PMCID: PMC11189776 DOI: 10.1111/bpa.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.
Collapse
Grants
- 10810 Alzheimer Forschung Initiative (Germany)
- 13803 Alzheimer Forschung Initiative (Germany)
- 22-AAIIA-963171 Alzheimer's Association (USA)
- A2022019F BrightFocus Foundation (USA)
- TH-624-4-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 4-2 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 6-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- G065721N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- G0F8516N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- 2020/017 Stichting Alzheimer Onderzoek (SAO/FRA, Belgium)
- C3/20/057 Onderzoeksraad, KU Leuven (Belgium)
- PDMT2/21/069 Onderzoeksraad, KU Leuven (Belgium)
- IWT 135043 Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (Belgium)
- Alzheimer Forschung Initiative (Germany)
- Alzheimer's Association (USA)
- BrightFocus Foundation (USA)
- Deutsche Forschungsgemeinschaft (DFG, Germany)
- Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- Onderzoeksraad, KU Leuven (Belgium)
Collapse
Affiliation(s)
- Sandra O. Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospitals of LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Yang J, Shen N, Shen J, Yang Y, Li HL. Complicated Role of Post-translational Modification and Protease-Cleaved Fragments of Tau in Alzheimer's Disease and Other Tauopathies. Mol Neurobiol 2024; 61:4712-4731. [PMID: 38114762 PMCID: PMC11236937 DOI: 10.1007/s12035-023-03867-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Tau, a microtubule-associated protein predominantly localized in neuronal axons, plays a crucial role in promoting microtubule assembly, stabilizing their structure, and participating in axonal transport. Perturbations in tau's structure and function are implicated in the pathogenesis of neurodegenerative diseases collectively known as tauopathies, the most common disorder of which is Alzheimer's disease (AD). In tauopathies, it has been found that tau has a variety of post-translational modification (PTM) abnormalities and/or tau is cleaved into a variety of fragments by some specific proteolytic enzymes; however, the precise contributions of these abnormal modifications and fragments to disease onset and progression remain incompletely understood. Herein, we provide an overview about the involvement of distinctive abnormal tau PTMs and different tau fragments in the pathogenesis of AD and other tauopathies and discuss the involvement of proteolytic enzymes such as caspases, calpains, and asparagine endopeptidase in mediating tau cleavage while also addressing the intercellular transmission role played by tau. We anticipate that further exploration into PTMs and fragmented forms of tau will yield valuable insights for diagnostic approaches and therapeutic interventions targeting AD and other related disorders.
Collapse
Affiliation(s)
- Jie Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianying Shen
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
10
|
Vos SJB, Delvenne A, Jack CR, Thal DR, Visser PJ. The clinical importance of suspected non-Alzheimer disease pathophysiology. Nat Rev Neurol 2024; 20:337-346. [PMID: 38724589 DOI: 10.1038/s41582-024-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
The development of biomarkers for Alzheimer disease (AD) has led to the origin of suspected non-AD pathophysiology (SNAP) - a heterogeneous biomarker-based concept that describes individuals with normal amyloid and abnormal tau and/or neurodegeneration biomarker status. In this Review, we describe the origins of the SNAP construct, along with its prevalence, diagnostic and prognostic implications, and underlying neuropathology. As we discuss, SNAP can be operationalized using different biomarker modalities, which could affect prevalence estimates and reported characteristics of SNAP in ways that are not yet fully understood. Moreover, the underlying aetiologies that lead to a SNAP biomarker profile, and whether SNAP is the same in people with and without cognitive impairment, remains unclear. Improved insight into the clinical characteristics and pathophysiology of SNAP is of major importance for research and clinical practice, as well as for trial design to optimize care and treatment of individuals with SNAP.
Collapse
Affiliation(s)
- Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
11
|
Zhang L, Cao K, Xie J, Liang X, Gong H, Luo Q, Luo H. Aβ 42 and ROS dual-targeted multifunctional nanocomposite for combination therapy of Alzheimer's disease. J Nanobiotechnology 2024; 22:278. [PMID: 38783363 PMCID: PMC11112798 DOI: 10.1186/s12951-024-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Amyloid-β (Aβ) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aβ aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aβ42, we developed an Aβ42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aβ-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aβ42 misfolding, accelerating Aβ42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aβ clearance exhibited by this Aβ42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.
Collapse
Affiliation(s)
- Liding Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Xie
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| | - Haiming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
12
|
Chen M, Feng X, Liu J, Wang J, Yang X, Yu X, Kong W, Sun B, Wu H. Prokaryote-derived phosphorylated Tau epitope vaccine is immunogenic and non-T-cell activated in the mice model. Vaccine 2024; 42:1211-1219. [PMID: 38331660 DOI: 10.1016/j.vaccine.2023.12.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Accumulation of phosphorylated Tau protein is a prominent pathological hallmark of Alzheimer's disease (AD). However, current vaccines targeting phosphorylation sites are primarily modified using chemical reactions, which exhibit low efficiency in terms of linking to the vaccine carrier. Despite the identification of over 2000 phosphorylation sites on approximately 20% of E. coli proteins through proteomic studies, it remains unclear whether recombinant Tau proteins expressed in bacteria undergo direct phosphorylation. Additionally, limited information is available regarding the immunogenicity and safety profiles of prokaryotic-derived pTau epitope vaccines. Our study discovered that the prokaryotic system can induce phosphorylation on four residues (T181, T205, S262, and S396) of the full-length Tau protein. Based on this finding, we developed a prokaryotic-modified phosphorylated Tau protein vaccine and immunized wild-type mice, resulting in enhanced immunogenicity and a favorable safety profile.
Collapse
Affiliation(s)
- Mo Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xuejian Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianan Wang
- Changchun BCHT Biotechnology, 1260 Huoju Road, Changchun High-tech Zone, Changchun, Jilin, China
| | - Xu Yang
- Chemistry Room, Jilin Institute for Drug Control, No. 657, Zhanjiang Road, Changchun, Jilin, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Alber J, Bouwman F, den Haan J, Rissman RA, De Groef L, Koronyo‐Hamaoui M, Lengyel I, Thal DR. Retina pathology as a target for biomarkers for Alzheimer's disease: Current status, ophthalmopathological background, challenges, and future directions. Alzheimers Dement 2024; 20:728-740. [PMID: 37917365 PMCID: PMC10917008 DOI: 10.1002/alz.13529] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
There is emerging evidence that amyloid beta protein (Aβ) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aβ and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.
Collapse
Affiliation(s)
- Jessica Alber
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Butler Hospital Memory & Aging ProgramProvidenceRhode IslandUSA
| | - Femke Bouwman
- Amsterdam UMC, location VUmcAlzheimer Center, Department of NeurologyAmsterdamThe Netherlands
| | - Jurre den Haan
- Amsterdam UMC, location VUmcAlzheimer Center, Department of NeurologyAmsterdamThe Netherlands
| | - Robert A. Rissman
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of BiologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Maya Koronyo‐Hamaoui
- Departments of Neurosurgery, Neurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research Institute, Cedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Imre Lengyel
- The Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Dietmar Rudolf Thal
- Laboratory of NeuropathologyDepartment of Imaging and Pathology, and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Department of PathologyUZ LeuvenLeuvenBelgium
| | | |
Collapse
|
14
|
Schneeweis A, Pak DTS. Wherefore Art Tau? Functional importance of site-specific tau phosphorylation in diverse subcellular domains. Int J Biochem Cell Biol 2023; 164:106475. [PMID: 37778693 DOI: 10.1016/j.biocel.2023.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Tau has canonically been considered as an axonal protein, but studies have observed tau localization in other subcellular domains of neurons. This relocated tau has been identified in both physiological and pathological conditions, and it is often labeled mislocalized. Furthermore, these forms of tau are referred to as "hyperphosphorylated" without specifying the phosphosites involved. On the contrary, we speculate that tau may have multiple physiological functions in various locations regulated via specific phosphorylation sites, although this picture is obscured by a lack of comprehensive phosphosite analysis. Here, we examine findings in the literature on the subcellular location of tau and potential roles tau has in those regions. We intentionally focus on the site-specific phosphorylated patterns involved in governing these properties, which are not well elucidated. To facilitate understanding of these events, we have begun establishing a comprehensive map of tau phosphorylation signatures. Such efforts may clarify tau's diverse physiological functions beyond the axon as well as promote development of novel therapeutic strategies directed against distinct tau subpopulations.
Collapse
Affiliation(s)
- Amanda Schneeweis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
15
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Yukawa K, Yamamoto-Mcguire S, Cafaro L, Hong C, Kamme F, Ikezu T, Ikezu S. Antisense oligonucleotide-based targeting of Tau-tubulin kinase 1 prevents hippocampal accumulation of phosphorylated tau in PS19 tauopathy mice. Acta Neuropathol Commun 2023; 11:166. [PMID: 37853497 PMCID: PMC10585748 DOI: 10.1186/s40478-023-01661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Tau tubulin kinase-1 (TTBK1), a neuron-specific tau kinase, is highly expressed in the entorhinal cortex and hippocampal regions, where early tau pathology evolves in Alzheimer's disease (AD). The protein expression level of TTBK1 is elevated in the cortex brain tissues with AD patients compared to the control subjects. We therefore hypothesized that antisense oligonucleotide (ASO) based targeting Ttbk1 could prevent the accumulation of phosphorylated tau, thereby delaying the development of tau pathology in AD. Here we show that in vivo administration of ASO targeting mouse Ttbk1 (ASO-Ttbk1) specifically suppressed the expression of Ttbk1 without affecting Ttbk2 expression in the temporal cortex of PS19 tau transgenic mice. Central administration of ASO-Ttbk1 in PS19 mice significantly reduced the expression level of representative phosphor-tau epitopes relevant to AD at 8 weeks post-dose, including pT231, pT181, and pS396 in the sarkosyl soluble and insoluble fractions isolated from hippocampal tissues as determined by ELISA and pS422 in soluble fractions as determined by western blotting. Immunofluorescence demonstrated that ASO-Ttbk1 significantly reduced pS422 phosphorylated tau intensity in mossy fibers region of the dentate gyrus in PS19 mice. RNA-sequence analysis of the temporal cortex tissue revealed significant enrichment of interferon-gamma and complement pathways and increased expression of antigen presenting molecules (Cd86, Cd74, and H2-Aa) in PS19 mice treated with ASO-Ttbk1, suggesting its potential effect on microglial phenotype although neurotoxic effect was absent. These data suggest that TTBK1 is an attractive therapeutic target to suppress TTBK1 without compromising TTBK2 expression and pathological tau phosphorylation in the early stages of AD.
Collapse
Affiliation(s)
- Kayo Yukawa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Satomi Yamamoto-Mcguire
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Louis Cafaro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | | | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
- Regenerative Science Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA.
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
17
|
Colom-Cadena M, Davies C, Sirisi S, Lee JE, Simzer EM, Tzioras M, Querol-Vilaseca M, Sánchez-Aced É, Chang YY, Holt K, McGeachan RI, Rose J, Tulloch J, Wilkins L, Smith C, Andrian T, Belbin O, Pujals S, Horrocks MH, Lleó A, Spires-Jones TL. Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain. Neuron 2023; 111:2170-2183.e6. [PMID: 37192625 DOI: 10.1016/j.neuron.2023.04.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Caitlin Davies
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Sònia Sirisi
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ji-Eun Lee
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Elizabeth M Simzer
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Makis Tzioras
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Érika Sánchez-Aced
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ya Yin Chang
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Kristjan Holt
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Robert I McGeachan
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jamie Rose
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jane Tulloch
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Lewis Wilkins
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, The University of Edinburgh, Edinburgh, UK
| | - Teodora Andrian
- Nanoscopy for Nanomedicine Lab, Institute of Bioengineering of Catalonia (IBEC Barcelona Institute of Science and Technology), Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sílvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK.
| |
Collapse
|
18
|
Manca M, Standke HG, Browne DF, Huntley ML, Thomas OR, Orrú CD, Hughson AG, Kim Y, Zhang J, Tatsuoka C, Zhu X, Hiniker A, Coughlin DG, Galasko D, Kraus A. Tau seeds occur before earliest Alzheimer's changes and are prevalent across neurodegenerative diseases. Acta Neuropathol 2023; 146:31-50. [PMID: 37154939 PMCID: PMC10261243 DOI: 10.1007/s00401-023-02574-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Tau neurofibrillary tangles are a hallmark of Alzheimer's disease neuropathological change. However, it remains largely unclear how distinctive Alzheimer's disease tau seeds (i.e. 3R/4R) correlate with histological indicators of tau accumulation. Furthermore, AD tau co-pathology is thought to influence features and progression of other neurodegenerative diseases including Lewy body disease; yet measurements of different types of tau seeds in the setting of such diseases is an unmet need. Here, we use tau real-time quaking-induced conversion (RT-QuIC) assays to selectively quantitate 3R/4R tau seeds in the frontal lobe which accumulates histologically identifiable tau pathology at late disease stages of AD neuropathologic change. Seed quantitation across a spectrum of neurodegenerative disease cases and controls indicated tau seeding activity can be detected well before accompanying histopathological indication of tau deposits, and even prior to the earliest evidence of Alzheimer's-related tau accumulation anywhere in the brain. In later stages of AD, 3R/4R tau RT-QuIC measures correlated with immunohistochemical tau burden. In addition, Alzheimer's tau seeds occur in the vast majority of cases evaluated here inclusive of primary synucleinopathies, frontotemporal lobar degeneration and even controls albeit at multi-log lower levels than Alzheimer's cases. α-synuclein seeding activity confirmed synucleinopathy cases and further indicated the co-occurrence of α-synuclein seeds in some Alzheimer's disease and primary tauopathy cases. Our analysis indicates that 3R/4R tau seeds in the mid-frontal lobe correlate with the overall Braak stage and Alzheimer's disease neuropathologic change, supporting the quantitative predictive value of tau RT-QuIC assays. Our data also indicate 3R/4R tau seeds are elevated in females compared to males at high (≥ IV) Braak stages. This study suggests 3R/4R tau seeds are widespread even prior to the earliest stages of Alzheimer's disease changes, including in normal, and even young individuals, with prevalence across multiple neurodegenerative diseases to further define disease subtypes.
Collapse
Affiliation(s)
- Matteo Manca
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Heidi G Standke
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Danielle F Browne
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Mikayla L Huntley
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Olivia R Thomas
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Christina D Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Yongya Kim
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - Jing Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Curtis Tatsuoka
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - David G Coughlin
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093-0612, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Moloney CM, Labuzan SA, Crook JE, Siddiqui H, Castanedes-Casey M, Lachner C, Petersen RC, Duara R, Graff-Radford NR, Dickson DW, Mielke MM, Murray ME. Phosphorylated tau sites that are elevated in Alzheimer's disease fluid biomarkers are visualized in early neurofibrillary tangle maturity levels in the post mortem brain. Alzheimers Dement 2023; 19:1029-1040. [PMID: 35920592 PMCID: PMC9895127 DOI: 10.1002/alz.12749] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) biomarkers are increasingly more reliable in predicting neuropathology. To facilitate interpretation of phosphorylated tau sites as an early fluid biomarker, we sought to characterize which neurofibrillary tangle maturity levels (pretangle, intermediary 1, mature tangle, intermediary 2, and ghost tangle) are recognized. METHODS We queried the Florida Autopsied Multi-Ethnic (FLAME) cohort for cases ranging from Braak stages I through VI, excluding non-AD neuropathologies and tauopathies. Thioflavin-S staining was compared to immunohistochemical measures of phosphorylated threonine (pT) 181, pT205, pT217, and pT231 in two hippocampal subsectors across n = 24 cases. RESULTS Each phosphorylated tau site immunohistochemically labeled early neurofibrillary tangle maturity levels compared to advanced levels recognized by thioflavin-S. Hippocampal burden generally increased with each Braak stage. DISCUSSION These results provide neurobiologic evidence that these phosphorylated tau fluid biomarker sites are present during early neurofibrillary tangle maturity levels and may explain why these fluid biomarker measures are observed before symptom onset. HIGHLIGHTS Immunohistochemical evaluation of four phosphorylated tau fluid biomarker sites. Earlier neurofibrillary tangle maturity levels recognized by phosphorylated tau in proline-rich region. Advanced tangle pathology is elevated in the subiculum compared to the cornu ammonis 1 of the hippocampus. Novel semi-quantitative frequency to calculate tangle maturity frequency.
Collapse
Affiliation(s)
| | | | - Julia E. Crook
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Habeeba Siddiqui
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Christian Lachner
- Division of Psychiatry, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
20
|
Zhang L, Su Y, Liang X, Cao K, Luo Q, Luo H. Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer's disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay. NANO RESEARCH 2023; 16:7459-7469. [PMID: 37223429 PMCID: PMC9971675 DOI: 10.1007/s12274-022-5354-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 05/25/2023]
Abstract
Phosphorylation of tau at Ser (396, 404) (p-tau396,404) is one of the earliest phosphorylation events, and plasma p-tau396,404 level appears to be a potentially promising biomarker of Alzheimer's disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau396,404 levels. Herein, based on our screening of a pair of p-tau396,404-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau396,404 levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening. Electronic Supplementary Material Supplementary material (characterization of AuNPs and 4-MBA@AuNP probe; the optimal 4-MBA load for AuNPs; the optimal K2CO3 volumes for 4-MBA@AuNP-3G5 conjugates; the optimal 3G5 load for 4-MBA@AuNP conjugates; effect of NaCl concentration on 4-MBA@AuNP-3G5 stability; the linear curve of T-line color and SERS intensity versus different p-tau396,404 concentrations; the comparison of colorimetric-based LFA test results and the diagnosis results; Raman intensities and antibody activity of 4-MBA@AuNP-3G5 before and after storage; colorimetric intensity of dual-readout LFA detecting different concentrations of p-tau396,404 protein; sequence of synthesized peptides used in this study; information of the participants in this study; the information of antibodies used in this study) is available in the online version of this article at 10.1007/s12274-022-5354-4.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| |
Collapse
|
21
|
Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Protein Interactome of Amyloid-β as a Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:312. [PMID: 37259455 PMCID: PMC9965366 DOI: 10.3390/ph16020312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 04/12/2024] Open
Abstract
The amyloid concept of Alzheimer's disease (AD) assumes the β-amyloid peptide (Aβ) as the main pathogenic factor, which injures neural and other brain cells, causing their malfunction and death. Although Aβ has been documented to exert its cytotoxic effect in a solitary manner, there is much evidence to claim that its toxicity can be modulated by other proteins. The list of such Aβ co-factors or interactors includes tau, APOE, transthyretin, and others. These molecules interact with the peptide and affect the ability of Aβ to form oligomers or aggregates, modulating its toxicity. Thus, the list of potential substances able to reduce the harmful effects of the peptide should include ones that can prevent the pathogenic interactions by specifically binding Aβ and/or its partners. In the present review, we discuss the data on Aβ-based complexes in AD pathogenesis and on the compounds directly targeting Aβ or the destructors of its complexes with other polypeptides.
Collapse
Affiliation(s)
- Vladimir F. Lazarev
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Elizaveta A. Dutysheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Igor E. Kanunikov
- Biological Faculty, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Irina V. Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Boris A. Margulis
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| |
Collapse
|
22
|
Zhang L, Cao K, Su Y, Hu S, Liang X, Luo Q, Luo H. Colorimetric and surface-enhanced Raman scattering dual-mode magnetic immunosensor for ultrasensitive detection of blood phosphorylated tau in Alzheimer's disease. Biosens Bioelectron 2023; 222:114935. [PMID: 36463652 DOI: 10.1016/j.bios.2022.114935] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Phosphorylation of tau at Ser 396, 404 (p-tau396,404) is the earliest phosphorylation event and a promising biomarker for the early diagnosis of Alzheimer's disease (AD). However, the detection of blood p-tau is challenging because of its low abundance, easy degradation, and complex formation with various blood proteins or cells, often leading to the underestimation of p-tau levels in conventional plasma-based assays. Herein, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-mode magnetic immunosensor for highly sensitive, specific, and robust detection of p-tau396,404 in whole blood samples. The detection assay was based on an immunoreaction between p-tau396,404 proteins, wherein antibody-modified superparamagnetic iron oxide nanoparticles act as recognition elements to capture p-tau396,404 in blood, and then horseradish peroxidase- and Raman tags label the corresponding paired antibody as a reporter to provide high signal-to-noise ratios for the immunosensor. This dual-mode immunosensor achieved identified as low as 1.5 pg/mL of p-tau396,404 in the blood in SERS mode and 24 pg/mL in colorimetric mode by the naked eye. More importantly, this immunosensor rapidly and accurately distinguished AD patients from healthy individuals based on blood p-tau396,404 levels, and also had the potential to distinguish AD patients of different severities. Therefore, the dual-mode immunosensor is promising for rapid clinical diagnosis of AD, especially in large-scale AD screening.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Shun Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China; Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, China; Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
23
|
Barendrecht S, Schreurs A, Geissler S, Sabanov V, Ilse V, Rieckmann V, Eichentopf R, Künemund A, Hietel B, Wussow S, Hoffmann K, Körber-Ferl K, Pandey R, Carter GW, Demuth HU, Holzer M, Roßner S, Schilling S, Preuss C, Balschun D, Cynis H. A novel human tau knock-in mouse model reveals interaction of Abeta and human tau under progressing cerebral amyloidosis in 5xFAD mice. Alzheimers Res Ther 2023; 15:16. [PMID: 36641439 PMCID: PMC9840277 DOI: 10.1186/s13195-022-01144-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/14/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.
Collapse
Affiliation(s)
- Susan Barendrecht
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - An Schreurs
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Stefanie Geissler
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Victor Sabanov
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Victoria Ilse
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Vera Rieckmann
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Rico Eichentopf
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Anja Künemund
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Benjamin Hietel
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Sebastian Wussow
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Katrin Hoffmann
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Kerstin Körber-Ferl
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Ravi Pandey
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Gregory W. Carter
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Hans-Ulrich Demuth
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Max Holzer
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Stephan Schilling
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany ,grid.427932.90000 0001 0692 3664Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
| | - Christoph Preuss
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Detlef Balschun
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Holger Cynis
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| |
Collapse
|
24
|
Lilek J, Ajroud K, Feldman AZ, Krishnamachari S, Ghourchian S, Gefen T, Spencer CL, Kawles A, Mao Q, Tranovich JF, Jack CR, Mesulam MM, Reichard RR, Zhang H, Murray ME, Knopman D, Dickson DW, Petersen RC, Smith B, Ashe KH, Mielke MM, Nelson KM, Flanagan ME. Accumulation of pTau231 at the Postsynaptic Density in Early Alzheimer's Disease. J Alzheimers Dis 2023; 92:241-260. [PMID: 36744338 PMCID: PMC10041451 DOI: 10.3233/jad-220848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Phosphorylated cytoplasmic tau inclusions correlate with and precede cognitive deficits in Alzheimer's disease (AD). However, pathological tau accumulation and relationships to synaptic changes remain unclear. OBJECTIVE To address this, we examined postmortem brain from 50 individuals with the full spectrum of AD (clinically and neuropathologically). Total tau, pTau231, and AMPA GluR1 were compared across two brain regions (entorhinal and middle frontal cortices), as well as clinically stratified groups (control, amnestic mild cognitive impairment, AD dementia), NIA-AA Alzheimer's Disease Neuropathologic Change designations (Not, Low, Intermediate, High), and Braak tangle stages (1-6). Significant co-existing pathology was excluded to isolate changes attributed to pathologic AD. METHODS Synaptosomal fractionation and staining were performed to measure changes in total Tau, pTau231, and AMPA GluR1. Total Tau and pTau231 were quantified in synaptosomal fractions using Quanterix Simoa HD-X. RESULTS Increasing pTau231 in frontal postsynaptic fractions correlated positively with increasing clinical and neuropathological AD severity. Frontal cortex is representative of early AD, as it does not become involved by tau tangles until late in AD. Entorhinal total tau was significantly higher in the amnestic mild cognitive impairment group when compared to AD, but only after accounting for AD associated synaptic changes. Alterations in AMPA GluR1 observed in the entorhinal cortex, but not middle frontal cortex, suggest that pTau231 mislocalization and aggregation in postsynaptic structures may impair glutamatergic signaling by promoting AMPA receptor dephosphorylation and internalization. CONCLUSION Results highlight the potential effectiveness of early pharmacological interventions targeting pTau231 accumulation at the postsynaptic density.
Collapse
Affiliation(s)
- Jaclyn Lilek
- Department of Pathology, Northwestern University, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
| | - Kaouther Ajroud
- Department of Pathology, Northwestern University, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
| | | | | | | | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Illinois, USA
| | - Callen L. Spencer
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
| | - Qinwen Mao
- Department of Pathology, Northwestern University, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
| | | | | | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
- Department of Neurology, Northwestern University, Illinois, USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Minnesota, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
- Division of Biostatistics, Department of Preventative Medicine, Feinberg School of Medicine, Northwestern University, Illinois, USA
| | | | - David Knopman
- Department of Neurology, Mayo Clinic, Minnesota, USA
| | | | | | - Benjamin Smith
- Department of Neurology, University of Minnesota, Minnesota, USA
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minnesota, USA
| | - Karen H. Ashe
- Department of Neurology, University of Minnesota, Minnesota, USA
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minnesota, USA
- Institute for Translational Neuroscience, University of Minnesota, Minnesota, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, Minnesota, USA
| | - Michelle M. Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kathryn M. Nelson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minnesota, USA
| | - Margaret E. Flanagan
- Department of Pathology, Northwestern University, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Illinois, USA
| |
Collapse
|
25
|
Jorge-Oliva M, Smits JFM, Wiersma VI, Hoozemans JJM, Scheper W. Granulovacuolar degeneration bodies are independently induced by tau and α-synuclein pathology. Alzheimers Res Ther 2022; 14:187. [PMID: 36517915 PMCID: PMC9749177 DOI: 10.1186/s13195-022-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Granulovacuolar degeneration bodies (GVBs) are intracellular vesicular structures that commonly accompany pathological tau accumulations in neurons of patients with tauopathies. Recently, we developed the first model for GVBs in primary neurons, that requires exogenous tau seeds to elicit tau aggregation. This model allowed the identification of GVBs as proteolytically active lysosomes induced by tau pathology. GVBs selectively accumulate cargo in a dense core, that shows differential and inconsistent immunopositivity for (phosphorylated) tau epitopes. Despite the strong evidence connecting GVBs to tau pathology, these structures have been reported in neurons without apparent pathology in brain tissue of tauopathy patients. Additionally, GVBs and putative GVBs have also been reported in the brain of patients with non-tau proteinopathies. Here, we investigated the connection between pathological protein assemblies and GVBs in more detail. METHODS This study combined newly developed primary neuron models for tau and α-synuclein pathology with observations in human brain tissue from tauopathy and Parkinson's disease patients. Immunolabeling and imaging techniques were employed for extensive characterisation of pathological proteins and GVBs. Quantitative data were obtained by high-content automated microscopy as well as single-cell analysis of confocal images. RESULTS Employing a novel seed-independent neuronal tau/GVB model, we show that in the context of tauopathy, GVBs are inseparably associated with the presence of cytosolic pathological tau and that intracellular tau aggregation precedes GVB formation, strengthening the causal relationship between pathological accumulation of tau and GVBs. We also report that GVBs are inseparably associated with pathological tau at the single-cell level in the hippocampus of tauopathy patients. Paradoxically, we demonstrate the presence of GVBs in the substantia nigra of Parkinson's disease patients and in a primary neuron model for α-synuclein pathology. GVBs in this newly developed α-synuclein/GVB model are induced in the absence of cytosolic pathological tau accumulations. GVBs in the context of tau or α-synuclein pathology showed similar immunoreactivity for different phosphorylated tau epitopes. The phosphorylated tau immunoreactivity signature of GVBs is therefore independent of the presence of cytosolic tau pathology. CONCLUSION Our data identify the emergence of GVBs as a more generalised response to cytosolic protein pathology.
Collapse
Affiliation(s)
- Marta Jorge-Oliva
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Jasper F. M. Smits
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Vera I. Wiersma
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jeroen J. M. Hoozemans
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Wiep Scheper
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Zhao HH, Haddad GG. Alzheimer's disease like neuropathology in Down syndrome cortical organoids. Front Cell Neurosci 2022; 16:1050432. [PMID: 36568886 PMCID: PMC9773144 DOI: 10.3389/fncel.2022.1050432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Down syndrome (DS) is a genetic disorder with an extra copy of chromosome 21 and DS remains one of the most common causes of intellectual disabilities in humans. All DS patients have Alzheimer's disease (AD)-like neuropathological changes including accumulation of plaques and tangles by their 40s, much earlier than the onset of such neuropathological changes in AD patients. Due to the lack of human samples and appropriate techniques, our understanding of DS neuropathology during brain development or before the clinical onset of the disease remains largely unexplored at the cellular and molecular levels. Methods: We used induced pluripotent stem cell (iPSC) and iPSC-derived 3D cortical organoids to model Alzheimer's disease in Down syndrome and explore the earliest cellular and molecular changes during DS fetal brain development. Results: We report that DS iPSCs have a decreased growth rate than control iPSCs due to a decreased cell proliferation. DS iPSC-derived cortical organoids have a much higher immunoreactivity of amyloid beta (Aß) antibodies and a significantly higher amount of amyloid plaques than control organoids. Although Elisa results did not detect a difference of Aß40 and Aß42 level between the two groups, the ratio of Aß42/Aß40 in the detergent-insoluble fraction of DS organoids was significantly higher than control organoids. Furthermore, an increased Tau phosphorylation (pTau S396) in DS organoids was confirmed by immunostaining and Western blot. Elisa data demonstrated that the ratio of insoluble Tau/total Tau in DS organoids was significantly higher than control organoids. Conclusion: DS iPSC-derived cortical organoids mimic AD-like pathophysiologyical phenotype in vitro, including abnormal Aß and insoluble Tau accumulation. The molecular neuropathologic signature of AD is present in DS much earlier than predicted, even in early fetal brain development, illustrating the notion that brain organoids maybe a good model to study early neurodegenerative conditions.
Collapse
Affiliation(s)
- Helen H. Zhao
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States,Department of Neurosciences, University of California San Diego, La Jolla, CA, United States,The Rady Children’s Hospital, San Diego, CA, United States,*Correspondence: Gabriel G. Haddad
| |
Collapse
|
27
|
The central role of tau in Alzheimer’s disease: From neurofibrillary tangle maturation to the induction of cell death. Brain Res Bull 2022; 190:204-217. [DOI: 10.1016/j.brainresbull.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
|
28
|
Mou CY, Xie YF, Wei JX, Wang QY, Le JY, Bao YJ, Zhang PP, Mao YC, Huang XH, Pan HB, Naman CB, Liu L, Liang HZ, Wu X, Xu J, Cui W. Rose Bengal inhibits β-amyloid oligomers-induced tau hyperphosphorylation via acting on Akt and CDK5 kinases. Psychopharmacology (Berl) 2022; 239:3579-3593. [PMID: 36221038 DOI: 10.1007/s00213-022-06232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Tau hyperphosphorylation and aggregation is considered as a main pathological mechanism underlying Alzheimer's disease (AD). Rose Bengal (RB) is a synthetic dye used for disease diagnosis, which was reported to inhibit tau toxicity via inhibiting tau aggregation in Drosophila. However, it was unknown if RB could produce anti-AD effects in rodents. OBJECTIVES The research aimed to investigate if and how RB could prevent β-amyloid (Aβ) oligomers-induced tau hyperphosphorylation in rodents. METHODS AND RESULTS RB was tested in vitro (0.3-1 μM) and prevented Aβ oligomers-induced tau hyperphosphorylation in PC12 cells. Moreover, RB (10-30 mg/kg, i.p.) effectively attenuated cognitive impairments induced by Aβ oligomers in mice. Western blotting analysis demonstrated that RB significantly increased the expression of pSer473-Akt, pSer9-glycogen synthase kinase-3β (GSK3β) and reduced the expression of cyclin-dependent kinase 5 (CDK5) both in vitro and in vivo. Molecular docking analysis suggested that RB might directly interact with GSK3β and CDK5 by acting on ATP binding sites. Gene Ontology enrichment analysis indicated that RB might act on protein phosphorylation pathways to inhibit tau hyperphosphorylation. CONCLUSIONS RB was shown to inhibit tau neurotoxicity at least partially via inhibiting the activity of GSK3β and CDK5, which is a novel neuroprotective mechanism besides the inhibition of tau aggregation. As tau hyperphosphorylation is an important target for AD therapy, this study also provided support for investigating the drug repurposing of RB as an anti-AD drug candidate.
Collapse
Affiliation(s)
- Chen-Ye Mou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yan-Fei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jia-Xin Wei
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qi-Yao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jing-Yang Le
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yong-Jie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Pan-Pan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yue-Chun Mao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xing-Han Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Han-Bo Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Lin Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Hong-Ze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiang Wu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Wei Cui
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China. .,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
29
|
Kavanagh T, Halder A, Drummond E. Tau interactome and RNA binding proteins in neurodegenerative diseases. Mol Neurodegener 2022; 17:66. [PMID: 36253823 PMCID: PMC9575286 DOI: 10.1186/s13024-022-00572-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Pathological tau aggregation is a primary neuropathological feature of many neurodegenerative diseases. Intriguingly, despite the common presence of tau aggregates in these diseases the affected brain regions, clinical symptoms, and morphology, conformation, and isoform ratio present in tau aggregates varies widely. The tau-mediated disease mechanisms that drive neurodegenerative disease are still unknown. Tau interactome studies are critically important for understanding tauopathy. They reveal the interacting partners that define disease pathways, and the tau interactions present in neuropathological aggregates provide potential insight into the cellular environment and protein interactions present during pathological tau aggregation. Here we provide a combined analysis of 12 tau interactome studies of human brain tissue, human cell culture models and rodent models of disease. Together, these studies identified 2084 proteins that interact with tau in human tissue and 1152 proteins that interact with tau in rodent models of disease. Our combined analysis of the tau interactome revealed consistent enrichment of interactions between tau and proteins involved in RNA binding, ribosome, and proteasome function. Comparison of human and rodent tau interactome studies revealed substantial differences between the two species. We also performed a second analysis to identify the tau interacting proteins that are enriched in neurons containing granulovacuolar degeneration or neurofibrillary tangle pathology. These results revealed a timed dysregulation of tau interactions as pathology develops. RNA binding proteins, particularly HNRNPs, emerged as early disease-associated tau interactors and therefore may have an important role in driving tau pathology.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Aditi Halder
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| |
Collapse
|
30
|
Wisessaowapak C, Worasuttayangkurn L, Maliphol K, Nakareangrit W, Cholpraipimolrat W, Nookabkaew S, Watcharasit P, Satayavivad J. The 28-day repeated arsenic exposure increases tau phosphorylation in the rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103974. [PMID: 36089238 DOI: 10.1016/j.etap.2022.103974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 05/10/2023]
Abstract
Herein, we examined whether prolonged arsenic exposure altered tau phosphorylation in the brain of Sprague Dawley rats expressing endogenous wild-type tau. The results showed that daily intraperitoneal injections of 2.5 mg/kg BW sodium arsenite over 28 days caused arsenic accumulation in the rat brain. Interestingly, we found an increase in tau phosphorylation at the Tau 1 region (189-207) and S202 in the hippocampus, S404 in the cerebral cortex, and S396 and S404 in the cerebellum of arsenic-treated rats. Additionally, arsenic increased active ERK1/2 phosphorylation at T202/Y204 in the hippocampus, cerebral cortex, and cerebellum. Meanwhile, we detected increasing active JNK phosphorylation at T183/Y185 in the hippocampus and cerebellum. Moreover, p35, a neuron-specific activator of CDK5, was also elevated in the cerebellum of arsenic-treated rats, suggesting that CDK5 activity may be increased by arsenic. These results suggested that arsenic may induce tau phosphorylation through the activation of tau kinases, ERK1/2, JNK, and CDK5. Together, the findings from this study demonstrated that prolonged arsenic exposure is implicated in neurodegeneration by promoting tau phosphorylation in the rat brain and points toward a possible prevention strategy against neurodegeneration induced by environmental arsenic exposure.
Collapse
Affiliation(s)
| | | | | | - Watanyoo Nakareangrit
- Translational Research Unit, Chulabhorn Research Institute, 54 KamphaengPhet6 Rd, Bangkok 10210 Thailand
| | | | - Sumontha Nookabkaew
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand
| |
Collapse
|
31
|
Guha S, Cheng A, Carroll T, King D, Koren SA, Swords S, Nehrke K, Johnson GVW. Selective disruption of Drp1-independent mitophagy and mitolysosome trafficking by an Alzheimer's disease relevant tau modification in a novel Caenorhabditis elegans model. Genetics 2022; 222:iyac104. [PMID: 35916724 PMCID: PMC9434186 DOI: 10.1093/genetics/iyac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles is a defining feature of Alzheimer's disease, with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in Caenorhabditis elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild-type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator dynamin-related protein 1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to Alzheimer's disease pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and mitolysosome neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress-induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for dynamin-related protein 1-independent, Pink1-dependent, perhaps adaptive, and mitophagy.
Collapse
Affiliation(s)
- Sanjib Guha
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Anson Cheng
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Trae Carroll
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Dennisha King
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Shon A Koren
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, NJ 08901, USA
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
32
|
Zhang Y, Yang Y, Hu Z, Zhu M, Qin S, Yu P, Li B, Xu J, Ondrejcak T, Klyubin I, Rowan MJ, Hu NW. Long-Term Depression-Inducing Low Frequency Stimulation Enhances p-Tau181 and p-Tau217 in an Age-Dependent Manner in Live Rats. J Alzheimers Dis 2022; 89:335-350. [PMID: 35871344 PMCID: PMC9484260 DOI: 10.3233/jad-220351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Cognitive decline in Alzheimer’s disease (AD) correlates with the extent of tau pathology, in particular tau hyperphosphorylation, which is strongly age-associated. Although elevation of cerebrospinal fluid or blood levels of phosphorylated tau (p-Tau) at residues Thr181 (p-Tau181), Thr217 (p-Tau217), and Thr231 (p-Tau231) are proposed to be particularly sensitive markers of preclinical AD, the generation of p-Tau during brain activity is poorly understood. Objective: To study whether the expression levels of p-Tau181, p-Tau217, and p-Tau231 can be enhanced by physiological synaptic long-term depression (LTD) which has been linked to the enhancement of p-Tau in hippocampus. Methods: In vivo electrophysiology was performed in urethane anesthetized young adult and aged male rats. Low frequency electrical stimulation (LFS) was used to induce LTD at CA3 to CA1 synapses. The expression level of p-Tau and total tau was measured in dorsal hippocampus using immunofluorescent staining and/or western blotting. Results: We found that LFS enhanced p-Tau181 and p-Tau217 in an age-dependent manner in the hippocampus of live rats. In contrast, phosphorylation at residues Thr231, Ser202/Thr205, and Ser396 appeared less sensitive to LFS. Pharmacological antagonism of either N-methyl-D-aspartate or metabotropic glutamate 5 receptors inhibited the elevation of both p-Tau181 and p-Tau217. Targeting the integrated stress response, which increases with aging, using a small molecule inhibitor ISRIB, prevented the enhancement of p-Tau by LFS in aged rats. Conclusion: Together, our data provide a novel in vivo means to uncover brain plasticity-related cellular and molecular processes of tau phosphorylation at key sites in health and aging.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengtao Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Manyi Zhu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangying Qin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Yu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Bo Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jitian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Michael J. Rowan
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
33
|
Reassessment of Neuronal Tau Distribution in Adult Human Brain and Implications for Tau Pathobiology. Acta Neuropathol Commun 2022; 10:94. [PMID: 35765058 PMCID: PMC9237980 DOI: 10.1186/s40478-022-01394-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Tau is a predominantly neuronal, soluble and natively unfolded protein that can bind and stabilize microtubules in the central nervous system. Tau has been extensively studied over several decades, especially in the context of neurodegenerative diseases where it can aberrantly aggregate to form a spectrum of pathological inclusions. The presence of tau inclusions in the form of neurofibrillary tangles, neuropil threads and dystrophic neurites within senile plaques are essential and defining features of Alzheimer’s disease. The current dogma favors the notion that tau is predominantly an axonal protein, and that in Alzheimer’s disease there is a redistribution of tau towards the neuronal soma that is associated with the formation of pathological inclusions such as neurofibrillary tangles and neuropil threads. Using novel as well as previously established highly specific tau antibodies, we demonstrate that contrary to this overwhelmingly accepted fact, as asserted in numerous articles and reviews, in adult human brain, tau is more abundant in cortical gray matter that is enriched in neuronal soma and dendrites compared to white matter that is predominantly rich in neuronal axons. Additionally, in Alzheimer’s disease tau pathology is significantly more abundant in the brain cortical gray matter of affected brain regions compared to the adjacent white matter regions. These findings have important implications for the biological function of tau as well as the mechanisms involved in the progressive spread of tau associated with the insidious nature of Alzheimer’s disease.
Collapse
|
34
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
35
|
The Reduction of Tau Hyperphosphorylation by Cornel Iridoid Glycosides Is Mediated by Their Influence on Calpain Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9213046. [PMID: 35096120 PMCID: PMC8794656 DOI: 10.1155/2022/9213046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, and the abnormal hyperphosphorylation of the tau protein is the main component of its pathogenesis. Calpain was found to be abnormally activated in neurofibrillary tangles (NFTs) in a previous report. Cornel iridoid glycosides (CIG) have been reported to reduce the hyperphosphorylation of tau protein. Nevertheless, the role of calpain in the reduction tau hyperphosphorylation by CIG remains unclear. In the present study, we investigated the effect of CIG on calpain activity through in vitro and in vivo experiments. Western blotting results suggested that CIG decreased the phosphorylation of tau at Ser 404 and Ser 262 sites in P301S mice. Moreover, CIG inhibited the activity of calpain and glycogen synthase kinase 3β (GSK-3β) and enhanced the activity of protein phosphatase 2A (PP2A) both in vivo and in vitro. CIG also inhibited the activation of PP2A and reduced the GSK-3β activity caused by the calpain activator dibucaine. In addition, the main components of CIG, morroniside and loganin, play an equivalent role in reducing calpain activity, as the effect of their combined use is equivalent to that of CIG. The abovementioned findings revealed that CIG improved PP2A activity and reduced GSK-3β activity by adjusting the activity of calpain 1, leading to a reduction in the phosphorylation of tau. This study highlights the remarkable therapeutic potential of CIG for managing AD.
Collapse
|
36
|
Gilvesy A, Husen E, Magloczky Z, Mihaly O, Hortobágyi T, Kanatani S, Heinsen H, Renier N, Hökfelt T, Mulder J, Uhlen M, Kovacs GG, Adori C. Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus-pericoerulear complex by three-dimensional imaging. Acta Neuropathol 2022; 144:651-676. [PMID: 36040521 PMCID: PMC9468059 DOI: 10.1007/s00401-022-02477-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Abris Gilvesy
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- McGill University, Montreal, QC, H3A 0G4, Canada
| | - Evelina Husen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Zsofia Magloczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - Orsolya Mihaly
- Department of Pathology, St. Borbála Hospital, Tatabánya, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Helmut Heinsen
- Clinic of Psychiatry and Institute of Forensic Pathology, University of Würzburg, 97080, Würzburg, Germany
- LIM-44, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Mathias Uhlen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden.
| |
Collapse
|
37
|
Reinartz M, Gabel S, Schaeverbeke J, Meersmans K, Adamczuk K, Luckett ES, De Meyer S, Van Laere K, Sunaert S, Dupont P, Vandenberghe R. Changes in the language system as amyloid-β accumulates. Brain 2021; 144:3756-3768. [PMID: 34534284 PMCID: PMC8719839 DOI: 10.1093/brain/awab335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Language dysfunction is common in Alzheimer's disease. There is increasing interest in the preclinical or asymptomatic phase of Alzheimer's disease. Here we examined in 35 cognitively intact older adults (age range 52-78 years at baseline, 17 male) in a longitudinal study design the association between accumulation of amyloid over a 5-6-year period, measured using PET, and functional changes in the language network measured over the same time period using task-related functional MRI. In the same participants, we also determined the association between the longitudinal functional MRI changes and a cross-sectional measure of tau load as measured with 18F-AV1451 PET. As predicted, the principal change occurred in posterior temporal cortex. In the cortex surrounding the right superior temporal sulcus, the response amplitude during the associative-semantic versus visuo-perceptual task increased over time as amyloid load accumulated (Pcorrected = 0.008). In a whole-brain voxel-wise analysis, amyloid accumulation was also associated with a decrease in response amplitude in the left inferior frontal sulcus (Pcorrected = 0.009) and the right dorsomedial prefrontal cortex (Pcorrected = 0.005). In cognitively intact older adults, cross-sectional tau load was not associated with longitudinal changes in functional MRI response amplitude. Our findings confirm the central role of the neocortex surrounding the posterior superior temporal sulcus as the area of predilection within the language network in the earliest stages of Alzheimer's disease. Amyloid accumulation has an impact on cognitive brain circuitry in the asymptomatic phase of Alzheimer's disease.
Collapse
Affiliation(s)
- Mariska Reinartz
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Emma Susanne Luckett
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Steffi De Meyer
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine, UZ Leuven, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | | | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
- Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
38
|
Carroll T, Guha S, Nehrke K, Johnson GVW. Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's Disease. BIOLOGY 2021; 10:1047. [PMID: 34681146 PMCID: PMC8533264 DOI: 10.3390/biology10101047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Sporadic Alzheimer's Disease (AD) is the most common form of dementia, and its severity is characterized by the progressive formation of tau neurofibrillary tangles along a well-described path through the brain. This spatial progression provides the basis for Braak staging of the pathological progression for AD. Tau protein is a necessary component of AD pathology, and recent studies have found that soluble tau species with selectively, but not extensively, modified epitopes accumulate along the path of disease progression before AD-associated insoluble aggregates form. As such, modified tau may represent a key cellular stressing agent that potentiates selective vulnerability in susceptible neurons during AD progression. Specifically, studies have found that tau phosphorylated at sites such as T181, T231, and S396 may initiate early pathological changes in tau by disrupting proper tau localization, initiating tau oligomerization, and facilitating tau accumulation and extracellular export. Thus, this review elucidates potential mechanisms through which tau post-translational modifications (PTMs) may simultaneously serve as key modulators of the spatial progression observed in AD development and as key instigators of early pathology related to neurodegeneration-relevant cellular dysfunctions.
Collapse
Affiliation(s)
- Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Sanjib Guha
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
39
|
Thomsen BB, Madsen C, Krohn KT, Thygesen C, Schütt T, Metaxas A, Darvesh S, Agerholm JS, Wirenfeldt M, Berendt M, Finsen B. Mild Microglial Responses in the Cortex and Perivascular Macrophage Infiltration in Subcortical White Matter in Dogs with Age-Related Dementia Modelling Prodromal Alzheimer's Disease. J Alzheimers Dis 2021; 82:575-592. [PMID: 34057083 PMCID: PMC8385501 DOI: 10.3233/jad-210040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Microglia contribute to Alzheimer’s disease (AD) pathogenesis by clearing amyloid-β (Aβ) and driving neuroinflammation. Domestic dogs with age-related dementia (canine cognitive dysfunction (CCD)) develop cerebral amyloidosis like humans developing AD, and studying such dogs can provide novel information about microglial response in prodromal AD. Objective: The aim was to investigate the microglial response in the cortical grey and the subcortical white matter in dogs with CCD versus age-matched cognitively normal dogs. Methods: Brains from aged dogs with CCD and age-matched controls without dementia were studied. Cases were defined by dementia rating score. Brain sections were stained for Aβ, thioflavin S, hyperphosphorylated tau, and the microglial-macrophage ionized calcium binding adaptor molecule 1 (Iba1). Results were correlated to dementia rating score and tissue levels of Aβ. Results: Microglial numbers were higher in the Aβ plaque-loaded deep cortical layers in CCD versus control dogs, while the coverage by microglial processes were comparable. Aβ plaques were of the diffuse type and without microglial aggregation. However, a correlation was found between the %Iba1 area and insoluble Aβ 42 and N-terminal pyroglutamate modified Aβ(N3pE)-42. The %Iba1 area was higher in white matter, showing phosphorylation of S396 tau, versus grey matter. Perivascular macrophage infiltrates were abundant in the white matter particularly in CDD dogs. Conclusion: The results from this study of the microglial-macrophage response in dogs with CCD are suggestive of relatively mild microglial responses in the Aβ plaque-loaded deep cortical layers and perivascular macrophage infiltrates in the subcortical white matter, in prodromal AD.
Collapse
Affiliation(s)
- Barbara Blicher Thomsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Madsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katrine Tækker Krohn
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Camilla Thygesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Trine Schütt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Athanasios Metaxas
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,School of Science, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Division of Neurology and Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jørgen Steen Agerholm
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Wirenfeldt
- BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Institute of Clinical Science, Odense University Hospital, Odense, Denmark
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
40
|
Li X, Tsolis KC, Koper MJ, Ronisz A, Ospitalieri S, von Arnim CAF, Vandenberghe R, Tousseyn T, Scheuerle A, Economou A, Carpentier S, Otto M, Thal DR. Sequence of proteome profiles in preclinical and symptomatic Alzheimer's disease. Alzheimers Dement 2021; 17:946-958. [PMID: 33871169 DOI: 10.1002/alz.12345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Proteome profile changes in Alzheimer's disease (AD) brains have been reported. However, it is unclear whether they represent a continuous process, or whether there is a sequential involvement of distinct proteins. To address this question, we used mass spectrometry. We analyzed soluble, dispersible, sodium dodecyl sulfate, and formic acid fractions of neocortex homogenates (mainly Brodmann area 17-19) from 18 pathologically diagnosed preclinical AD, 17 symptomatic AD, and 18 cases without signs of neurodegeneration. By doing so, we identified four groups of AD-related proteins being changed in levels in preclinical and symptomatic AD cases: early-responding, late-responding, gradually-changing, and fraction-shifting proteins. Gene ontology analysis of these proteins and all known AD-risk/causative genes identified vesicle endocytosis and the secretory pathway-related processes as an early-involved AD component. In conclusion, our findings suggest that subtle changes involving the secretory pathway and endocytosis precede severe proteome changes in symptomatic AD as part of the preclinical phase of AD. The respective early-responding proteins may also contribute to synaptic vesicle cycle alterations in symptomatic AD.
Collapse
Affiliation(s)
- Xiaohang Li
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Rik Vandenberghe
- Department of Neurology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Thomas Tousseyn
- Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| | | | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Sebastien Carpentier
- BIOMED facility for SYstems BIOlogy based MAss spectrometry, KU Leuven (University of Leuven), Leuven, Belgium
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| |
Collapse
|