1
|
Identification and characterization of inhibitory nanobody against p38δ. Biochem Biophys Res Commun 2022; 600:60-66. [DOI: 10.1016/j.bbrc.2022.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
|
2
|
Murine splenic B cells express corticotropin-releasing hormone receptor 2 that affect their viability during a stress response. Sci Rep 2018; 8:143. [PMID: 29317694 PMCID: PMC5760685 DOI: 10.1038/s41598-017-18401-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/08/2017] [Indexed: 01/16/2023] Open
Abstract
Chronic stress is now recognized as a risk factor for disease development and/or exacerbation. It has been shown to affect negatively the immune system and notably the humoral immune response. Corticotropin-releasing hormone (CRH) is known to play a crucial role in stress response. CRH receptors are expressed on different immune cells such as granulocytes, monocytes and T cells. However, up to now, no CRH receptor has been described on B cells which are key players of the humoral immune response. In order to highlight new pathways by which stress may impact immunity, we investigated the role of CRH in B cells. Here we show that splenic B cells express the CRH receptor 2 (CRHR2), but not CRHR1. This receptor is functional since CRH treatment of B cells activates different signaling pathways (e.g. p38) and decreases B cell viability. Finally, we show that immunization of mice with two types of antigens induces a more intense CRHR staining in secondary lymphoid organs where B cells are known to respond to the antigen. Altogether our results demonstrate, for the first time, that CRH is able to modulate directly B cell activity through the presence of CRHR2.
Collapse
|
3
|
Abstract
Keratin 24 (K24) is a new kind of keratin genes, which encodes a novel keratin protein, K24 that bears high similarity to the type I keratins and displays a unique expression profile. However, the role of K24 is incompletely understood. In our study, we investigated the localization of K24 within the epidermis and possible functions. Keratin 24 was found to be modestly overexpressed in senescent keratinocytes and was mainly restricted to the upper stratum spinosum of epidermis. The protein was required for terminal differentiation upon CaCl2-induced differentiation. In vitro results showed that increased K24 in keratinocytes dramatically changed the differentiation of primary keratinocytes. It also inhibited cell survival by G1/S phase cell cycle arrest and induced senescence, autophagy and apoptosis of keratinocytes. In addition, K24 activated PKCδ signal pathway involving in cellular survival. In summary, K24 may be suggested as a potential differentiation marker and anti-proliferative factor in the epidermis.
Collapse
|
4
|
Saha K, Adhikary G, Eckert RL. MEP50/PRMT5 Reduces Gene Expression by Histone Arginine Methylation and this Is Reversed by PKCδ/p38δ Signaling. J Invest Dermatol 2016; 136:214-224. [PMID: 26763441 PMCID: PMC4899982 DOI: 10.1038/jid.2015.400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 09/03/2015] [Accepted: 09/26/2015] [Indexed: 02/08/2023]
Abstract
PKCδ and p38δ are key proteins in a cascade that stimulates keratinocyte differentiation. This cascade activates transcription of involucrin (hINV) and other genes associated with differentiation. Protein arginine methyltransferase 5 (PRMT5) is an arginine methyltransferase that symmetrically dimethylates arginine residues. This protein interacts with a cofactor, MEP50, and symmetrically dimethylates arginine eight of histone 3 (H3R8me2s) and arginine three of histone 4 (H4R3me2s) to silence gene expression. We use the involucrin gene as a tool to understand the relationship between PKCδ/p38δ and PRMT5/MEP50 signaling. MEP50 suppresses hINV mRNA level and promoter activity. This is associated with increased arginine dimethylation of hINV gene-associated H3/H4. We further show that the PKCδ/p38δ keratinocyte differentiation cascade reduces PRMT5 and MEP50 expression, association with the hINV gene promoter, and H3R8me2s and H4R2me2s formation. We propose that PRMT5/MEP50-dependent methylation is an epigenetic mechanism that assists in silencing of hINV expression, and that PKCδ signaling activates gene expression by directly activating transcription and by suppressing PRMT5/MEP50 dependent arginine dimethylation of promoter associated histones. This is an example of crosstalk between PKCδ/p38δ signaling and PRMT5/MEP50 epigenetic silencing.
Collapse
Affiliation(s)
- Kamalika Saha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
p38δ MAPK: Emerging Roles of a Neglected Isoform. Int J Cell Biol 2014; 2014:272689. [PMID: 25313309 PMCID: PMC4182853 DOI: 10.1155/2014/272689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
p38δ mitogen activated protein kinase (MAPK) is a unique stress responsive protein kinase. While the p38 MAPK family as a whole has been implicated in a wide variety of biological processes, a specific role for p38δ MAPK in cellular signalling and its contribution to both physiological and pathological conditions are presently lacking. Recent emerging evidence, however, provides some insights into specific p38δ MAPK signalling. Importantly, these studies have helped to highlight functional similarities as well as differences between p38δ MAPK and the other members of the p38 MAPK family of kinases. In this review we discuss the current understanding of the molecular mechanisms underlying p38δ MAPK activity. We outline a role for p38δ MAPK in important cellular processes such as differentiation and apoptosis as well as pathological conditions such as neurodegenerative disorders, diabetes, and inflammatory disease. Interestingly, disparate roles for p38δ MAPK in tumour development have also recently been reported. Thus, we consider evidence which characterises p38δ MAPK as both a tumour promoter and a tumour suppressor. In summary, while our knowledge of p38δ MAPK has progressed somewhat since its identification in 1997, our understanding of this particular isoform in many cellular processes still strikingly lags behind that of its counterparts.
Collapse
|
6
|
Saha K, Adhikary G, Kanade SR, Rorke EA, Eckert RL. p38δ regulates p53 to control p21Cip1 expression in human epidermal keratinocytes. J Biol Chem 2014; 289:11443-11453. [PMID: 24599959 PMCID: PMC4036280 DOI: 10.1074/jbc.m113.543165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/28/2014] [Indexed: 11/06/2022] Open
Abstract
PKCδ suppresses keratinocyte proliferation via a mechanism that involves increased expression of p21(Cip1). However, the signaling mechanism that mediates this regulation is not well understood. Our present studies suggest that PKCδ activates p38δ leading to increased p21(Cip1) promoter activity and p21(Cip1) mRNA/protein expression. We further show that exogenously expressed p38δ increases p21(Cip1) mRNA and protein and that p38δ knockdown or expression of dominant-negative p38 attenuates this increase. Moreover, p53 is an intermediary in this regulation, as p38δ expression increases p53 mRNA, protein, and promoter activity, and p53 knockdown attenuates the activation. We demonstrate a direct interaction of p38δ with PKCδ and MEK3 and show that exogenous agents that suppress keratinocyte proliferation activate this pathway. We confirm the importance of this regulation using a stratified epidermal equivalent model, which mimics in vivo-like keratinocyte differentiation. In this model, PKCδ or p38δ knockdown results in reduced p53 and p21(Cip1) levels and enhanced cell proliferation. We propose that PKCδ activates a MEKK1/MEK3/p38δ MAPK cascade to increase p53 levels and p53 drives p21(Cip1) gene expression.
Collapse
Affiliation(s)
- Kamalika Saha
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gautam Adhikary
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Santosh R Kanade
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ellen A Rorke
- Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Obstetrics and Gynecology, and University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
7
|
Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C. Molecular and Cellular Mechanism of Okadaic Acid (OKA)-Induced Neurotoxicity: A Novel Tool for Alzheimer’s Disease Therapeutic Application. Mol Neurobiol 2014; 50:852-65. [DOI: 10.1007/s12035-014-8699-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
|
8
|
Siljamäki E, Raiko L, Toriseva M, Nissinen L, Näreoja T, Peltonen J, Kähäri VM, Peltonen S. p38δ mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Arch Dermatol Res 2013; 306:131-41. [PMID: 23856837 DOI: 10.1007/s00403-013-1391-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/23/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022]
Abstract
Increasing evidence has recognized tight junctions (TJs) as the lower epidermal inside-out diffusion barrier located in granular cell layers of the epidermis. However, little is known about the regulation of TJ components in epidermis. p38 pathway is one of the mitogen-activated protein kinase pathways, which controls cell growth, differentiation, and apoptosis. We have investigated the role of p38 signaling pathway in the regulation of selected desmosomal, adherens and TJ components in human primary keratinocytes during Ca(2+)-induced differentiation, as well as in cultured squamous cell carcinoma cell lines. p38 signaling pathway was inhibited in cultured keratinocytes and cutaneous squamous cell carcinoma cells using recombinant adenoviruses, small inhibitory RNAs (siRNA) and chemical inhibitors. Expression of intercellular junction proteins was investigated using Western analysis and indirect immunofluorescence (IIF). The results showed that inhibition of p38δ function by siRNA or adenovirally delivered dominant negative mutant led to markedly decreased levels of Zonula occludens-1 (ZO-1) protein in keratinocytes, while the expression of other junctional proteins studied was not altered. Immunolocalization of ZO-1 revealed that intercellular junction areas were depleted from ZO-1. Inhibition of ZO-1 by siRNA silencing did not however result in an altered expression or subcellular localization of other TJ components studied. The expression of ZO-1 in carcinoma cells was also regulated by p38. The results indicate that ZO-1 is regulated by p38δ while the other junction proteins studied are not. Since ZO-1 is an integral component of functional TJs, various pathological processes affecting signaling via p38δ may also interfere with epithelial maturation and the formation and function of TJs.
Collapse
Affiliation(s)
- Elina Siljamäki
- Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, 20521, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
AP1 transcription factors in epidermal differentiation and skin cancer. J Skin Cancer 2013; 2013:537028. [PMID: 23762562 PMCID: PMC3676924 DOI: 10.1155/2013/537028] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/02/2013] [Indexed: 01/17/2023] Open
Abstract
AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1 transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response and disease and cancer development.
Collapse
|
10
|
Chew YC, Adhikary G, Xu W, Wilson GM, Eckert RL. Protein kinase C δ increases Kruppel-like factor 4 protein, which drives involucrin gene transcription in differentiating keratinocytes. J Biol Chem 2013; 288:17759-68. [PMID: 23599428 DOI: 10.1074/jbc.m113.477133] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KLF4 is a member of the Kruppel-like factor family of transcriptional regulators. KLF4 has been shown to be required for normal terminal differentiation of keratinocytes, but the molecular mechanism whereby KLF4 regulates genes associated with the differentiation process has not been studied. In the present study, we explore the impact of KLF4 on expression of involucrin, a gene that is specifically expressed in differentiated keratinocytes. KLF4 overexpression and knockdown studies show that involucrin mRNA and protein level correlates directly with KLF4 level. Moreover, studies of mutant KLF4 proteins indicate that transcriptionally inactive forms do not increase involucrin expression. PKCδ is a regulator of keratinocyte differentiation that increases expression of differentiation-associated target genes, including involucrin. Overexpression of KLF4 augments the PKCδ-dependent increase in involucrin expression, whereas KLF4 knockdown attenuates this response. The KLF4 induction of human involucrin (hINV) promoter activity is mediated via KLF4 binding to a GC-rich element located in the hINV promoter distal regulatory region, a region of the promoter required for in vivo involucrin expression. Mutation of the GC-rich element, an adjacent AP1 factor binding site, or both sites severely attenuates the response. Moreover, loss of KLF4 in an epidermal equivalent model of differentiation results in loss of hINV expression. These studies suggest that KLF4 is part of a multiprotein complex that interacts that the hINV promoter distal regulatory region to drive differentiation-dependent hINV gene expression in epidermis.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
11
|
Kanade SR, Eckert RL. Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. J Biol Chem 2011; 287:7313-23. [PMID: 22199349 DOI: 10.1074/jbc.m111.331660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation.
Collapse
Affiliation(s)
- Santosh R Kanade
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
12
|
Chew YC, Adhikary G, Wilson GM, Reece EA, Eckert RL. Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism. J Biol Chem 2011; 286:28772-28782. [PMID: 21652709 PMCID: PMC3190685 DOI: 10.1074/jbc.m110.205245] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/16/2010] [Indexed: 11/06/2022] Open
Abstract
PKCδ increases keratinocyte differentiation and suppresses keratinocyte proliferation and survival. However, the mechanism of proliferation suppression is not well understood. The present studies show that PKCδ overexpression increases p21(Cip1) mRNA and protein level and promoter activity and that treatment with dominant-negative PKCδ, PKCδ-siRNA, or rottlerin inhibits promoter activation. Analysis of the p21(Cip1) promoter upstream regulatory region reveals three DNA segments that mediate PKCδ-dependent promoter activation. The PKCδ response element most proximal to the transcription start site encodes six GC-rich DNA elements. Mutation of these sites results in a loss of PKCδ-dependent promoter activation. Gel mobility supershift and chromatin immunoprecipitation reveal that these DNA elements bind the Kruppel-like transcription factor KLF4. PKCδ increases KLF4 mRNA and protein level and KLF4 binding to the GC-rich elements in the p21(Cip1) proximal promoter. In addition, KLF4-siRNA inhibits PKCδ-dependent p21(Cip1) promoter activity. PKCδ increases KLF4 expression leading to enhanced KLF4 interaction with the GC-rich elements in the p21(Cip1) promoter to activate transcription.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - E Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
13
|
TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression. J Invest Dermatol 2011; 131:874-83. [PMID: 21248767 DOI: 10.1038/jid.2010.402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cornification, the terminal differentiation of keratinocytes, is a special form of programmed cell death in the skin. In this article, we report that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce the expression of the keratinocyte differentiation markers involucrin and type 1 transglutaminase in normal human epidermal keratinocytes. The induction of differentiation occurs mainly under the activation of caspases 3 and 8, and apoptosis can also be triggered. Inhibition of these apoptotic caspases attenuates both apoptosis and differentiation of keratinocytes caused by TRAIL but barely affects the induction of differentiation caused by calcium and phorbol 12-myristate 13-acetate. Differential regulation of extracellular signal-regulated kinase and p38 activation by TRAIL is also observed. Moreover, the degradation of p63 is induced by TRAIL-elicited caspase activation. However, the existence of p63 is essential for the initiation of keratinocyte differentiation by TRAIL because knockdown of ΔNp63 decreases TRAIL-induced differentiation. Taken together, our results suggest that TRAIL can be an inducer of both differentiation and apoptosis in human keratinocytes, and that caspases critically mediate these processes. This study identifies a new role of apoptotic caspases for terminal differentiation of keratinocytes and further elucidates the molecular pathways involved in this unique model of cell death.
Collapse
|
14
|
Abstract
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.
Collapse
Affiliation(s)
- Ikuko Kitazumi
- Bio Process Research and Development Laboratories, Kyowa Hakko Kirin Co. Ltd, Takasaki, Gunma, Japan
| | | |
Collapse
|
15
|
Adhikary G, Chew YC, Reece EA, Eckert RL. PKC-delta and -eta, MEKK-1, MEK-6, MEK-3, and p38-delta are essential mediators of the response of normal human epidermal keratinocytes to differentiating agents. J Invest Dermatol 2010; 130:2017-30. [PMID: 20445555 PMCID: PMC3120227 DOI: 10.1038/jid.2010.108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies suggest that the novel protein kinase C (PKC) isoforms initiate a mitogen-activated protein kinase (MAPK) signaling cascade that regulates keratinocyte differentiation. However, assigning these functions has relied on treatment with pharmacologic inhibitors and/or manipulating kinase function using overexpression of wild-type or dominant-negative kinases. As these methods are not highly specific, an obligatory regulatory role for individual kinases has not been assigned. In this study, we use small interfering RNA knockdown to study the role of individual PKC isoforms as regulators of keratinocyte differentiation induced by the potent differentiating stimulus, 12-O-tetradecanoylphorbol-13-acetate (TPA). PKC-delta knockdown reduces TPA-activated involucrin promoter activity, nuclear activator protein-1 factor accumulation and binding to DNA, and cell morphology change. Knockdown of PKC downstream targets, including MEKK-1, MEK-6, MEK-3, or p38-delta, indicates that these kinases are required for these responses. Additional studies indicate that knockdown of PKC-eta inhibits TPA-dependent involucrin promoter activation. In contrast, knockdown of PKC-alpha (a classical PKC isoform) or PKC-epsilon (a novel isoform) does not inhibit these TPA-dependent responses. Further studies indicate that PKC-delta is required for calcium and green tea polyphenol-dependent regulation of end responses. These findings are informative as they suggest an essential role for selected PKC and MAPK cascade enzymes in mediating a range of end responses to a range of differentiation stimuli in keratinocytes.
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E. Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Simpkins JW, Yi KD, Yang SH, Dykens JA. Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta Gen Subj 2009; 1800:1113-20. [PMID: 19931595 DOI: 10.1016/j.bbagen.2009.11.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 01/11/2023]
Abstract
Mitochondria have become a primary focus in our search not only for the mechanism(s) of neuronal death but also for neuroprotective drugs and therapies that can delay or prevent Alzheimer's disease and other chronic neurodegenerative conditions. This is because mitochrondria play a central role in regulating viability and death of neurons, and mitochondrial dysfunction has been shown to contribute to neuronal death seen in neurodegenerative diseases. In this article, we review the evidence for the role of mitochondria in cell death and neurodegeneration and provide evidence that estrogens have multiple effects on mitochondria that enhance or preserve mitochondrial function during pathologic circumstances such as excitotoxicity, oxidative stress, and others. As such, estrogens and novel non-hormonal analogs have come to figure prominently in our efforts to protect neurons against both acute brain injury and chronic neurodegeneration.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | | | | | | |
Collapse
|
17
|
Simpkins JW, Yi KD, Yang SH. Role of protein phosphatases and mitochondria in the neuroprotective effects of estrogens. Front Neuroendocrinol 2009; 30:93-105. [PMID: 19410596 PMCID: PMC2835549 DOI: 10.1016/j.yfrne.2009.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 12/15/2022]
Abstract
In the present treatise, we provide evidence that the neuroprotective and mito-protective effects of estrogens are inexorably linked and involve the ability of estrogens to maintain mitochondrial function during neurotoxic stress. This is achieved by the induction of nuclear and mitochondrial gene expression, the maintenance of protein phosphatases levels in a manner that likely involves modulation of the phosphorylation state of signaling kinases and mitochondrial pro- and anti-apoptotic proteins, and the potent redox/antioxidant activity of estrogens. These estrogen actions are mediated through a combination of estrogens receptor (ER)-mediated effects on nuclear and mitochondrial transcription of protein vital to mitochondrial function, ER-mediated, non-genomic signaling and non-ER-mediated effects of estrogens on signaling and oxidative stress. Collectively, these multifaceted, coordinated action of estrogens leads to their potency in protecting neurons from a wide variety of acute insults as well as chronic neurodegenerative processes.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science, Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
18
|
Schindler EM, Hindes A, Gribben EL, Burns CJ, Yin Y, Lin MH, Owen RJ, Longmore GD, Kissling GE, Arthur JSC, Efimova T. p38delta Mitogen-activated protein kinase is essential for skin tumor development in mice. Cancer Res 2009; 69:4648-55. [PMID: 19458068 DOI: 10.1158/0008-5472.can-08-4455] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating Ras mutations occur in a large portion of human tumors. Yet, the signaling pathways involved in Ras-induced tumor formation remain incompletely understood. The mitogen-activated protein kinase pathways are among the best studied Ras effector pathways. The p38 mitogen-activated protein kinase isoforms are important regulators of key biological processes including cell proliferation, differentiation, survival, inflammation, senescence, and tumorigenesis. However, the specific in vivo contribution of individual p38 isoforms to skin tumor development has not been elucidated. Recent studies have shown that p38delta, a p38 family member, functions as an important regulator of epidermal keratinocyte differentiation and survival. In the present study, we have assessed the effect of p38delta deficiency on skin tumor development in vivo by subjecting p38delta knockout mice to a two-stage 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate chemical skin carcinogenesis protocol. We report that mice lacking p38delta gene exhibited a marked resistance to development of 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin papillomas, with increased latency and greatly reduced incidence, multiplicity, and size of tumors compared with wild-type mice. Our data suggest that the underlying mechanism for reduced susceptibility to skin carcinogenesis in p38delta-null mice involves a defect in proliferative response associated with aberrant signaling through the two major transformation-promoting pathways: extracellular signal-regulated kinase 1/2-activator protein 1 and signal transducer and activator of transcription 3. These findings strongly suggest an in vivo role for p38delta in promoting cell proliferation and tumor development in epidermis and may have therapeutic implication for skin cancer.
Collapse
Affiliation(s)
- Eva M Schindler
- Division of Dermatology and Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Serine/threonine protein phosphatases are important mediators of general cellular function as well as neurodegenerative processes. We have previously shown inhibition of protein phosphatases to be as neurotoxic as glutamate-induced neuronal death but resistant to neuroprotection by estrogens. In this study, the mechanism by which phosphatase inhibition via okadaic acid (OA) induced neurotoxicity is explored. Neurons were exposed to OA or glutamate in the presence or absence of various protein kinases inhibitors, and/or one of four estrogens. Both OA and glutamate induced cell death via increased reactive oxygen species, protein carbonylation, lipid peroxidation, caspase-3 activity, and mitochondrial dysfunction. All estrogens attenuated glutamate-mediated responses, but not OA-induced responses. In addition, inhibition of protein kinase C and mitogen-activated protein kinase pathway was neuroprotective against glutamate but not OA toxicity. Interestingly, inhibition of mitogen-activated protein kinase pathway with PD98096 or U0126 caused a decrease in reactive oxygen species production suggesting that activation of ERK1/2 could further exacerbate the oxidative stress caused by glutamate-induced toxicity; however, these inhibitors had no effect on OA-induced toxicity. Collectively, these results indicate that both glutamate and OA neurotoxicities are mediated by persistent activation of ERK1/2 and/or protein kinase C and a resulting oxidative stress, and that protein phosphatase activity is an important and necessary aspect of estrogen-mediated neuroprotection.
Collapse
Affiliation(s)
- Kun Don Yi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - Douglas F. Covey
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63130
| | - James W. Simpkins
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| |
Collapse
|
20
|
Zhu L, Brodie C, Balasubramanian S, Eckert RL. Multiple PKCdelta tyrosine residues are required for PKCdelta-dependent activation of involucrin expression--a key role of PKCdelta-Y311. J Invest Dermatol 2008; 128:833-45. [PMID: 17943181 PMCID: PMC3124846 DOI: 10.1038/sj.jid.5701103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase C-delta (PKCdelta) is a key regulator of human involucrin (hINV) gene expression and is regulated by tyrosine phosphorylation. However, a comprehensive analysis of the requirement for individual PKCdelta tyrosine residues is lacking. We show that multiple tyrosine residues influence the ability of PKCdelta to increase hINV gene expression. Mutation of individual PKCdelta tyrosine residues 52, 64, 155, 187, or 565 does not reduce the ability of PKCdelta to increase hINV promoter activity; however, simultaneous mutation of these five tyrosines markedly reduces activity. Moreover, restoration of any one of these residues results in nearly full activity restoration. It is significant that phosphorylation of PKCdelta-Y(311) is reduced in the five-tyrosine mutant and that mutation of Y(311) results in reduced PKCdelta activity comparable to that observed in the five-tyrosine mutant. Restoration of any one of the tyrosine residues in the five-tyrosine mutant restores Y(311) phosphorylation and biological activity. In addition, reduced phosphorylation of endogenous PKCdelta-Y(311) is associated with reduced biological activity. These findings indicate that PKCdelta activity requires Y(311) and a second tyrosine residue; however, any one of the several tyrosine residues can serve in the secondary role.
Collapse
Affiliation(s)
- Ling Zhu
- Departments of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Chaya Brodie
- Department of Neurosurgery, William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, Michigan, USA
| | - Sivaprakasam Balasubramanian
- Departments of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Richard L. Eckert
- Departments of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Biochemistry, Reproductive Biology, Dermatology, and Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|