1
|
Papa V, Li Pomi F, Minciullo PL, Borgia F, Gangemi S. Skin Disorders and Osteoporosis: Unraveling the Interplay Between Vitamin D, Microbiota, and Epigenetics Within the Skin-Bone Axis. Int J Mol Sci 2024; 26:179. [PMID: 39796035 PMCID: PMC11720247 DOI: 10.3390/ijms26010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Growing scientific evidence suggests a strong interconnection between inflammatory skin diseases and osteoporosis (OP), a systemic condition characterized by decreased bone density and structural fragility. These conditions seem to share common pathophysiological mechanisms, including immune dysregulation, chronic inflammation, and vitamin D deficiency, which play a crucial role in both skin and bone health. Additionally, the roles of gut microbiota (GM) and epigenetic regulation via microRNAs (miRNAs) emerge as key elements influencing the progression of both conditions. This review aims to examine the skin-bone axis, exploring how factors such as vitamin D, GM, and miRNAs interact in a subtle pathophysiological interplay driving skin inflammation and immune-metabolic bone alterations. Recent research suggests that combined therapeutic approaches-including vitamin D supplementation, targeted microbiota interventions, and miRNA-based therapies-could be promising strategies for managing comorbid inflammatory skin diseases and OP. This perspective highlights the need for multidisciplinary approaches in the clinical management of conditions related to the skin-bone axis.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Paola Lucia Minciullo
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| |
Collapse
|
2
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
3
|
Livingston S, Mallick S, Lucas DA, Sabir MS, Sabir ZL, Purdin H, Nidamanuri S, Haussler CA, Haussler MR, Jurutka PW. Pomegranate derivative urolithin A enhances vitamin D receptor signaling to amplify serotonin-related gene induction by 1,25-dihydroxyvitamin D. Biochem Biophys Rep 2020; 24:100825. [PMID: 33088927 PMCID: PMC7566096 DOI: 10.1016/j.bbrep.2020.100825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 02/01/2023] Open
Abstract
Mediated by the nuclear vitamin D receptor (VDR), the hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D), is known to regulate expression of genes impacting calcium and phosphorus metabolism, the immune system, and behavior. Urolithin A, a nutrient metabolite derived from pomegranate, possibly acting through AMP kinase (AMPK) signaling, supports respiratory muscle health in rodents and longevity in C. elegans by inducing oxidative damage-reversing genes and mitophagy. We show herein that urolithin A enhances transcriptional actions of 1,25D driven by co-transfected vitamin D responsive elements (VDREs), and dissection of this genomic effect in cell culture reveals: 1) urolithin A concentration-dependency, 2) occurrence with isolated natural VDREs, 3) nuclear receptor selectivity for VDR over ER, LXR and RXR, and 4) significant 3- to 13-fold urolithin A-augmentation of 1,25D-dependent mRNA encoding the widely expressed 1,25D-detoxification enzyme, CYP24A1, a benchmark vitamin D target gene. Relevant to potential behavioral effects of vitamin D, urolithin A elicits enhancement of 1,25D-dependent mRNA encoding tryptophan hydroxylase-2 (TPH2), the serotonergic neuron-expressed initial enzyme in tryptophan metabolism to serotonin. Employing quantitative real time-PCR, we demonstrate that TPH2 mRNA is induced 1.9-fold by 10 nM 1,25D treatment in culture of differentiated rat serotonergic raphe (RN46A-B14) cells, an effect magnified 2.5-fold via supplementation with 10 μM urolithin A. This potentiation of 1,25D-induced TPH2 mRNA by urolithin A is followed by a 3.1- to 3.7-fold increase in serotonin concentration in culture medium from the pertinent neuronal cell line, RN46A-B14. These results are consistent with the concept that two natural nutrient metabolites, urolithin A from pomegranate and 1,25D from sunlight/vitamin D, likely acting via AMPK and VDR, respectively, cooperate mechanistically to effect VDRE-mediated regulation of gene expression in neuroendocrine cells. Finally, gedunin, a neuroprotective natural product from Indian neem tree that impacts the brain derived neurotropic factor pathway, similarly potentiates 1,25D/VDR-action. Hormonal 1,25-dihydroxyvitamin D acts in brain to induce tryptophan hydroxylase-2. Urolithin A derived from ellagitannins in pomegranates curbs neuroinflammation. Urolithin A enhances the transcriptional actions of 1,25-dihydroxyvitamin D. Urolithin A raises 1,25-dihydroxyvitamin D-induced tryptophan hydroxylase-2 mRNA. Serotonin rises in raphe cells exposed to urolithin A and 1,25-dihydroxyvitamin D.
Collapse
Affiliation(s)
- Sarah Livingston
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Daniel A Lucas
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Hespera Purdin
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Sree Nidamanuri
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA.,Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
4
|
Ampawong S, Kengkoom K, Sukphopetch P, Aramwit P, Muangkaew W, Kanjanapruthipong T, Buaban T. Evaluating the effect of rice (Oryza sativa L.: SRNC05053-6-2) crude extract on psoriasis using in vitro and in vivo models. Sci Rep 2020; 10:17618. [PMID: 33077734 PMCID: PMC7573619 DOI: 10.1038/s41598-020-74634-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is mainly caused because of inappropriate immune responses in the epidermis. Rice (Oryza sativa L.: SRNC05053-6-2) consists of anthocyanin, which exhibits strong antioxidative and anti-inflammatory properties. This study aimed to evaluate the role of this black-coloured rice crude extract in alleviating the symptoms of psoriasis using human psoriatic artificial skin and an imiquimod-induced rat psoriasis model. Psoriasis-related genes, cytokines and chemokines were examined; in addition, the antioxidative and anti-inflammatory properties and the immunohistopathological features of this condition were studied. The results showed that the rice extract reduced the severity of psoriasis by (1) decreasing the epidermal thickness, acanthosis, hyperkeratosis, epidermal inflammation and degree of apoptosis induction via caspase-3, (2) increasing the expression levels of anti-inflammatory cytokines (IL-10 and TGF-β), (3) reducing the levels of pro-inflammatory cytokines (IL-6, IL-8, IL-20, IL-22 and TNF-α), chemokines (CCL-20) and anti-microbial peptides (psoriasin and β-defensin), (4) enhancing the antioxidative property (Nrf-2), (5) downregulating the levels of psoriasis-associated genes (psoriasin, β-defensin, koebnerisin 15L and koebnerisin 15S) and (6) upregulating the levels of psoriasis-improving genes (caspase-14, involucrin and filaggrin). Thus, the extract appears to exert therapeutic effects on psoriasis through its antioxidative and immunomodulatory properties.
Collapse
Affiliation(s)
- Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Kanchana Kengkoom
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Theerapong Buaban
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170, Thailand
| |
Collapse
|
5
|
Role of Vitamin D Beyond the Skeletal Function: A Review of the Molecular and Clinical Studies. Int J Mol Sci 2018; 19:ijms19061618. [PMID: 29849001 PMCID: PMC6032242 DOI: 10.3390/ijms19061618] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
The classical function of Vitamin D, which involves mineral balance and skeletal maintenance, has been known for many years. With the discovery of vitamin D receptors in various tissues, several other biological functions of vitamin D are increasingly recognized and its role in many human diseases like cancer, diabetes, hypertension, cardiovascular, and autoimmune and dermatological diseases is being extensively explored. The non-classical function of vitamin D involves regulation of cellular proliferation, differentiation, apoptosis, and innate and adaptive immunity. In this review, we discuss and summarize the latest findings on the non-classical functions of vitamin D at the cellular/molecular level and its role in complex human diseases.
Collapse
|
6
|
Bioactive Dietary VDR Ligands Regulate Genes Encoding Biomarkers of Skin Repair That Are Associated with Risk for Psoriasis. Nutrients 2018; 10:nu10020174. [PMID: 29401702 PMCID: PMC5852750 DOI: 10.3390/nu10020174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 01/10/2023] Open
Abstract
Treatment with 1,25-dihydroxyvitamin D3 (1,25D) improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE)3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del), we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn) homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA) and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR). DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNFα)-signaled phosphorylation of mitogen activated protein (MAP) kinases, p38 and Jun amino-terminal kinase (JNK), thereby overcoming inflammation biomarkers elicited by TNFα challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s) whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.
Collapse
|
7
|
Umar M, Sastry KS, Al Ali F, Al-Khulaifi M, Wang E, Chouchane AI. Vitamin D and the Pathophysiology of Inflammatory Skin Diseases. Skin Pharmacol Physiol 2018; 31:74-86. [DOI: 10.1159/000485132] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
|
8
|
Pastorková B, Illés P, Dvořák Z. Profiling of anthocyanidins against transcriptional activities of steroid and nuclear receptors. Drug Chem Toxicol 2017; 41:434-440. [DOI: 10.1080/01480545.2017.1380659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Barbora Pastorková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Illés
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Mansell J, Cooke M, Read M, Rudd H, Shiel A, Wilkins K, Manso M. Chitinase 3-like 1 expression by human (MG63) osteoblasts in response to lysophosphatidic acid and 1,25-dihydroxyvitamin D3. Biochimie 2016; 128-129:193-200. [DOI: 10.1016/j.biochi.2016.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/25/2016] [Indexed: 01/05/2023]
|
10
|
Haussler MR, Whitfield GK, Haussler CA, Sabir MS, Khan Z, Sandoval R, Jurutka PW. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age. VITAMINS AND HORMONES 2016; 100:165-230. [PMID: 26827953 DOI: 10.1016/bs.vh.2015.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA.
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Ruby Sandoval
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Peter W Jurutka
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| |
Collapse
|
11
|
Liu Q, Liu Y, Wang X, Xu J, Zhou W. Genes involved in keratinization, keratinocyte and epithelium differentiation are aberrantly regulated in oral lichen planus. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Association of the late cornified envelope-3 genes with psoriasis and psoriatic arthritis: a systematic review. J Genet Genomics 2015; 42:49-56. [PMID: 25697099 DOI: 10.1016/j.jgg.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/28/2014] [Accepted: 01/04/2015] [Indexed: 01/10/2023]
Abstract
Psoriasis (Ps) and psoriatic arthritis (PsA) are genetically complex diseases with strong genetic evidence. Recently, susceptibility genes for Ps and PsA have been identified within the late cornified envelop (LCE) gene cluster, especially the cluster 3 (LCE3) genes. It is noteworthy that the deletion of LCE3B and LCE3C (LCE3C_LCE3B-del) is significantly associated with these two diseases. Gene-gene interactions between LCE3 genes and other genes are associated with Ps and PsA. LCE3 genes also have pleiotropic effect on some autoimmune diseases, such as rheumatoid arthritis, atopic dermatitis and systemic lupus erythematosus. Further studies need to focus on the potential function of LCE3 genes in the pathogenesis of Ps and PsA in the future.
Collapse
|
13
|
Pal HC, Chamcheu JC, Adhami VM, Wood GS, Elmets CA, Mukhtar H, Afaq F. Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammation. Br J Dermatol 2014; 172:354-64. [PMID: 25533330 DOI: 10.1111/bjd.13513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation and aberrant keratinocyte differentiation. We have shown that treatment of reconstituted human skin with delphinidin, an anthocyanidin, present in pigmented fruits and vegetables, increased the expression and processing of caspase-14, which is involved in cornification. Delphinidin also increases the expression of epidermal differentiation marker proteins. OBJECTIVES To determine whether topical application of delphinidin can modulate pathological markers of psoriasiform lesions in flaky skin mice and if this is associated with increased epidermal differentiation and a reduction in proliferation and inflammation. METHODS Five-week-old female homozygous flaky skin mice (fsn/fsn) were treated topically with delphinidin (0·5 mg cm(-2) and 1 mg cm(-2) skin areas, respectively), five times a week, up to 14 weeks of age. RESULTS Treatment of flaky skin mice with delphinidin resulted in a reduction in (i) pathological markers of psoriasiform lesions; (ii) infiltration of inflammatory cells; and (iii) mRNA and protein expression of inflammatory cytokines. Delphinidin treatment also increased the expression and processing of caspase-14, and expression of filaggrin, loricrin, keratin-1 and keratin-10. Furthermore, there was a decrease in the expression of markers for cell proliferation (proliferating cell nuclear antigen and keratin-14) and modulation of tight junction proteins (occludin and claudin-1). In addition, delphinidin treatment increased the expression of activator protein-1 transcription factor proteins (JunB, JunD, Fra1 and Fra2). CONCLUSIONS Delphinidin could be a promising agent for treatment of psoriasis and other hyperproliferative skin disorders.
Collapse
Affiliation(s)
- H C Pal
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, 35294, AL, U.S.A
| | | | | | | | | | | | | |
Collapse
|
14
|
Pople JE, Moore AE, Talbot DCS, Barrett KE, Jones DA, Lim FL. Climbazole increases expression of cornified envelope proteins in primary keratinocytes. Int J Cosmet Sci 2014; 36:419-26. [DOI: 10.1111/ics.12137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/27/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J. E. Pople
- Unilever R&D Colworth; Colworth Science Park; Sharnbrook Bedfordshire UK
| | - A. E. Moore
- Unilever R&D Colworth; Colworth Science Park; Sharnbrook Bedfordshire UK
| | - D. C. S. Talbot
- Unilever R&D Colworth; Colworth Science Park; Sharnbrook Bedfordshire UK
| | - K. E. Barrett
- Unilever R&D Colworth; Colworth Science Park; Sharnbrook Bedfordshire UK
| | - D. A. Jones
- Unilever R&D Port Sunlight; Quarry Road East; Bebington Wirral UK
| | - F. L. Lim
- Unilever R&D Colworth; Colworth Science Park; Sharnbrook Bedfordshire UK
| |
Collapse
|
15
|
Regulation of late cornified envelope genes relevant to psoriasis risk by plant-derived cyanidin. Biochem Biophys Res Commun 2014; 443:1275-9. [PMID: 24393842 DOI: 10.1016/j.bbrc.2013.12.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/25/2013] [Indexed: 12/14/2022]
Abstract
The PSORS4 genetic risk factor for psoriasis is a deletion of two late cornified envelope (LCE) genes (LCE3C_LCE3Bdel) in a cluster of five LCE3 genes with a proposed role in skin repair. We previously showed that 1,25-dihydroxyvitamin D3 (1,25D) modestly upregulates transcripts from all five LCE3 genes as monitored by real time PCR in primary human keratinocytes. Herein we report that cyanidin, a plant-derived compound with anti-inflammatory/anti-oxidant properties, upregulates expression of all five LCE3 genes in cultures of differentiating primary human keratinocytes to a greater extent that does 1,25D. This action of cyanidin is dependent on the differentiation state of the keratinocytes, with a stronger effect after the cells have been incubated with 1.2mM calcium for 24h. Competition displacement assays using radiolabeled 1,25D revealed that cyanidin directly competes as a ligand for vitamin D receptor (VDR) binding with an estimated IC50 of 500μM. However, 20μM cyanidin is sufficient to upregulate LCE3 genes. The 25-fold discrepancy between the cyanidin concentration required for upregulating LCE3 genes in intact keratinocytes vs. that required for direct binding to VDR in vitro suggests that cyanidin may be: (a) metabolized to a more active VDR ligand in keratinocytes and/or (b) functioning via a non-VDR mediated mechanism. The fact that cyanidin is the most potent upregulator of global LCE3 gene expression reported to date suggests that this or related compounds may have potential in psoriasis therapy.
Collapse
|
16
|
Trowbridge RM, Mitkov MV, Hunter WJ, Agrawal DK. Vitamin D receptor and CD86 expression in the skin of vitamin D-deficient swine. Exp Mol Pathol 2013; 96:42-7. [PMID: 24239751 DOI: 10.1016/j.yexmp.2013.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
The immunomodulatory role of vitamin D in many diseases is well established. However, the relationship between vitamin D status and skin cancers is unclear. In this study, we examined the effect of vitamin D deficiency and sufficiency on VDR, NF-κB, and CD86 in the epidermis of Yucatan microswine tragi. All of these proteins have known roles in the pathogenesis of cutaneous malignancies such as melanoma and non-melanoma skin cancer. There was weaker and less discrete nuclear staining for VDR and weaker CD86 immunoreactivity with patchy membranous expression in the epidermis of vitamin D-deficient compared to vitamin D-sufficient swine. There was no difference in the immunostaining for NF-κB. Since VDR and CD86 expression are decreased in the setting of melanoma and non-melanoma skin cancers, our findings suggest a potential role of vitamin D-deficiency in the progression of skin malignancies.
Collapse
Affiliation(s)
- Ryan M Trowbridge
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Mario V Mitkov
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - William J Hunter
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|