1
|
HUANG BAOXING, JIA ZICHANG, FU CHENCHEN, CHEN MOXIAN, SU ZEZHUO, CHEN YUNSHENG. Oncogenic and tumor-suppressive roles of Lipocalin 2 (LCN2) in tumor progression. Oncol Res 2025; 33:567-575. [PMID: 40109857 PMCID: PMC11915076 DOI: 10.32604/or.2024.051672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 03/22/2025] Open
Abstract
Lipocalin-2 (LCN2) is a member of the lipocalin superfamily with multiple functions and can participate in the transport of a variety of small lipophilic ligands in vivo. LCN2 is significantly expressed in various tumors and plays an important role in regulating tumor cell proliferation, invasion, and metastasis. The specific actions of LCN2 in tumors may vary depending on the particular type of cancer involved. In this review, we provide an extensive overview of the transcriptional and post-transcriptional regulation of LCN2 in health and disease. Furthermore, we summarize the impact of LCN2 dysregulation in a broad range of tumors. Lastly, we examine the mechanisms of action of LCN2 during tumorigenesis, progression, and metastasis. Understanding the complex relationships between LCN2 and tumor development, progression, and metastasis is vital for advancing our knowledge of cancer biology, developing biomarkers for diagnosis and clinical decision-making, and creating therapeutic strategies to improve the management of patients with cancer.
Collapse
Affiliation(s)
- BAOXING HUANG
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| | - ZICHANG JIA
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| | - CHENCHEN FU
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - MOXIAN CHEN
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - ZEZHUO SU
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - YUNSHENG CHEN
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| |
Collapse
|
2
|
Crescenzi E, Leonardi A, Pacifico F. NF-κB in Thyroid Cancer: An Update. Int J Mol Sci 2024; 25:11464. [PMID: 39519020 PMCID: PMC11546487 DOI: 10.3390/ijms252111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The dysregulated NF-κB basal activity is a common feature of human thyroid carcinomas, especially in poorly differentiated or undifferentiated forms that, even if rare, are often resistant to standard therapies, and, therefore, are uncurable. Despite the molecular mechanisms leading to NF-κB activation in thyroid cancer being only partially understood, during the last few years, it has become clear that NF-κB contributes in different ways to the oncogenic potential of thyroid neoplastic cells. Indeed, it enhances their proliferation and viability, promotes their migration to and colonization of distant organs, and fuels their microenvironment. In addition, NF-κB signaling plays an important role in cancer stem cells from more aggressive thyroid carcinomas. Interfering with the different upstream and/or downstream pathways that drive NF-κB activity in thyroid neoplastic cells is an attractive strategy for the development of novel therapeutic drugs capable of overcoming the therapy resistance of advanced thyroid carcinomas. This review focuses on the recent findings about the key functions of NF-κB in thyroid cancer and discusses the potential implications of targeting NF-κB in advanced thyroid carcinomas.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| |
Collapse
|
3
|
Halada S, Casado-Medrano V, Baran JA, Lee J, Chinmay P, Bauer AJ, Franco AT. Hormonal Crosstalk Between Thyroid and Breast Cancer. Endocrinology 2022; 163:6588704. [PMID: 35587175 PMCID: PMC9653009 DOI: 10.1210/endocr/bqac075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/09/2022]
Abstract
Differentiated thyroid cancer and breast cancer account for a significant portion of endocrine-related malignancies and predominately affect women. As hormonally responsive tissues, the breast and thyroid share endocrine signaling. Breast cells are responsive to thyroid hormone signaling and are affected by altered thyroid hormone levels. Thyroid cells are responsive to sex hormones, particularly estrogen, and undergo protumorigenic processes upon estrogen stimulation. Thyroid and sex hormones also display significant transcriptional crosstalk that influences oncogenesis and treatment sensitivity. Obesity-related adipocyte alterations-adipocyte estrogen production, inflammation, feeding hormone dysregulation, and metabolic syndromes-promote hormonal alterations in breast and thyroid tissues. Environmental toxicants disrupt endocrine systems, including breast and thyroid homeostasis, and influence pathologic processes in both organs through hormone mimetic action. In this brief review, we discuss the hormonal connections between the breast and thyroid and perspectives on hormonal therapies for breast and thyroid cancer. Future research efforts should acknowledge and further explore the hormonal crosstalk of these tissues in an effort to further understand the prevalence of thyroid and breast cancer in women and to identify potential therapeutic options.
Collapse
Affiliation(s)
- Stephen Halada
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria Casado-Medrano
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia A Baran
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joshua Lee
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Poojita Chinmay
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aime T Franco
- Correspondence: Aime T. Franco, Ph.D., Pediatric Thyroid Center Translational Laboratory, The University of Pennsylvania and Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Fan L, Tian Y, Sun Y, Hu Z. [Expression and Clinical Significance of Lipocalin-2 in the Serum of Lung Cancer Patients]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:108-111. [PMID: 33626852 PMCID: PMC7936081 DOI: 10.3779/j.issn.1009-3419.2021.102.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
背景与目的 肺癌是全球发病率最高的癌症类型,严重威胁着人类健康。肺癌的早期诊断、早期治疗对于肺癌患者的生存尤为重要。血清中的肿瘤标志物作为肿瘤早期诊断的一种重要方法已被广泛应用。然而,肺癌的早期诊断标志物还很少。本研究旨在探讨Lipocalin-2在肺癌患者血清中的表达水平及其临床意义。 方法 采用酶联免疫吸附法(enzyme linked immunosorbent assay, ELISA)检测Lipocalin-2在60例肺癌患者与63例健康人群外周血血清中的浓度,并分析Lipocalin-2表达水平与肺癌临床特征之间的关系。 结果 Lipocalin-2在肺癌患者外周血血清中的表达水平明显高于健康人群,差异具有明显统计学意义(P < 0.001)。Lipocalin-2在肺癌患者中的表达与病理组织的分化、分期及淋巴结转移相关,差异具有明显统计学意义(P < 0.05)。Lipocalin-2在病理分化差的肺癌患者血清中的表达高于分化良好患者;在发生淋巴结转移的肺癌患者血清中的表达高于没有发生淋巴结转移患者;在临床Ⅲ期+Ⅳ期肺癌患者中的表达水平显著高于临床Ⅰ期Ⅱ期患者;差异均具有统计学意义(P < 0.05)。 结论 Lipocalin-2在肺癌患者血清水平中高表达,与病理组织的分化、分期及淋巴结转移相关,有望成为一种潜在的用于临床诊断的新型肺癌肿瘤标志物。
Collapse
Affiliation(s)
- Liming Fan
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Tian
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Sun
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Liang W, Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol 2021; 11:626812. [PMID: 33679721 PMCID: PMC7928394 DOI: 10.3389/fimmu.2020.626812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cells of the innate immune system are a major component of the tumor microenvironment. They play complex and multifaceted roles in the regulation of cancer initiation, growth, metastasis and responses to therapeutics. Innate immune cells like neutrophils and macrophages are recruited to cancerous tissues by chemotactic molecules released by cancer cells and cancer-associated stromal cells. Once they reach the tumor, they can be instructed by a network of proteins, nucleic acids and metabolites to exert protumoral or antitumoral functions. Altered iron metabolism is a feature of cancer. Epidemiological studies suggest that increased presence of iron and/or iron binding proteins is associated with increased risks of cancer development. It has been shown that iron metabolism is involved in shaping the immune landscapes in inflammatory/infectious diseases and cancer-associated inflammation. In this article, we will dissect the contribution of macrophages and neutrophils to dysregulated iron metabolism in malignant cells and its impact on cancer growth and metastasis. The mechanisms involved in regulating the actions of macrophages and neutrophils will also be discussed. Moreover, we will examine the effects of iron metabolism on the phenotypes of innate immune cells. Both iron chelating and overloading agents are being explored in cancer treatment. This review highlights alternative strategies for management of iron content in cancer cells by targeting the iron donation and modulation properties of macrophages and neutrophils in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- Oncology, BioDuro LLC, San Diego, CA, United States
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Wang G, He L, Wang S, Zhang M, Li Y, Liu Q, Sun N, Zhang X, Liu Y, Zhang J, Tai J, Ni X. EV PD-L1 is Correlated With Clinical Features and Contributes to T Cell Suppression in Pediatric Thyroid Cancer. J Clin Endocrinol Metab 2020; 105:dgaa309. [PMID: 32459310 DOI: 10.1210/clinem/dgaa309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT The contribution of blood extracellular vesicular (EV) programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) in papillary thyroid cancer (PTC) is uncertain. OBJECTIVE We sought to determine the relationship of EV PD-L1/PD-1 with the clinical features of pediatric PTC and the role of EV PD-L1 in immunosuppression. MAIN OUTCOME MEASURES Plasma levels of EV and soluble PD-L1 and PD-1 and levels of plasma cytokines in children with PTC and controls were determined by enzyme-linked immunosorbent assay. Levels of tumor PD-L1 and the tumor-infiltrating lymphocyte (TIL) score were determined by immunohistochemistry. Correlations of the plasma PD-L1/PD-1 level with clinicopathological characteristics, levels of plasma cytokines, tumor PD-L1 expression, and TIL score were analyzed. T-cell suppression by EVs from PTC patients was determined by incubation of PD-L1high or PD-L1low EVs with activated CD8+ T cells. Changes in CD69 and PD-1 expression and changes in tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) secretion were measured by flow cytometry. RESULTS The levels of plasma PD-L1/PD-1 were significantly higher in children with PTC than in controls. The levels of plasma EV PD-L1 significantly correlated with tumor T stage, tumor PD-L1 expression, TIL score, and plasma cytokine content. Levels of plasma soluble PD-1 significantly correlated with patient age, plasma EV PD-L1, and IFNα concentration. PD-L1high EVs significantly inhibited the activation of CD8+ T cells. CONCLUSIONS Plasma levels of EV PD-L1, but not soluble PD-L1, were associated with tumor T stage in children with PTC. Plasma EV PD-L1 emerges as a useful metric for assessing tumor T stage and T cell suppression in PTC.
Collapse
Affiliation(s)
- Guoliang Wang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Lejian He
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shengcai Wang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Meng Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanzhen Li
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qiaoyin Liu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Nian Sun
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xuexi Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuwei Liu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jun Tai
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Huang Z, Zhang Y, Li H, Zhou Y, Zhang Q, Chen R, Jin T, Hu K, Li S, Wang Y, Chen W, Huang Z. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Cell Death Dis 2019; 10:936. [PMID: 31819048 PMCID: PMC6901542 DOI: 10.1038/s41419-019-2177-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Chemoresistance is a major cause of cancer progression and the mortality of cancer patients. Developing a safe strategy for enhancing chemosensitivity is a challenge for biomedical science. Recent studies have suggested that vitamin D supplementation may decrease the risk of many cancers. However, the role of vitamin D in chemotherapy remains unknown. We found that vitamin D sensitised oral cancer cells to cisplatin and partially reversed cisplatin resistance. Using RNA-seq, we discovered that lipocalin 2 (LCN2) is an important mediator. Cisplatin enhanced the expression of LCN2 by decreasing methylation at the promoter, whereas vitamin D enhanced methylation and thereby inhibited the expression of LCN2. Overexpression of LCN2 increased cell survival and cisplatin resistance both in vitro and in vivo. High LCN2 expression was positively associated with differentiation, lymph node metastasis, and T staging and predicted a poor prognosis in oral squamous cell carcinoma (OSCC) patients. LCN2 was also associated with post-chemotherapy recurrence. Moreover, we found that LCN2 promoted the activation of NF-κB by binding to ribosomal protein S3 (RPS3) and enhanced the interaction between RPS3 and p65. Our study reveals that vitamin D can enhance cisplatin chemotherapy and suggests that vitamin D should be supplied during chemotherapy; however, more follow-up clinical studies are needed.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haigang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qianyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shihao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiliang Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Fan CM, Wang JP, Tang YY, Zhao J, He SY, Xiong F, Guo C, Xiang B, Zhou M, Li XL, Li Y, Li GY, Xiong W, Zeng ZY. circMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Sci 2019; 110:2180-2188. [PMID: 31046163 PMCID: PMC6609809 DOI: 10.1111/cas.14034] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Novel diagnostic and prognostic biomarkers of cancers are needed to improve precision medicine. Circular RNAs act as important regulators in cancers at the transcriptional and posttranscriptional levels. The circular RNA circMAN1A2 is highly expressed in nasopharyngeal carcinoma according to our previous RNA sequencing data; however, the expression and functions of circMAN1A2 in cancers are still obscure. Therefore, in this study, we evaluated the expression of circMAN1A2 in the sera of patients with nasopharyngeal carcinoma and other malignant tumors and analyzed its correlations with clinical features and diagnostic values. The expression levels of circMAN1A2 were detected by quantitative real-time PCR, and the correlations of clinical features with circMAN1A2 expression were analyzed by χ2 tests. Receiver operating characteristic curves were used to evaluate the clinical applications of circMAN1A2. The results showed that circMAN1A2 was upregulated in nasopharyngeal carcinoma, oral cancer, thyroid cancer, ovarian cancer, and lung cancer, with areas under the curves of 0.911, 0.779, 0.734, 0.694, and 0.645, respectively, indicating the good diagnostic value of circMAN1A2. Overall, our findings suggested that circMAN1A2 could be a serum biomarker for malignant tumors, providing important insights into diagnostic approaches for malignant tumors. Further studies are needed to elucidate the mechanisms of circMAN1A2 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Chun-Mei Fan
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Peng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yan-Yan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jin Zhao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shu-Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiao-Ling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gui-Yuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Yang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|