1
|
Li J, Jiang D, Huang X, Wang X, Xia T, Zhang W. Intermittent theta burst stimulation for negative symptoms in schizophrenia patients with moderate to severe cognitive impairment: A randomized controlled trial. Psychiatry Clin Neurosci 2025; 79:147-157. [PMID: 39887864 DOI: 10.1111/pcn.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 02/01/2025]
Abstract
AIMS This study aims to assess the therapeutic effects of intermittent theta burst stimulation (iTBS) targeting the bilateral dorsomedial prefrontal cortex (DMPFC) on negative symptoms in patients with schizophrenia, utilizing functional near-infrared spectroscopy for evaluation. METHODS Thirty-five schizophrenia patients with negative symptoms and moderate to severe cognitive impairment were randomly assigned to a treatment group (n = 18) or a control group (n = 17). The treatment group received iTBS via bilateral DMPFC. Negative symptoms, cognitive function, emotional state, and social function were assessed using Positive and Negative Syndrome Scale (PANSS), Scale for the Assessment of Negative Symptoms (SANS), Montreal Cognitive Assessment (MoCA), Calgary Depression Scale for Schizophrenia (CDSS), and Social Dysfunction Screening Questionnaire (SDSS) scales at pretreatment, posttreatment, and follow-up at 4, 8, and 12 weeks. Brain activation in regions of interest (ROIs) was evaluated through verbal fluency tasks. RESULTS Prior to treatment there was no significant difference in the two groups. After 20 iTBS sessions, a significant difference was observed in SANS total score, its related subscales, PANSS total score, and PANSS-negative symptoms (all P < 0.05). The group-by-time interaction showed statistical significance, indicating improvements in negative symptoms and related dimensions over time, with therapeutic effects persisting for at least 8 weeks posttreatment. Prior to treatment, there were no significant differences in activation across all ROIs between the two groups. Posttreatment, the activation of right inferior frontal gyrus (t = 2.19, P = 0.036) and right frontal eye field (t = 2.14, P = 0.04) in the treatment group was significantly higher than in the control group. CONCLUSIONS iTBS stimulation of bilateral DMPFC demonstrates therapeutic effects in improving negative symptoms in schizophrenia patients, and this treatment approach has the potential to enhance activation within the prefrontal cortex.
Collapse
Affiliation(s)
- Jing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Jiang
- Psychiatry Department, Jinxin Mental Hospital, Chengdu, China
| | - Xingyu Huang
- Psychiatry Department, Jinxin Mental Hospital, Chengdu, China
| | - Xiao Wang
- Psychiatry Department, Jinxin Mental Hospital, Chengdu, China
| | - Tingting Xia
- Psychiatry Department, Jinxin Mental Hospital, Chengdu, China
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Dudina AN, Tomyshev AS, Ilina EV, Romanov DV, Lebedeva IS. Structural and functional alterations in different types of delusions across schizophrenia spectrum: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111185. [PMID: 39486472 DOI: 10.1016/j.pnpbp.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Despite the high clinical role of delusions as a transnosological psychopathological phenomenon, the number of experimental studies on the different types of delusions across schizophrenia spectrum is still relatively small, and their results are somehow inconsistent. We aimed to understand the current state of knowledge regarding the structural and functional brain alterations in delusions to determine whether particular types of delusions are associated with specific brain changes and to identify common alterations underlying the formation and persistence of delusions regardless of their content. METHODS For this systematic review, we followed PRISMA guidelines to search in PubMed for English papers published between 1953 and September 30, 2023. The initial inclusion criteria for screening purposes were articles that investigated delusions or subclinical delusional beliefs in schizophrenia spectrum disorders, high clinical or genetic risk for schizophrenia using fMRI, sMRI or/and dwMRI methods. Exclusion criteria during the screening phase were articles that investigated lesion-induced or substance-induced delusions, delusions in Alzheimer's disease and other neurocognitive disorders, single case studies and non-human studies. The publication metadata were uploaded to the web-tool for working on systematic reviews, Rayyan. For each of the studies, a table was filled out with detailed information. RESULTS We found 1752 records, of which 95 full-text documents were reviewed and included in the current paper. Both nonspecific and particular types of delusions were associated with widespread structural and functional alterations. The most prominent areas affected across all types of delusions were the superior temporal cortex (predominantly left language processing areas), anterior cingulate/medial prefrontal cortex and insula. The most reproducible findings in paranoia may be alterations in the functioning of the amygdala and its interactions with other regions. Somatic delusions and delusional infestation were mostly characterized by alterations in the insula and thalamus. DISCUSSION The data are ambiguous; however, in general the predictive processing framework seems to be the most widely accepted approach to explaining different types of delusions. Aberrant prediction errors signaling during processing of social, self-generated and sensory information may lead to inaccuracies in assessing the intentions of others, self-relevancy of ambiguous stimuli, misattribution of self-generated actions and unusual sensations, which could provoke delusional ideation with persecutory, reference, control and somatic content correspondingly. However, currently available data are still insufficient to draw conclusions about the specific biological mechanisms of predictive coding account of delusions. Thus, further studies exploring more homogeneous groups and interaction of diagnoses by types of delusions are needed. There are also some limitations in this review. Studies that investigate delusions induced by lesions, substance abuse or neurodegeneration and studies using modalities other than fMRI, sMRI or dwMRI were not included in the review. Due to the relatively small number of publications, we systematized them based on a certain type of delusions, while the results could also be affected by the diagnosis of patients, the presence and type of therapy, illness duration etc.
Collapse
Affiliation(s)
- Anastasiia N Dudina
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation.
| | - Alexander S Tomyshev
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation
| | - Ekaterina V Ilina
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str, Moscow 119991, Russian Federation
| | - Dmitriy V Romanov
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation; I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str, Moscow 119991, Russian Federation
| | - Irina S Lebedeva
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation
| |
Collapse
|
3
|
Ren H, Li J, Zhou J, Chen X, Tang J, Li Z, Wang Q. Grey matter volume reduction in the frontotemporal cortex associated with persistent verbal auditory hallucinations in Chinese patients with chronic schizophrenia: Insights from a 3 T magnetic resonance imaging study. Schizophr Res 2024; 269:123-129. [PMID: 38772324 DOI: 10.1016/j.schres.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Persistent auditory verbal hallucinations (pAVHs) are a fundamental manifestation of schizophrenia (SCZ), yet the exact connection between pAVHs and brain structure remains contentious. This study aims to explore the potential correlation between pAVHs and alterations in grey matter volume (GMV) within specific brain regions among individuals diagnosed with SCZ. METHODS 76 SCZ patients with pAVHs (pAVH group), 57 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) were investigated using 3 T magnetic resonance imaging. The P3 hallucination item of the Positive and Negative Syndrome Scale was used to assess the severity of pAVHs. Voxel-based morphometry was used to analyze the GMV profile between the three groups. RESULTS Compared to the non-AVH and HC groups, the pAVH group exhibited extensive reduction in GMV within the frontotemporal cortex. Conversely, no significant difference in GMV was observed between the non-AVH and HC groups. The severity of pAVHs showed a negative correlation with GMV in several regions, including the right fusiform, right inferior temporal, right medial orbitofrontal, right superior frontal, and right temporal pole (p = 0.0036, Bonferroni correction). Stepwise linear regression analysis revealed that GMV in the right temporal pole (β = -0.29, p = 0.001) and right fusiform (β = -0.21, p = 0.01) were significantly associated with the severity of pAVHs. CONCLUSIONS Widespread reduction in GMV is observed within the frontotemporal cortex, particularly involving the right temporal pole and right fusiform, which potentially contribute to the pathogenesis of pAVHs in individuals with chronic SCZ.
Collapse
Affiliation(s)
- Honghong Ren
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Qianjin Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Sklar AL, Yeh FC, Curtis M, Seebold D, Coffman BA, Salisbury DF. Functional and structural connectivity correlates of semantic verbal fluency deficits in first-episode psychosis. J Psychiatr Res 2024; 169:73-80. [PMID: 38000187 PMCID: PMC10843642 DOI: 10.1016/j.jpsychires.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Semantic verbal fluency (SVF) impairments are debilitating and present early in the course of psychotic illness. Deficits within frontal, parietal, and temporal brain regions contribute to this deficit, as long-range communication across this functionally integrated network is critical to SVF. This study sought to isolate disruptions in functional and structural connectivity contributing to SVF deficits during first-episode psychosis in the schizophrenia spectrum (FESz). METHODS Thirty-three FESz and 34 matched healthy controls (HC) completed the Animal Naming Task to assess SVF. Magnetoencephalography was recorded during an analogous covert SVF task, and phase-locking value (PLV) used to measure functional connectivity between inferior frontal and temporoparietal structures bilaterally. Diffusion imaging was collected to measure fractional anisotropy (FA) of the arcuate fasciculus, the major tract connecting frontal and temporoparietal language areas. RESULTS SVF scores were lower among FESz compared to HC. While PLV and FA did not differ between groups overall, FESz exhibited an absence of the left-lateralized nature of both measures observed in HC. Among FESz, larger right-hemisphere PLV was associated with worse SVF performance (ρ = -0.51) and longer DUP (ρ = -0.50). DISCUSSION In addition to worse SVF, FESz exhibited diminished leftward asymmetry of structural and functional connectivity in fronto-temporoparietal SVF network. The relationship between theta-band hyperconnectivity and poorer performance suggests a disorganized executive network and may reflect dysfunction of frontal cognitive control centers. These findings illustrate an aberrant pattern across the distributed SVF network at disease onset and merit further investigation into development of asymmetrical hemispheric connectivity and its failure among high-risk populations.
Collapse
Affiliation(s)
- Alfredo L Sklar
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Fang-Cheng Yeh
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, PA, USA
| | - Mark Curtis
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Dylan Seebold
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Brian A Coffman
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Dean F Salisbury
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Boisvert M, Lungu O, Pilon F, Dumais A, Potvin S. Regional cerebral blood flow at rest in schizophrenia and major depressive disorder: A functional neuroimaging meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111720. [PMID: 37804739 DOI: 10.1016/j.pscychresns.2023.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Severe mental disorders (SMDs) such as schizophrenia (SCZ), major depressive disorder (MDD) and bipolar disorder (BD) are associated with altered brain function. Neuroimaging studies have illustrated spontaneous activity alterations across SMDs, but no meta-analysis has directly compared resting-state regional cerebral blood flow (rCBF) with one another. We conducted a meta-analysis of PET, SPECT and ASL neuroimaging studies to identify specific alterations of rCBF at rest in SMDs. Included are 20 studies in MDD, and 18 studies in SCZ. Due to the insufficient number of studies in BD, this disorder was left out of the analyses. Compared to controls, the SCZ group displayed reduced rCBF in the triangular part of the left inferior frontal gyrus and in the medial orbital part of the bilateral superior frontal gyrus. After correction, only a small cluster in the right inferior frontal gyrus exhibited reduced rCBF in MDD, compared to controls. Differences were found in these brain regions between SCZ and MDD. SCZ displayed reduced rCBF at rest in regions associated with default-mode, reward processing and language processing. MDD was associated with reduced rCBF in a cluster involved in response inhibition. Our meta-analysis highlights differences in the resting-state rCBF alterations between SCZ and MDD.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Florence Pilon
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada; Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, Quebec, Canada
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Zhu Y, Nakatani H, Yassin W, Maikusa N, Okada N, Kunimatsu A, Abe O, Kuwabara H, Yamasue H, Kasai K, Okanoya K, Koike S. Application of a Machine Learning Algorithm for Structural Brain Images in Chronic Schizophrenia to Earlier Clinical Stages of Psychosis and Autism Spectrum Disorder: A Multiprotocol Imaging Dataset Study. Schizophr Bull 2022; 48:563-574. [PMID: 35352811 PMCID: PMC9077435 DOI: 10.1093/schbul/sbac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Machine learning approaches using structural magnetic resonance imaging (MRI) can be informative for disease classification; however, their applicability to earlier clinical stages of psychosis and other disease spectra is unknown. We evaluated whether a model differentiating patients with chronic schizophrenia (ChSZ) from healthy controls (HCs) could be applied to earlier clinical stages such as first-episode psychosis (FEP), ultra-high risk for psychosis (UHR), and autism spectrum disorders (ASDs). STUDY DESIGN Total 359 T1-weighted MRI scans, including 154 individuals with schizophrenia spectrum (UHR, n = 37; FEP, n = 24; and ChSZ, n = 93), 64 with ASD, and 141 HCs, were obtained using three acquisition protocols. Of these, data regarding ChSZ (n = 75) and HC (n = 101) from two protocols were used to build a classifier (training dataset). The remainder was used to evaluate the classifier (test, independent confirmatory, and independent group datasets). Scanner and protocol effects were diminished using ComBat. STUDY RESULTS The accuracy of the classifier for the test and independent confirmatory datasets were 75% and 76%, respectively. The bilateral pallidum and inferior frontal gyrus pars triangularis strongly contributed to classifying ChSZ. Schizophrenia spectrum individuals were more likely to be classified as ChSZ compared to ASD (classification rate to ChSZ: UHR, 41%; FEP, 54%; ChSZ, 70%; ASD, 19%; HC, 21%). CONCLUSION We built a classifier from multiple protocol structural brain images applicable to independent samples from different clinical stages and spectra. The predictive information of the classifier could be useful for applying neuroimaging techniques to clinical differential diagnosis and predicting disease onset earlier.
Collapse
Affiliation(s)
- Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hironori Nakatani
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Naohiro Okada
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Kunimatsu
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan
| | - Kiyoto Kasai
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuo Okanoya
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinsuke Koike
- To whom correspondence should be addressed; Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; tel: +81-3-5454-4327, fax: +81-3-5454-4327, e-mail:
| |
Collapse
|
7
|
Surface area in the insula was associated with 28-month functional outcome in first-episode psychosis. NPJ SCHIZOPHRENIA 2021; 7:56. [PMID: 34845247 PMCID: PMC8630202 DOI: 10.1038/s41537-021-00186-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
Many studies have tested the relationship between demographic, clinical, and psychobiological measurements and clinical outcomes in ultra-high risk for psychosis (UHR) and first-episode psychosis (FEP). However, no study has investigated the relationship between multi-modal measurements and long-term outcomes for >2 years. Thirty-eight individuals with UHR and 29 patients with FEP were measured using one or more modalities (cognitive battery, electrophysiological response, structural magnetic resonance imaging, and functional near-infrared spectroscopy). We explored the characteristics associated with 13- and 28-month clinical outcomes. In UHR, the cortical surface area in the left orbital part of the inferior frontal gyrus was negatively associated with 13-month disorganized symptoms. In FEP, the cortical surface area in the left insula was positively associated with 28-month global social function. The left inferior frontal gyrus and insula are well-known structural brain characteristics in schizophrenia, and future studies on the pathological mechanism of structural alteration would provide a clearer understanding of the disease.
Collapse
|
8
|
Shivakumar V, Sreeraj VS, Kalmady SV, Gangadhar BN, Venkatasubramanian G. Pars Triangularis Volume Asymmetry and Schneiderian First Rank Symptoms in Antipsychotic-naïve Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:507-513. [PMID: 34294619 PMCID: PMC8316654 DOI: 10.9758/cpn.2021.19.3.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022]
Abstract
Objective Schizophrenia is a disorder of language and self, with first-rank symptoms (FRS) as one of the predominant features in a subset of patients. Abnormal language lateralization is hypothesized to underlie the neurobiology of FRS in schizophrenia. The role of Broca's area with its right-hemispheric counterpart, consisting of pars triangularis (PTr) and pars opercularis (POp) of the inferior frontal gyrus in FRS is undetermined. We compared the volumes and asymmetries of PTr & POp in anti-psychotic-naive schizophrenia patients with FRS (FRS[+]) with those without FRS (FRS[-]) and healthy-controls (HC) using three dimensional, interactive, semi-automated volumetric morphometry. Methods Antipsychotic naïve FRS(+) (n = 27), FRS(-) (n = 24) and HC (n = 51) were carefully assessed with structured and semi-structured clinical tools. T1-weighted images were acquired in a 3T scanner. Volumes of regions of interest were measured independently for both sides using slicer-3D software, and asymmetry indices were calculated. Results FRS(+) but not FRS(-) had a significant volume deficit in right PTr after controlling for the potential confounding effects of age, sex, and intracranial volume (p = 0.029). There was a significant leftward asymmetry of PTr in patients with FRS (i.e., leftward asymmetry in patients) (p = 0.026). No significant volume/asymmetry abnormalities were observed in POp. Conclusion Study findings suggest reduced right PTr volume with leftward asymmetry to be associated with FRS in schizophrenia. This is consistent with the loss of Yakovlevian torque in schizophrenia. Role of PTr in the neurobiology of schizophrenia as a disorder of self, speech, and social cognition needs further systematic evaluation in future research.
Collapse
Affiliation(s)
- Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health & NeuroSciences (NIMHANS), Bangalore, India
| | | | - Sunil Vasu Kalmady
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health & NeuroSciences (NIMHANS), Bangalore, India
| |
Collapse
|
9
|
Nakamura R, Asami T, Yoshimi A, Kato D, Fujita E, Takaishi M, Abe K, Hattori S, Suda A, Shiozaki K, Kase A, Hirayasu Y, Hishimoto A. Illness management and recovery program induced neuroprotective effects on language network in schizophrenia. Schizophr Res 2021; 230:101-103. [PMID: 32950322 DOI: 10.1016/j.schres.2020.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ryota Nakamura
- Psychiatric Center, Yokohama City University Medical Center, 4-57, Urafune-cho, Minami-ku, Yokohama 232-0024, Japan.
| | - Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Daiji Kato
- Totsuka Nishiguchi Rindou Clinic, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0003, Japan
| | - Emi Fujita
- Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Masao Takaishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Kie Abe
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Saki Hattori
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Akira Suda
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Kazumasa Shiozaki
- Yokohama Comprehensive Care Continuum, 1735 Karasuyama-cho, Kouhoku-ku, Yokohama, Kanagawa 222-0035, Japan
| | - Akihiko Kase
- Yokohama Maioka Hospital, 3482 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Hirayasu Hospital, 346 Kyouzuka, Urasoe, Okinawa 901-2553, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
10
|
Alkan E, Davies G, Evans SL. Cognitive impairment in schizophrenia: relationships with cortical thickness in fronto-temporal regions, and dissociability from symptom severity. NPJ SCHIZOPHRENIA 2021; 7:20. [PMID: 33737508 PMCID: PMC7973472 DOI: 10.1038/s41537-021-00149-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Cognitive impairments are a core and persistent characteristic of schizophrenia with implications for daily functioning. These show only limited response to antipsychotic treatment and their neural basis is not well characterised. Previous studies point to relationships between cortical thickness and cognitive performance in fronto-temporal brain regions in schizophrenia patients (SZH). There is also evidence that these relationships might be independent of symptom severity, suggesting dissociable disease processes. We set out to explore these possibilities in a sample of 70 SZH and 72 age and gender-matched healthy controls (provided by the Center of Biomedical Research Excellence (COBRE)). Cortical thickness within fronto-temporal regions implicated by previous work was considered in relation to performance across various cognitive domains (from the MATRICS Cognitive Battery). Compared to controls, SZH had thinner cortices across most fronto-temporal regions and significantly lower performance on all cognitive domains. Robust relationships with cortical thickness were found: visual learning and attention performance correlated with bilateral superior and middle frontal thickness in SZH only. Correlations between attention performance and right transverse temporal thickness were also specific to SZH. Findings point to the importance of these regions for cognitive performance in SZH, possibly reflecting compensatory processes and/or aberrant connectivity. No links to symptom severity were observed in these regions, suggesting these relationships are dissociable from underlying psychotic symptomology. Findings enhance understanding of the brain structural underpinnings and possible aetiology of cognitive impairment in SZH.
Collapse
Affiliation(s)
- Erkan Alkan
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Geoff Davies
- Brighton & Sussex Medical School/Sussex Partnership NHS Foundation Trust, Sussex, UK
| | - Simon L Evans
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
11
|
Chang CC, Lin YY, Tzeng NS, Kao YC, Chang HA. Adjunct high-frequency transcranial random noise stimulation over the lateral prefrontal cortex improves negative symptoms of schizophrenia: A randomized, double-blind, sham-controlled pilot study. J Psychiatr Res 2021; 132:151-160. [PMID: 33096356 DOI: 10.1016/j.jpsychires.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
High-frequency transcranial random noise stimulation (hf-tRNS) is a non-invasive neuromodulatory technique capable of increasing human cortex excitability. There were only published case reports on the use of hf-tRNS targeting the lateral prefrontal cortex in treating negative symptoms of schizophrenia, thus necessitating systematic investigation. We designed a randomized, double-blind, sham-controlled trial in a cohort of stabilized schizophrenia patients to examine the efficacy of add-on hf-tRNS (100-640 Hz; 2 mA; 20 min) using a high definition 4 × 1 electrode montage (anode AF3, cathodes AF4, F2, F6, and FC4) in treating negative symptoms (ClinicalTrials.gov ID: NCT04038788). Participants received either active hf-tRNS or sham twice daily for 5 consecutive weekdays. Primary outcome measure was the change over time in the Positive and Negative Syndrome Scale Factor Score for Negative Symptoms (PANSS-FSNS), which was measured at baseline, after 10-session stimulation, and at one-week and one-month follow-ups. Among 36 randomized patients, 35 (97.2%) completed the trial. Intention-to-treat analysis showed a significantly greater decrease in PANSS-FSNS score after active (-17.11%) than after sham stimulation (-1.68%), with a large effect size (Cohen's d = 2.16, p < 0.001). The beneficial effect lasted for up to one month. In secondary-outcome analyses, the authors observed improvements with hf-tRNS of disorganization symptoms, unawareness of negative symptoms, subjective response to taking antipsychotics, and antipsychotic-induced extrapyramidal symptoms. No effects were observed on the neurocognitive performance and other outcome measures. Overall, hf-tRNS was safe and efficacious in improving negative symptoms. Our promising findings should be confirmed in a larger sample of patients with predominant negative symptoms.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
12
|
Li C, Liu W, Guo F, Wang X, Kang X, Xu Y, Xi Y, Wang H, Zhu Y, Yin H. Voxel-based morphometry results in first-episode schizophrenia: a comparison of publicly available software packages. Brain Imaging Behav 2019; 14:2224-2231. [PMID: 31377989 DOI: 10.1007/s11682-019-00172-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Investigations of brain structure in schizophrenia using magnetic resonance imaging (MRI) have identified variations in regional grey matter (GM) volume throughout the brain but the results are mixed. This study aims to investigate whether the inconsistent voxel-based morphometry (VBM) findings in schizophrenia are due to the use of different software packages. T1 MRI images were obtained from 86 first-episode schizophrenia (FESZ) patients and 86 age- and gender-matched Healthy controls (HCs). VBM analysis was carried out using FMRIB software library (FSL) 5.0 and statistical parametric mapping 8 (SPM8). All images were processed using the default parameter settings as provided by these software packages. FSL-VBM revealed widespread GM volume reductions in FESZ patients compared with HCs, however, for SPM-VBM, only increased and circumscribed GM volume changes were found, both software revealed increased GM volume within cerebellum. Significant correlations between Positive and Negative Syndrome Scale (PANSS) and GM volume were mainly found in frontal regions. Algorithms of GM tissue segmentation, image registration and statistical strategies might contribute to these disparate results.
Collapse
Affiliation(s)
- Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Xingrui Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Xiaowei Kang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Yongqiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Yibin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
13
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
14
|
Iwashiro N, Takano Y, Natsubori T, Aoki Y, Yahata N, Gonoi W, Kunimatsu A, Abe O, Kasai K, Yamasue H. Aberrant attentive and inattentive brain activity to auditory negative words, and its relation to persecutory delusion in patients with schizophrenia. Neuropsychiatr Dis Treat 2019; 15:491-502. [PMID: 30858706 PMCID: PMC6387602 DOI: 10.2147/ndt.s194353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous research has suggested that deficits in emotion recognition are involved in the pathogenesis of persecutory delusion in schizophrenia. Although disruption in auditory and language processing is crucial in the pathophysiology of schizophrenia, the neural basis for the deficits in emotion recognition of auditorily presented language stimuli and its relation to persecutory delusion have not yet been clarified. PATIENTS AND METHODS The current functional magnetic resonance imaging study used a dichotic listening task for 15 patients with schizophrenia and 23 healthy controls matched for age, sex, parental socioeconomic background, handedness, dexterous ear, and intelligence quotient. The participants completed a word recognition task on the attended side in which a word with emotionally valenced content (negative/neutral) was presented to one ear and a different neutral word was presented to the other ear. Participants selectively attended to either ear. RESULTS The whole brain analysis detected the aberrant neural activity in the right inferior frontal gyrus in the patients with schizophrenia compared to that in the controls (P<0.05, false discovery rate-corrected). Brain activity in the right pars triangularis of the inferior frontal gyrus was significantly reduced when negatively valenced words were presented to the right ear, whereas the activity of the same region was significantly enhanced when these words were presented to the left ear, irrespective of the attended ear, in the participants with schizophrenia compared to the controls. Furthermore, this diminished brain response to auditorily presented negatively valenced words significantly correlated with severe positive symptoms (r=-0.67, P=0.006) and delusional behavior (r=-0.62, P=0.014) in the patients with schizophrenia. CONCLUSION The present results indicate that the significantly impaired brain activity in response to auditorily presented negatively valenced words in the right pars triangularis of the inferior frontal gyrus is associated with the pathogenesis of positive symptoms such as persecutory delusion.
Collapse
Affiliation(s)
- Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Yosuke Takano
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-city, Chiba, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Akira Kunimatsu
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu City, Japan,
| |
Collapse
|
15
|
Takano Y, Aoki Y, Yahata N, Kawakubo Y, Inoue H, Iwashiro N, Natsubori T, Koike S, Gonoi W, Sasaki H, Takao H, Kasai K, Yamasue H. Neural basis for inferring false beliefs and social emotions in others among individuals with schizophrenia and those at ultra-high risk for psychosis. Psychiatry Res Neuroimaging 2017; 259:34-41. [PMID: 27960147 DOI: 10.1016/j.pscychresns.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 11/12/2016] [Accepted: 11/20/2016] [Indexed: 01/14/2023]
Abstract
Inferring beliefs and social emotions of others has different neural substrates and possibly different roles in the pathophysiology of different clinical phases of schizophrenia. The current study investigated the neural basis for inferring others' beliefs and social emotions, as individual concepts, in 17 subjects at ultra-high risk for psychosis (UHR), 16 patients with schizophrenia and 20 healthy controls. Brain activity significantly differed from normal in both the left superior temporal sulcus (STS) and the inferior frontal gyrus (IFG) in the schizophrenia group while inferring others' beliefs, whereas those of UHR group were in the middle of those in the schizophrenia and healthy-control groups. Brain activity during inferring others' social emotions significantly differed in both the left STS and right IFG among individuals at UHR; however, there was no significant difference in the schizophrenia group. In contrast, brain activity differed in the left IFG of those in both the schizophrenia and UHR groups while inferring social emotion. Regarding the difference in direction of the abnormality, both the UHR and schizophrenia groups were characterized by hyper-STS and hypo-IFG activations when inferring others' beliefs and emotions. These findings might reflect different aspects of the same pathophysiological process at different clinical phases of psychosis.
Collapse
Affiliation(s)
- Yosuke Takano
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; The Child Study Center at NYU Langone Medical Center, One Park Avenue, New York, NY 10016, USA
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroki Sasaki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan.
| |
Collapse
|
16
|
Rominger C, Bleier A, Fitz W, Marksteiner J, Fink A, Papousek I, Weiss EM. Auditory top-down control and affective theory of mind in schizophrenia with and without hallucinations. Schizophr Res 2016; 174:192-196. [PMID: 27197903 DOI: 10.1016/j.schres.2016.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022]
Abstract
Social cognitive impairments may represent a core feature of schizophrenia and above all are a strong predictor of positive psychotic symptoms. Previous studies could show that reduced inhibitory top-down control contributes to deficits in theory of mind abilities and is involved in the genesis of hallucinations. The current study aimed to investigate the relationship between auditory inhibition, affective theory of mind and the experience of hallucinations in patients with schizophrenia. In the present study, 20 in-patients with schizophrenia and 20 healthy controls completed a social cognition task (the Reading the Mind in the Eyes Test) and an inhibitory top-down Dichotic Listening Test. Schizophrenia patients with greater severity of hallucinations showed impaired affective theory of mind as well as impaired inhibitory top-down control. More dysfunctional top-down inhibition was associated with poorer affective theory of mind performance, and seemed to mediate the association between impairment to affective theory of mind and severity of hallucinations. The findings support the idea of impaired theory of mind as a trait marker of schizophrenia. In addition, dysfunctional top-down inhibition may give rise to hallucinations and may further impair affective theory of mind skills in schizophrenia.
Collapse
Affiliation(s)
- Christian Rominger
- Department of Psychology, Biological Psychology Unit, University of Graz, Austria
| | - Angelika Bleier
- Department of Psychology, Biological Psychology Unit, University of Graz, Austria
| | - Werner Fitz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | | | - Andreas Fink
- Department of Psychology, Biological Psychology Unit, University of Graz, Austria
| | - Ilona Papousek
- Department of Psychology, Biological Psychology Unit, University of Graz, Austria
| | - Elisabeth M Weiss
- Department of Psychology, Biological Psychology Unit, University of Graz, Austria.
| |
Collapse
|
17
|
Iwashiro N, Koike S, Satomura Y, Suga M, Nagai T, Natsubori T, Tada M, Gonoi W, Takizawa R, Kunimatsu A, Yamasue H, Kasai K. Association between impaired brain activity and volume at the sub-region of Broca's area in ultra-high risk and first-episode schizophrenia: A multi-modal neuroimaging study. Schizophr Res 2016; 172:9-15. [PMID: 26873807 DOI: 10.1016/j.schres.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
Recent studies have suggested that functional abnormalities in Broca's area, which is important in language production (speech and thoughts before speech), play an important role in the pathophysiology of schizophrenia. While multi-modal approaches have proved useful in revealing the specific pathophysiology of psychosis, the association of functional abnormalities with gray matter volume (GMV) here in subjects with an ultra-high risk (UHR) of schizophrenia, those with first-episode schizophrenia (FES), and healthy controls has yet to be clarified. Therefore, the relationship between cortical activity measured using functional near-infrared spectroscopy (fNIRS) during a verbal fluency task, and GMV in the Broca's area assessed using a manual tracing in magnetic resonance imaging (MRI), which considers individual structural variation, was examined for 57 subjects (23 UHR/18 FES/16 controls). The UHR and FES group showed significantly reduced brain activity compared to control group in the left pars triangularis (PT) (P=.036, .003, respectively). Furthermore in the FES group, the reduced brain activity significantly positively correlated with the volume in the left PT (B=0.29, P=.027), while significant negative association was evident for all subjects (B=-0.18, P=.010). This correlation remained significant after adjusting for antipsychotics dosage, and voxel-wise analysis could not detect any significant correlation between impaired cortical activity and volume. The significant relationship between neural activity and GMV in the left PT may reflect a specific pathophysiology related to the onset of schizophrenia.
Collapse
Affiliation(s)
- Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Motomu Suga
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsuya Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Kunimatsu
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; JST, National Bioscience Database Center (NBDC), 5-3, Yonbancho, Chiyoda-ku, Tokyo 102-0081, Japan
| |
Collapse
|
18
|
Brun L, Auzias G, Viellard M, Villeneuve N, Girard N, Poinso F, Da Fonseca D, Deruelle C. Localized Misfolding Within Broca's Area as a Distinctive Feature of Autistic Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2015; 1:160-168. [PMID: 29560874 DOI: 10.1016/j.bpsc.2015.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent neuroimaging studies suggest that autism spectrum disorder results from abnormalities in the cortical folding pattern. Usual morphometric measurements have failed to provide reliable neuroanatomic markers. Here, we propose that sulcal pits, which are the deepest points in each fold, are suitable candidates to uncover this atypical cortical folding. METHODS Sulcal pits were extracted from a magnetic resonance imaging database of 102 children (1.5-10 years old) distributed in three groups: children with autistic disorder (n = 59), typically developing children (n = 22), and children with pervasive developmental disorder not otherwise specified (n = 21). The geometrical properties of sulcal pits were compared between these three groups. RESULTS Fold-level analyses revealed a reduced pit depth in the left ascending ramus of the Sylvian fissure in children with autistic disorder only. The depth of this central fold of Broca's area was correlated with the social communication impairments that are characteristic of the pathology. CONCLUSIONS Our findings support an atypical gyrogenesis of this specific fold in autistic disorder that could be used for differential diagnosis. Sulcal pits constitute valuable markers of the cortical folding dynamics and could help for the early detection of atypical brain maturation.
Collapse
Affiliation(s)
- Lucile Brun
- Institut de Neurosciences de la Timone, Unite Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, Unite Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Marine Viellard
- Institut de Neurosciences de la Timone, Unite Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France; Centre de Ressource Autisme, Service de Pédopsychiatrie, Assistance Publique-Hôpitaux de Marseille, Hôpital Ste Marguerite, Marseille, France
| | - Nathalie Villeneuve
- Centre de Ressource Autisme, Service de Pédopsychiatrie, Assistance Publique-Hôpitaux de Marseille, Hôpital Ste Marguerite, Marseille, France
| | - Nadine Girard
- Centre de Résonance Magnétique Biologique et Médicale, Unite Mixte de Recherche 7339, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France; Assistance Publique-Hôpitaux de Marseille Timone, Service de Neuroradiologie Diagnostique et Interventionnelle, Marseille, France
| | - François Poinso
- Institut de Neurosciences de la Timone, Unite Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France; Centre de Ressource Autisme, Service de Pédopsychiatrie, Assistance Publique-Hôpitaux de Marseille, Hôpital Ste Marguerite, Marseille, France
| | - David Da Fonseca
- Institut de Neurosciences de la Timone, Unite Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France; Service de Pédopsychiatrie, Assistance Publique-Hôpitaux de Marseille, Hôpital Salvator, Marseille, France
| | - Christine Deruelle
- Institut de Neurosciences de la Timone, Unite Mixte de Recherche 7289, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.
| |
Collapse
|
19
|
Palaniyappan L, Mahmood J, Balain V, Mougin O, Gowland PA, Liddle PF. Structural correlates of formal thought disorder in schizophrenia: An ultra-high field multivariate morphometry study. Schizophr Res 2015; 168:305-12. [PMID: 26232240 PMCID: PMC4604249 DOI: 10.1016/j.schres.2015.07.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/28/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Persistent formal thought disorder (FTD) is one of the most characteristic features of schizophrenia. Several neuroimaging studies report spatially distinct neuroanatomical changes in association with FTD. Given that most studies so far have employed a univariate localisation approach that obscures the study of covarying interregional relationships, the present study focussed on the multivariate systemic pattern of anatomical changes that contribute to FTD. METHODS Speech samples from nineteen medicated clinically stable schizophrenia patients and 20 healthy controls were evaluated for subtle formal thought disorder. Ultra high-field (7T) anatomical Magnetic Resonance Imaging scans were obtained from all subjects. Multivariate morphometric patterns were identified using an independent component approach (source based morphometry). Using multiple regression analysis, the morphometric patterns predicting positive and negative FTD scores were identified. RESULTS Morphometric variations in grey matter predicted a substantial portion of inter-individual variance in negative but not positive FTD. A pattern of concomitant striato-insular/precuneus reduction along with frontocingular grey matter increase had a significant association with negative FTD. CONCLUSIONS These results suggest that concomitant increase and decrease in grey matter occur in association with persistent negative thought disorder in clinically stable individuals with schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Translational Neuroimaging for Mental Health, Division of Psychiatry & Applied Psychology, Institute of Mental Health, University of Nottingham, UK; Early Intervention in Psychosis, Nottinghamshire Healthcare NHS Trust, Nottingham, UK.
| | - Jenaid Mahmood
- Translational Neuroimaging for Mental Health, Division of Psychiatry & Applied Psychology, Institute of Mental Health, University of Nottingham, UK
| | - Vijender Balain
- Penticton Regional Hospital, Penticton, British Columbia, Canada
| | - Olivier Mougin
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics, University of Nottingham, UK
| | - Penny A. Gowland
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics, University of Nottingham, UK
| | - Peter F. Liddle
- Translational Neuroimaging for Mental Health, Division of Psychiatry & Applied Psychology, Institute of Mental Health, University of Nottingham, UK
| |
Collapse
|
20
|
Gao B, Wang Y, Liu W, Chen Z, Zhou H, Yang J, Cohen Z, Zhu Y, Zang Y. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study. PLoS One 2015. [PMID: 26204264 PMCID: PMC4512714 DOI: 10.1371/journal.pone.0133766] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI) scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS) and Characteristics of Delusional Rating Scale (CDRS). Regional homogeneity (ReHo) was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients’ CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.
Collapse
Affiliation(s)
- Bin Gao
- Department of Psychiatry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yiquan Wang
- Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, PR China; Mental Health Center, School of Medicine, Zhe Jiang University, Hangzhou, Zhejiang, PR China
| | - Weibo Liu
- Department of Psychiatry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zhiyu Chen
- Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, PR China
| | - Heshan Zhou
- Hangzhou First People's Hospital, Hangzhou, Zhejiang, PR China
| | - Jinyu Yang
- Department of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zachary Cohen
- Alpert Medical School of Brown University, Richmond St., Providence, RI, United States of America
| | - Yihong Zhu
- Department of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Mental Health Education and Counseling Center, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, PR China
| |
Collapse
|
21
|
Padmanabhan JL, Tandon N, Haller CS, Mathew IT, Eack SM, Clementz BA, Pearlson GD, Sweeney JA, Tamminga CA, Keshavan MS. Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders. Schizophr Bull 2015; 41:154-162. [PMID: 24907239 PMCID: PMC4266291 DOI: 10.1093/schbul/sbu075] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Structural alterations may correlate with symptom severity in psychotic disorders, but the existing literature on this issue is heterogeneous. In addition, it is not known how cortical thickness and cortical surface area correlate with symptom dimensions of psychosis. METHODS Subjects included 455 individuals with schizophrenia, schizoaffective, or bipolar I disorders. Data were obtained as part of the Bipolar Schizophrenia Network for Intermediate Phenotypes study. Diagnosis was made through the Structured Clinical Interview for DSM-IV. Positive and negative symptom subscales were assessed using the Positive and Negative Syndrome Scale. Structural brain measurements were extracted from T1-weight structural MRIs using FreeSurfer v5.1 and were correlated with symptom subscales using partial correlations. Exploratory factor analysis was also used to identify factors among those regions correlating with symptom subscales. RESULTS The positive symptom subscale correlated inversely with gray matter volume (GMV) and cortical thickness in frontal and temporal regions, whereas the negative symptom subscale correlated inversely with right frontal cortical surface area. Among regions correlating with the positive subscale, factor analysis identified four factors, including a temporal cortical thickness factor and frontal GMV factor. Among regions correlating with the negative subscale, factor analysis identified a frontal GMV-cortical surface area factor. There was no significant diagnosis by structure interactions with symptom severity. CONCLUSIONS Structural measures correlate with positive and negative symptom severity in psychotic disorders. Cortical thickness demonstrated more associations with psychopathology than cortical surface area.
Collapse
Affiliation(s)
- Jaya L Padmanabhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center , Boston, MA; Division of Public Psychiatry, Massachusetts Mental Health Center , Boston, MA
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center , Boston, MA; Division of Public Psychiatry, Massachusetts Mental Health Center , Boston, MA
| | | | - Ian T Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center , Boston, MA; Division of Public Psychiatry, Massachusetts Mental Health Center , Boston, MA
| | - Shaun M Eack
- School of Social Work, Psychiatry, and Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA; Western Psychiatric Institute and Clinic, Pittsburgh, PA
| | - Brett A Clementz
- Departments of Psychiatry and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT; Olin Neuropsychiatry Research Center, Hartford Hospital/Institute of Living, Hartford, CT
| | - John A Sweeney
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL; Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center , Boston, MA; Division of Public Psychiatry, Massachusetts Mental Health Center , Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA;
| |
Collapse
|
22
|
Shepherd AM, Quidé Y, Laurens KR, O’Reilly N, Rowland JE, Mitchell PB, Carr VJ, Green MJ. Shared intermediate phenotypes for schizophrenia and bipolar disorder: neuroanatomical features of subtypes distinguished by executive dysfunction. J Psychiatry Neurosci 2015; 40:58-68. [PMID: 25268788 PMCID: PMC4275333 DOI: 10.1503/jpn.130283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Shared genetic vulnerability for schizophrenia and bipolar disorder may be associated with common neuroanatomical features. In view of the evidence for working memory dysfunction as a candidate intermediate phenotype for both disorders, we explored neuroanatomical distinctions between subtypes defined according to working memory (n-back task) performance. METHODS We analyzed T1-weighted MRI scans for patients with schizophrenia-spectrum disorder, bipolar-I disorder (BD-I) and healthy controls. The VBM8 toolbox was used to assess differences in grey and white matter volume across traditional diagnostic groups (schizophrenia v. BD-I). Subsequently, groups were defined as "executively spared" (ES) based on the achievement of greater than 50% accuracy in the 2-back task performance (comparable to performance in the control group) or "executively deficit" (ED) based on the achievement of less than 50% accuracy. RESULTS Our study included 40 patients with schizophrenia-spectrum disorders, 30 patients with BD-I and 34 controls. Both the schizophrenia and BD-I groups showed grey matter volume reductions relative to the control group, but not relative to each other. The ED subtype (n = 32 [10 BD-I, 22 schizophrenia]) showed grey matter volume reductions in the bilateral superior and medial frontal gyri, right inferior opercular gyri and hippocampus relative to controls. The ES subtype (n = 38 [20 BD-I, 18 schizophrenia]) showed grey matter volume reductions in the right precuneus and left superior and medial orbital frontal gyri relative to controls. The ED subtype showed grey matter volume reduction in the right inferior frontal and precentral gyri relative to the ES subtype. There were no significant differences in white matter volume in any group comparisons. LIMITATIONS This analysis was limited by small sample sizes. Further, insufficient numbers were available to assess a control-deficit comparison group. We were unable to assess the effects of mood stabilizer dose on brain structure. CONCLUSION Neuroanatomical commonalities are evident among patients with schizophrenia-spectrum disorders and BD-I with working memory deficits. Reduced inferior frontal lobe volume may mediate cognitive deficits shared across the psychosis-mood spectrum.
Collapse
Affiliation(s)
- Alana M. Shepherd
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Kristin R. Laurens
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Nicole O’Reilly
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Jesseca E. Rowland
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| |
Collapse
|
23
|
Chen Z, Deng W, Gong Q, Huang C, Jiang L, Li M, He Z, Wang Q, Ma X, Wang Y, Chua SE, McAlonan GM, Sham PC, Collier DA, McGuire P, Li T. Extensive brain structural network abnormality in first-episode treatment-naive patients with schizophrenia: morphometrical and covariation study. Psychol Med 2014; 44:2489-2501. [PMID: 24443827 DOI: 10.1017/s003329171300319x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alterations in gray matter (GM) are commonly observed in schizophrenia. Accumulating studies suggest that the brain changes associated with schizophrenia are distributed rather than focal, involving interconnected networks of areas as opposed to single regions. In the current study we aimed to explore GM volume (GMV) changes in a relatively large sample of treatment-naive first-episode schizophrenia (FES) patients using optimized voxel-based morphometry (VBM) and covariation analysis. METHOD High-resolution T1-weighted images were obtained using 3.0-T magnetic resonance imaging (MRI) from 86 first-episode drug-naive patients with schizophrenia and 86 age- and gender-matched healthy volunteers. Symptom severity was evaluated using the Positive and Negative Syndrome Scale (PANSS). GMV was assessed using optimized VBM and in 16 regions of interest (ROIs), selected on the basis of a previous meta-analysis. The relationships between GMVs in the ROIs were examined using an analysis of covariance (ANCOVA). RESULTS The VBM analysis revealed that first-episode patients showed reduced GMV in the hippocampus bilaterally. The ROI analysis identified reductions in GMV in the left inferior frontal gyrus, bilateral hippocampus and right thalamus. The ANCOVA revealed different patterns of regional GMV correlations in patients and controls, including of inter- and intra-insula, inter-amygdala and insula-postcentral gyrus connections. CONCLUSIONS Schizophrenia involves regional reductions in GMV and changes in GMV covariance in the insula, amygdala and postcentral gyrus. These findings were evident at the onset of the disorder, before treatment, and therefore cannot be attributable to the effects of chronic illness progression or medication.
Collapse
Affiliation(s)
- Z Chen
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - W Deng
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Q Gong
- Huaxi MR Research Center, Department of Radiology,West China Hospital, Sichuan University,Chengdu,China
| | - C Huang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - L Jiang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - M Li
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Z He
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Q Wang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - X Ma
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Y Wang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - S E Chua
- Department of Psychiatry,The University of Hong Kong,Pokfulam,S.A.R. China
| | - G M McAlonan
- Department of Psychiatry,The University of Hong Kong,Pokfulam,S.A.R. China
| | - P C Sham
- Department of Psychiatry,The University of Hong Kong,Pokfulam,S.A.R. China
| | - D A Collier
- MRC SGDP Centre, Institute of Psychiatry,King's College London,UK
| | - P McGuire
- Division of Psychological Medicine and Psychiatry, Section of Neuroimaging,Institute of Psychiatry, King's College London,UK
| | - T Li
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| |
Collapse
|
24
|
Natsubori T, Hashimoto RI, Yahata N, Inoue H, Takano Y, Iwashiro N, Koike S, Gonoi W, Sasaki H, Takao H, Abe O, Kasai K, Yamasue H. An fMRI study of visual lexical decision in patients with schizophrenia and clinical high-risk individuals. Schizophr Res 2014; 157:218-224. [PMID: 24893907 DOI: 10.1016/j.schres.2014.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022]
Abstract
Disturbances in semantic and phonological aspects of language processing are indicated in patients with schizophrenia, and in high-risk individuals for schizophrenia. To uncover neural correlates of the disturbances, a previous functional magnetic resonance imaging (fMRI) study using a visual lexical decision task in block design reported less leftward lateralization in the inferior frontal cortices, in patients with schizophrenia and individuals with high genetic risk for psychosis compared with normal control subjects. However, to our knowledge, no previous study has investigated contrasts between word and non-word processing that allow dissociation between semantic and phonological processing using event-related design visual lexical decision fMRI tasks in subjects with ultra-high-risk for psychosis (UHR) and patients with schizophrenia. In the current study, 20 patients with schizophrenia, 11 UHR, and 20 demographically matched controls underwent lexical decision fMRI tasks. Compared with controls, both schizophrenia and UHR groups showed significantly decreased activity in response to non-words compared with words in the inferior frontal regions. Additionally, decreased leftward lateralization in the non-word compared with word activity contrast was found in subjects with UHR compared with controls, which was not evident in patients with schizophrenia. The present findings suggest neural correlates of difficulty in phonological aspects of language processing during non-word processing in contrast to word, which at least partially commonly underlies the pathophysiology of schizophrenia and UHR. Together with a previous study in genetic high-risk subjects, the current results also suggest that reduced functional lateralization in the language-related frontal cortex may be a vulnerability marker for schizophrenia. Furthermore, the current result may suggest that the genetic basis of psychosis is presumed to be related to the evolution of the language capacity characteristic of humans.
Collapse
Affiliation(s)
- Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryu-Ichiro Hashimoto
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0364, Japan
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yosuke Takano
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroki Sasaki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchi kami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
25
|
Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW, Sonntag KC, Woo TUW. Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014; 28:53-69. [PMID: 24702465 PMCID: PMC4196521 DOI: 10.3109/01677063.2014.882918] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
Disrupted synchronized oscillatory firing of pyramidal neuronal networks in the cerebral cortex in the gamma frequency band (i.e., 30-100 Hz) mediates many of the cognitive deficits and symptoms of schizophrenia. In fact, the density of dendritic spines and the average somal area of pyramidal neurons in layer 3 of the cerebral cortex, which mediate both long-range (associational) and local (intrinsic) corticocortical connections, are decreased in subjects with this illness. To explore the molecular pathophysiology of pyramidal neuronal dysfunction, we extracted ribonucleic acid (RNA) from laser-captured pyramidal neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem brains from schizophrenia and normal control subjects. We then profiled the messenger RNA (mRNA) expression of these neurons, using microarray technology. We identified 1331 mRNAs that were differentially expressed in schizophrenia, including genes that belong to the transforming growth factor beta (TGF-β) and the bone morphogenetic proteins (BMPs) signaling pathways. Disturbances of these signaling mechanisms may in part contribute to the altered expression of other genes found to be differentially expressed in this study, such as those that regulate extracellular matrix (ECM), apoptosis, and cytoskeletal and synaptic plasticity. In addition, we identified 10 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of their predicted gene targets revealed signaling pathways and gene networks that were found by microarray to be dysregulated, raising an interesting possibility that dysfunction of pyramidal neurons in schizophrenia may in part be mediated by a concerted dysregulation of gene network functions as a result of the altered expression of a relatively small number of miRNAs. Taken together, findings of this study provide a neurobiological framework within which specific hypotheses about the molecular mechanisms of pyramidal cell dysfunction in schizophrenia can be formulated.
Collapse
Affiliation(s)
- Charmaine Y. Pietersen
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Susie S. Kim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Maribel P. Lim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Tracey L. Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martha E. Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert W. McCarley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, Massachusetts, USA
| | - Kai-C. Sonntag
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Iwashiro N, Yahata N, Kawamuro Y, Kasai K, Yamasue H. Aberrant interference of auditory negative words on attention in patients with schizophrenia. PLoS One 2013; 8:e83201. [PMID: 24376662 PMCID: PMC3871545 DOI: 10.1371/journal.pone.0083201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
Previous research suggests that deficits in attention-emotion interaction are implicated in schizophrenia symptoms. Although disruption in auditory processing is crucial in the pathophysiology of schizophrenia, deficits in interaction between emotional processing of auditorily presented language stimuli and auditory attention have not yet been clarified. To address this issue, the current study used a dichotic listening task to examine 22 patients with schizophrenia and 24 age-, sex-, parental socioeconomic background-, handedness-, dexterous ear-, and intelligence quotient-matched healthy controls. The participants completed a word recognition task on the attended side in which a word with emotionally valenced content (negative/positive/neutral) was presented to one ear and a different neutral word was presented to the other ear. Participants selectively attended to either ear. In the control subjects, presentation of negative but not positive word stimuli provoked a significantly prolonged reaction time compared with presentation of neutral word stimuli. This interference effect for negative words existed whether or not subjects directed attention to the negative words. This interference effect was significantly smaller in the patients with schizophrenia than in the healthy controls. Furthermore, the smaller interference effect was significantly correlated with severe positive symptoms and delusional behavior in the patients with schizophrenia. The present findings suggest that aberrant interaction between semantic processing of negative emotional content and auditory attention plays a role in production of positive symptoms in schizophrenia. (224 words).
Collapse
Affiliation(s)
- Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (NI); (HY)
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Global Center of Excellence (COE) Program, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yu Kawamuro
- Takada-Nishishiro Hospital, Jyoetsu-shi, Niigata, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- JST, National Bioscience Database Center (NBDC), Chiyoda-ku, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (NI); (HY)
| |
Collapse
|
27
|
Temporal lobe and inferior frontal gyrus dysfunction in patients with schizophrenia during face-to-face conversation: a near-infrared spectroscopy study. J Psychiatr Res 2013; 47:1581-9. [PMID: 23978395 DOI: 10.1016/j.jpsychires.2013.07.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SC) is marked by poor social-role performance and social-skill deficits that are well reflected in daily conversation. Although the mechanism underlying these impairments has been investigated by functional neuroimaging, technical limitations have prevented the investigation of brain activation during conversation in typical clinical situations. To fill this research gap, this study investigated and compared frontal and temporal lobe activation in patients with SC during face-to-face conversation. Frontal and temporal lobe activation in 29 patients and 31 normal controls (NC) (n = 60) were measured during 180-s conversation periods by using near-infrared spectroscopy (NIRS). The grand average values of oxyhemoglobin concentration ([oxy-Hb]) changes during task performance were analyzed to determine their correlation with clinical variables and Positive and Negative Syndrome Scale (PANSS) subscores. Compared to NCs, patients with SC exhibited decreased performance in the conversation task and decreased activation in both the temporal lobes and the right inferior frontal gyrus (IFG) during task performance, as indicated by the grand average of [oxy-Hb] changes. The decreased activation in the left temporal lobe was negatively correlated with the PANSS disorganization and negative symptoms subscores and that in the right IFG was negatively correlated with illness duration, PANSS disorganization, and negative symptom subscores. These findings indicate that brain dysfunction in SC during conversation is related to functional deficits in both the temporal lobes and the right IFG and manifests primarily in the form of disorganized thinking and negative symptomatology.
Collapse
|
28
|
Aoki Y, Orikabe L, Takayanagi Y, Yahata N, Mozue Y, Sudo Y, Ishii T, Itokawa M, Suzuki M, Kurachi M, Okazaki Y, Kasai K, Yamasue H. Volume reductions in frontopolar and left perisylvian cortices in methamphetamine induced psychosis. Schizophr Res 2013; 147:355-61. [PMID: 23688384 DOI: 10.1016/j.schres.2013.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Consumption of methamphetamine disturbs dopaminergic transmission and sometimes provokes schizophrenia-like-psychosis, named methamphetamine-associated psychosis (MAP). While previous studies have repeatedly reported regional volume reductions in the frontal and temporal areas as neuroanatomical substrates for psychotic symptoms, no study has examined whether such neuroanatomical substrates exist or not in patients with MAP. Magnetic resonance images obtained from twenty patients with MAP and 20 demographically-matched healthy controls (HC) were processed for voxel-based morphometry (VBM) using Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra. An analysis of covariance model was adopted to identify volume differences between subjects with MAP and HC, treating intracranial volume as a confounding covariate. The VBM analyses showed significant gray matter volume reductions in the left perisylvian structures, such as the posterior inferior frontal gyrus and the anterior superior temporal gyrus, and the frontopolar cortices, including its dorsomedial, ventromedial, dorsolateral, and ventrolateral portions, and white matter volume reduction in the orbitofrontal area in the patients with MAP compared with the HC subjects. The smaller regional gray matter volume in the medial portion of the frontopolar cortex was significantly correlated with the severe positive symptoms in the individuals with MAP. The volume reductions in the left perisylvian structure suggest that patients with MAP have a similar pathophysiology to schizophrenia, whereas those in the frontopolar cortices and orbitofrontal area suggest an association with antisocial traits or vulnerability to substance dependence.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging. Brain Struct Funct 2013; 219:1-22. [DOI: 10.1007/s00429-013-0527-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023]
|
30
|
Koike S, Takano Y, Iwashiro N, Satomura Y, Suga M, Nagai T, Natsubori T, Tada M, Nishimura Y, Yamasaki S, Takizawa R, Yahata N, Araki T, Yamasue H, Kasai K. A multimodal approach to investigate biomarkers for psychosis in a clinical setting: the integrative neuroimaging studies in schizophrenia targeting for early intervention and prevention (IN-STEP) project. Schizophr Res 2013; 143:116-24. [PMID: 23219075 DOI: 10.1016/j.schres.2012.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/29/2012] [Accepted: 11/12/2012] [Indexed: 12/23/2022]
Abstract
Longitudinal clinical investigations and biological measurements have determined not only progressive brain volumetric and functional changes especially around the onset of psychosis but also the abnormality of developmental pathways based on gene-environment interaction model. However, these studies have contributed little to clinical decisions on their diagnosis and therapeutic choices because of subtle differences between patients and healthy controls. A multi-modal approach may resolve this limitation and is favorable to explore the pathophysiology of psychosis. The integrative neuroimaging studies for schizophrenia targeting early intervention and prevention (IN-STEP) is a research project aimed at exploring the pathophysiological features of the onset of psychosis and investigating possible predictive biomarkers for the clinical treatment of psychosis. Since 2008, we have adopted blood sampling, neurocognitive batteries, neurophysiological assessment, structural imaging, and functional imaging longitudinally for help-seeking ultra-high-risk (UHR) individuals and patients with first-episode psychosis (FEP). Here, we intend to introduce the IN-STEP research study protocol and present preliminary clinical findings. Thirty-seven UHR individuals and 30 patients with FEP participated in this study. Six months later, there was no difference in objective and subjective scores between the groups, which suggests that young people having symptoms and functional deficits should be cared for regardless of their history of psychosis according to their clinical stages. The rate of transition to psychosis was 7.1%, 8.0%, and 35.3% (at 6, 12, and 24months, respectively). Through this research project, we expect to clarify the pathophysiological features around the onset of psychosis and improve the prognosis of psychosis through clinical application.
Collapse
Affiliation(s)
- Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Iwashiro N, Suga M, Takano Y, Inoue H, Natsubori T, Satomura Y, Koike S, Yahata N, Murakami M, Katsura M, Gonoi W, Sasaki H, Takao H, Abe O, Kasai K, Yamasue H. Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia. Schizophr Res 2012; 137:124-131. [PMID: 22425035 DOI: 10.1016/j.schres.2012.02.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/06/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested an important role for Broca's region and its right hemisphere counterpart in the pathophysiology of schizophrenia, owing to its roles in language and interpersonal information processing. Broca's region consists of the pars opercularis (PO) and the pars triangularis (PT). Neuroimaging studies have suggested that they have differential functional roles in healthy individuals and contribute differentially to the pathogenesis of schizophrenic symptoms. However, volume changes in these regions in subjects with ultra-high risk for psychosis (UHR) or first-episode schizophrenia (FES) have not been clarified. In the present 3 Tesla magnetic resonance imaging study, we separately measured the gray matter volumes of the PO and PT using a reliable manual-tracing volumetry in 80 participants (20 with UHR, 20 with FES, and 40 matched controls). The controls constituted two groups: the first group was matched for age, sex, parental socioeconomic background, and intelligence quotient to UHR (n=20); the second was matched for those to FES (n=20). Compared with matched controls, the volume of the bilateral PT, but not that of the PO, was significantly reduced in the subjects with UHR and FES. The reduced right PT volume, which showed the largest effect size among regions-of-interest in the both UHR and FES groups, correlated with the severity of the positive symptoms also in the both groups. These results suggest that localized gray matter volume reductions of the bilateral PT represent a vulnerability to schizophrenia in contrast to the PO volume, which was previously found to be reduced in patients with chronic schizophrenia. The right PT might preferentially contribute to the pathogenesis of psychotic symptoms.
Collapse
Affiliation(s)
- Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Derntl B, Finkelmeyer A, Voss B, Eickhoff SB, Kellermann T, Schneider F, Habel U. Neural correlates of the core facets of empathy in schizophrenia. Schizophr Res 2012; 136:70-81. [PMID: 22306196 PMCID: PMC7988185 DOI: 10.1016/j.schres.2011.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 12/05/2011] [Accepted: 12/21/2011] [Indexed: 12/30/2022]
Abstract
Empathy is a multidimensional construct composed of several components such as emotion recognition, emotional perspective taking and affective responsiveness. Even though patients with schizophrenia demonstrate deficits in all core components of this basic social ability, the neural underpinnings of these dysfunctions are less clear. Using fMRI, we analyzed data from 15 patients meeting the DSM-IV criteria for schizophrenia and 15 matched healthy volunteers performing three separate paradigms tapping the core components of empathy, i.e. emotion recognition, perspective taking and affective responsiveness. Behavioral data analysis indicated a significant empathic deficit in patients, reflected in worse performance in all three domains. Analysis of functional data revealed hypoactivation in a fronto-temporo-parietal network including the amygdala in patients. Moreover, amygdala activation correlated negatively with severity of negative symptoms. The results suggest that schizophrenia patients not only suffer from a broad range of emotional deficits but also show cortical and subcortical abnormalities, extending previous findings on fronto-temporal cortical dysfunctions. Since empathy is related to psychosocial functioning and hence of high clinical relevance in schizophrenia, a more detailed understanding of the exact nature of these impairments is mandatory.
Collapse
Affiliation(s)
- Birgit Derntl
- Institute for Clinical, Biological and Differential Psychology, University of Vienna, Vienna, Austria.
| | - Andreas Finkelmeyer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany,Institute of Neuroscience, Newcastle Biomedicine, Newcastle University, Newcastle-upon-Tyne, England, UK
| | - Bianca Voss
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany
| | - Simon B. Eickhoff
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany,Department of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany
| |
Collapse
|
33
|
Rominger C, Weiss EM, Fink A, Schulter G, Papousek I. Allusive thinking (cognitive looseness) and the propensity to perceive “meaningful” coincidences. PERSONALITY AND INDIVIDUAL DIFFERENCES 2011. [DOI: 10.1016/j.paid.2011.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Fusar-Poli P, Borgwardt S, Crescini A, Deste G, Kempton MJ, Lawrie S, Mc Guire P, Sacchetti E. Neuroanatomy of vulnerability to psychosis: A voxel-based meta-analysis. Neurosci Biobehav Rev 2011; 35:1175-85. [DOI: 10.1016/j.neubiorev.2010.12.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 01/20/2023]
|
35
|
|