1
|
Minnier J, Emmett MR, Perez R, Ding LH, Barnette BL, Larios RE, Hong C, Hwang TH, Yu Y, Fallgren CM, Story MD, Weil MM, Raber J. Associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation. Sci Rep 2021; 11:14899. [PMID: 34290258 PMCID: PMC8295277 DOI: 10.1038/s41598-021-93869-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
The space radiation environment consists of multiple species of charged particles, including 28Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with 28Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation. The plasma of the mice was collected for analysis of miRNA levels. Select pertinent brain regions were dissected for lipidomic analyses and analyses of levels of select biomarkers shown to be sensitive to effects of space radiation in previous studies. There were associations between lipids in select brain regions, plasma miRNA, and cognitive measures and behavioral following 28Si ion irradiation. Different but overlapping sets of miRNAs in plasma were found to be associated with cognitive measures and behavioral in sham and irradiated mice at the three time points. The radiation condition revealed pathways involved in neurodegenerative conditions and cancers. Levels of the dendritic marker MAP2 in the cortex were higher in irradiated than sham-irradiated mice at middle age, which might be part of a compensatory response. Relationships were also revealed with CD68 in miRNAs in an anatomical distinct fashion, suggesting that distinct miRNAs modulate neuroinflammation in different brain regions. The associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation could be used for the development of biomarker of the space radiation response.
Collapse
Affiliation(s)
- Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, and the Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, 97239, USA
| | - Mark R Emmett
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brooke L Barnette
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Rianna E Larios
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Changjin Hong
- Lerner Research Institute, Cleveland Clinic Lerner College of Medicine US, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Lerner Research Institute, Cleveland Clinic Lerner College of Medicine US, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, School of Medicine, GU Malignancies Program, Case Comprehensive Cancer Center, Genomic Medicine Institute, Case Western Reserve University US., Cleveland, OH, 10900, USA
| | - Yongjia Yu
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Christina M Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
- Division of Neuroscience ONPRC, Departments of Neurology, Psychiatry, and Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Raber J, Fuentes Anaya A, Torres ERS, Lee J, Boutros S, Grygoryev D, Hammer A, Kasschau KD, Sharpton TJ, Turker MS, Kronenberg A. Effects of Six Sequential Charged Particle Beams on Behavioral and Cognitive Performance in B6D2F1 Female and Male Mice. Front Physiol 2020; 11:959. [PMID: 32982769 PMCID: PMC7485338 DOI: 10.3389/fphys.2020.00959] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The radiation environment astronauts are exposed to in deep space includes galactic cosmic radiation (GCR) with different proportions of all naturally occurring ions. To assist NASA with assessment of risk to the brain following exposure to a mixture of ions broadly representative of the GCR, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice two months following rapidly delivered, sequential 6 beam irradiation with protons (1 GeV, LET = 0.24 keV, 50%), 4He ions (250 MeV/n, LET = 1.6 keV/μm, 20%), 16O ions (250 MeV/n, LET = 25 keV/μm 7.5%), 28Si ions (263 MeV/n, LET = 78 keV/μm, 7.5%), 48Ti ions (1 GeV/n, LET = 107 keV/μm, 7.5%), and 56Fe ions (1 GeV/n, LET = 151 keV/μm, 7.5%) at 0, 25, 50, or 200 cGy) at 4-6 months of age. When the activity over 3 days of open field habituation was analyzed in female mice, those irradiated with 50 cGy moved less and spent less time in the center than sham-irradiated mice. Sham-irradiated female mice and those irradiated with 25 cGy showed object recognition. However, female mice exposed to 50 or 200 cGy did not show object recognition. When fear memory was assessed in passive avoidance tests, sham-irradiated mice and mice irradiated with 25 cGy showed memory retention while mice exposed to 50 or 200 cGy did not. The effects of radiation passive avoidance memory retention were not sex-dependent. There was no effect of radiation on depressive-like behavior in the forced swim test. There was a trend toward an effect of radiation on BDNF levels in the cortex of males, but not for females, with higher levels in male mice irradiated with 50 cGy than sham-irradiated. Finally, sequential 6-ion irradiation impacted the composition of the gut microbiome in a sex-dependent fashion. Taxa were uncovered whose relative abundance in the gut was associated with the radiation dose received. Thus, exposure to sequential six-beam irradiation significantly affects behavioral and cognitive performance and the gut microbiome.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Andrea Fuentes Anaya
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen Ruth S. Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Dmytro Grygoryev
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Austin Hammer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Kristin D. Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Mitchell S. Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
3
|
Raber J, Yamazaki J, Torres ERS, Kirchoff N, Stagaman K, Sharpton T, Turker MS, Kronenberg A. Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice. Front Physiol 2019; 10:179. [PMID: 30914962 PMCID: PMC6422905 DOI: 10.3389/fphys.2019.00179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
The radiation environment in deep space includes the galactic cosmic radiation with different proportions of all naturally occurring ions from protons to uranium. Most experimental animal studies for assessing the biological effects of charged particles have involved acute dose delivery for single ions and/or fractionated exposure protocols. Here, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice 2 months following rapidly delivered, sequential irradiation with protons (1 GeV, 60%), 16O (250 MeV/n, 20%), and 28Si (263 MeV/n, 20%) at 0, 25, 50, or 200 cGy at 4-6 months of age. Cortical BDNF, CD68, and MAP-2 levels were analyzed 3 months after irradiation or sham irradiation. During the dark period, male mice irradiated with 50 cGy showed higher activity levels in the home cage than sham-irradiated mice. Mice irradiated with 50 cGy also showed increased depressive behavior in the forced swim test. When cognitive performance was assessed, sham-irradiated mice of both sexes and mice irradiated with 25 cGy showed normal responses to object recognition and novel object exploration. However, object recognition was impaired in female and male mice irradiated with 50 or 200 cGy. For cortical levels of the neurotrophic factor BDNF and the marker of microglial activation CD68, there were sex × radiation interactions. In females, but not males, there were increased CD68 levels following irradiation. In males, but not females, there were reduced BDNF levels following irradiation. A significant positive correlation between BDNF and CD68 levels was observed, suggesting a role for activated microglia in the alterations in BDNF levels. Finally, sequential beam irradiation impacted the diversity and composition of the gut microbiome. These included dose-dependent impacts and alterations to the relative abundance of several gut genera, such as Butyricicoccus and Lachnospiraceae. Thus, exposure to rapidly delivered sequential proton, 16O ion, and 28Si ion irradiation significantly affects behavioral and cognitive performance, cortical levels of CD68 and BDNF in a sex-dependent fashion, and the gut microbiome.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Department of Neurology, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States.,Department of Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Joy Yamazaki
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Nicole Kirchoff
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States.,Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Mitchell S Turker
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
4
|
Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. Int J Mol Sci 2018; 19:ijms19041247. [PMID: 29677125 PMCID: PMC5979430 DOI: 10.3390/ijms19041247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear conditioning tests. Taken together, the results indicate that some aspects of cognitive performance are altered in male mice exposed to ⁴He ions, but that the response is task-dependent. Furthermore, the sensitive doses can vary within each task in a non-linear fashion. This highlights the importance of assessing the cognitive and behavioral effects of charged particle exposure with a variety of assays and at multiple doses, given the possibility that lower doses may be more damaging due to the absence of induced compensatory mechanisms at higher doses.
Collapse
|
5
|
Raber J, Marzulla T, Kronenberg A, Turker MS. (16)Oxygen irradiation enhances cued fear memory in B6D2F1 mice. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:61-65. [PMID: 26553639 DOI: 10.1016/j.lssr.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
The space radiation environment includes energetic charged particles that may impact cognitive performance. We assessed the effects of (16)O ion irradiation on cognitive performance of C57BL/6J × DBA/2J F1 (B6D2F1) mice at OHSU (Portland, OR) one month following irradiation at Brookhaven National Laboratory (BNL, Upton, NY). Hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory of B6D2F1 mice were tested. (16)O ion exposure enhanced cued fear memory. This effect showed a bell-shaped dose response curve. Cued fear memory was significantly stronger in mice irradiated with (16)O ions at a dose of 0.4 or 0.8 Gy than in sham-irradiated mice or following irradiation at 1.6 Gy. In contrast to cued fear memory, contextual fear memory was not affected following (16)O ion irradiation at the doses used in this study. These data indicate that the amygdala might be particularly susceptible to effects of (16)O ion exposure.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amy Kronenberg
- Department of Cell and Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Kugelman T, Zuloaga DG, Weber S, Raber J. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex. Behav Brain Res 2015; 298:1-11. [PMID: 26522840 DOI: 10.1016/j.bbr.2015.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory.
Collapse
Affiliation(s)
- Tara Kugelman
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Effects of (56)Fe radiation on hippocampal function in mice deficient in chemokine receptor 2 (CCR2). Behav Brain Res 2013; 246:69-75. [PMID: 23500678 DOI: 10.1016/j.bbr.2013.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/26/2013] [Accepted: 03/02/2013] [Indexed: 12/19/2022]
Abstract
(56)Fe irradiation affects hippocampus-dependent cognition. The underlying mechanisms may involve alterations in neurogenesis, expression of the plasticity-related immediate early gene Arc, and inflammation. Chemokine receptor-2 (CCR2), which mediates the recruitment of infiltrating and resident microglia to sites of CNS inflammation, is upregulated by (56)Fe irradiation. CCR2 KO and wild-type mice were used to compare effects of (56)Fe radiation (600MeV, 0.25Gy) on hippocampal function using contextual fear conditioning involving tone shock pairing during training (+/+) and exposure to the same environment without tone shock pairings (-/-). In the -/- condition, irradiation enhanced habituation in WT mice, but not CCR2 KO mice, suggesting that a lack of CCR2 was associated with reduced cognitive performance. In the +/+ condition, irradiation reduced freezing but there was no genotype differences. There were no significant correlations between the number of Arc-positive cells in the dentate gyrus and freezing in either genotype. While measures of neurogenesis and gliogenesis appeared to be modulated by CCR2, there were no effects of genotype on the total numbers of newly born activated microglia before or after irradiation, indicating that other mechanisms are involved in the genotype-dependent radiation response.
Collapse
|
8
|
Yeiser LA, Villasana LE, Raber J. ApoE isoform modulates effects of cranial ⁵⁶Fe irradiation on spatial learning and memory in the water maze. Behav Brain Res 2012; 237:207-14. [PMID: 23018124 DOI: 10.1016/j.bbr.2012.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Apolipoprotein E, which plays an important role in lipid transport and metabolism and neuronal repair, might modulate the CNS risk following (56)Fe irradiation exposure during space missions. In this study, we investigated this risk by behavioral and cognitive testing male E2, E3, and E4 mice 3 months following cranial (56)Fe irradiation. In the open field, mice irradiated with 2 Gy showed higher activity levels than sham-irradiated mice or mice irradiated with 1 Gy. In addition, E2 mice showed higher activity and lower measures of anxiety than E3 and E4 mice in the open field and elevated zero maze. During hidden platform training, sham-irradiated mice showed most robust learning, 1 Gy irradiated mice reduced learning, and 2 Gy irradiated mice no improvement over the four sessions. In the water maze probe trials, sham-irradiated E2, E3, and E4 mice and E2 and E4 mice irradiated with 1 Gy showed spatial memory retention, but E3 mice irradiated with 1 Gy, and E2, E3, and E4 mice irradiated with 2 Gy did not. Thus, cranial (56)Fe irradiation increases activity levels in the open field and impairs spatial learning and memory in the water maze. E3 mice are more susceptible than E2 or E4 mice to impairments in spatial memory retention in the water maze, indicating that apoE isoform modulates the CNS risk following space missions.
Collapse
Affiliation(s)
- Lauren A Yeiser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, United States
| | | | | |
Collapse
|
9
|
Dayger C, Villasana L, Pfankuch T, Davis M, Raber J. Effects of the SARM ACP-105 on rotorod performance and cued fear conditioning in sham-irradiated and irradiated female mice. Brain Res 2011; 1381:134-40. [PMID: 21219889 PMCID: PMC3048897 DOI: 10.1016/j.brainres.2010.12.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 12/11/2022]
Abstract
Female mice are more susceptible to radiation-induced cognitive changes than male mice. Previously, we showed that, in female mice, androgens antagonize age-related cognitive decline in aged wild-type mice and androgens and selective androgen receptor modulators (SARMs) antagonize cognitive changes induced by human apolipoprotein E4, a risk factor for developing age-related cognitive decline. In this study, the potential effects of the SARM ACP-105 were assessed in female mice that were either sham-irradiated or irradiated with ¹³⁷Cesium at a dose of 10Gy. Behavioral testing started 2 weeks following irradiation. Irradiation impaired sensorimotor function in vehicle-treated mice but not in ACP-105-treated mice. Irradiation impaired cued fear conditioning and ACP-105 enhanced fear conditioning in sham-irradiated and irradiated mice. When immunoreactivity for microtubule-associated protein 2 was assessed in the cortex of sham-irradiated mice, there was a brain area × ACP-105 interaction. While ACP-105 reduced MAP-2 immunoreactivity in the sensorimotor cortex, there was a trend towards increased MAP-2 immunoreactivity in the enthorhinal cortex. No effect on MAP-2 immunoreactivity was seen in the irradiated cortex or sham-irradiated or irradiated hippocampus. Thus, there are relatively early radiation-induced behavioral changes in female mice and reduced MAP-2 levels in the sensorimotor cortex following ACP-105 treatment might contribute to enhanced rotorod performance.
Collapse
Affiliation(s)
- Catherine Dayger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Laura Villasana
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Timothy Pfankuch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Matthew Davis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239
- Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|