1
|
Peacock J, Henderson J. Ocular radiation exposure is negligible in normal volume endourological practice. Ann R Coll Surg Engl 2025; 107:141-145. [PMID: 38445592 PMCID: PMC11785437 DOI: 10.1308/rcsann.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION The annual dose limit for radiation exposure to the eye has been reduced recently; the eye is widely recognised as one of the most radiosensitive tissues in the body. There is minimal good quality research as to the radiation dose that the eye receives during endourological surgery and this study aimed to address this. METHODS A prospective study was performed over an 8-month period at a single large teaching hospital in the UK. Three index procedures were included: ureteric stent insertion, ureteroscopy (URS) and percutaneous nephrolithotomy (PCNL). Surgeons wore a dosimeter on the glabella with fluoroscopy time (FT) and dose area product (DAP) recorded for each case. RESULTS A total of 404 procedures were included (247 URSs, 150 ureteric stent insertions and 7 PCNLs). Dosimeters were worn by ten surgeons. Mean FTs (URS 20.56s; ureteric stent 18.96s; PCNL 360.67s) and mean DAP (URS 100.82cGy/m2, ureteric stent 119.82cGy/m2 and PCNL 1121.62cGy/m2) were identified with significant intersurgeon variability. No surgeon had a total dosimeter dose >0.00mSv. CONCLUSIONS The International Commission on Radiological Protection recently reduced the yearly eye dose limit from 150 to 20mSv. Cataractogenesis is no longer considered a typical deterministic effect, with a threshold level below which no effect occurs. Even in higher volume centres, these annual limits are unlikely to be reached. Lead glasses may be considered for surgeons and radiologists with the highest exposure but, for the majority, ocular radiation exposure is negligible.
Collapse
|
2
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
3
|
Morris PD, Anderton RA, Marshall-Goebel K, Britton JK, Lee SMC, Smith NP, van de Vosse FN, Ong KM, Newman TA, Taylor DJ, Chico T, Gunn JP, Narracott AJ, Hose DR, Halliday I. Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight. Nat Rev Cardiol 2024; 21:667-681. [PMID: 39030270 DOI: 10.1038/s41569-024-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/21/2024]
Abstract
For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation-perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.
Collapse
Affiliation(s)
- Paul D Morris
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Ryan A Anderton
- Medical Department, Spaceflight, UK Civil Aviation Authority, Gatwick, UK
| | - Karina Marshall-Goebel
- The National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston, TX, USA
| | - Joseph K Britton
- Aerospace Medicine Specialist Wing, Royal Air Force (RAF) Centre of Aerospace Medicine, Henlow, UK
| | - Stuart M C Lee
- KBR, Human Health Countermeasures Element, NASA Johnson Space Center, Houston, TX, USA
| | - Nicolas P Smith
- Victoria University of Wellington, Wellington, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Karen M Ong
- Virgin Galactic Medical, Truth or Consequences, NM, USA
| | - Tom A Newman
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Daniel J Taylor
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Tim Chico
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Julian P Gunn
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Andrew J Narracott
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - D Rod Hose
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Ian Halliday
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Hazen P, Trossi-Torres G, Timsina R, Khadka NK, Mainali L. Association of Alpha-Crystallin with Human Cortical and Nuclear Lens Lipid Membrane Increases with the Grade of Cortical and Nuclear Cataract. Int J Mol Sci 2024; 25:1936. [PMID: 38339214 PMCID: PMC10855980 DOI: 10.3390/ijms25031936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.
Collapse
Affiliation(s)
- Preston Hazen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
| | - Geraline Trossi-Torres
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Laxman Mainali
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| |
Collapse
|
6
|
Pajic J, Milovanovic APS. Biological response to the continuous occupational exposure to antineoplastic drugs and radionuclides. Int J Radiat Biol 2023; 99:1934-1947. [PMID: 37498230 DOI: 10.1080/09553002.2023.2241901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Antineoplastic drugs and radioiodine are recognized occupational risk factors affecting the genetic material of exposed persons. To assess cytogenetic damage and evaluate the presence of chromosomal instability during occupational exposure, a biomonitoring study was performed using a chromosomal aberration assay and a cytokinesis-block micronucleus (CBMN) test. MATERIALS AND METHODS Blood samples from 314 healthy donors divided into 3 groups (control, exposed to antineoplastic drugs and exposed to radioiodine) were collected and cytogenetically analyzed. RESULTS There was an increase in almost all analyzed parameters registered in the exposed persons. Chromatid breaks were higher in the subjects exposed to antineoplastic drugs, while dicentrics and premature centromere division (PCD) parameters were higher in nuclear medicine workers. The total number of micronuclei was higher in both groups of the exposed. The correlation analysis indicated the association of dicentrics, acentrics, chromosome and chromatid break with PCDs in both groups of the exposed, and micronuclei and nucleoplasmic bridges with PCDs in the subjects exposed to radioiodine. The discriminant analysis marked off PCD1-5 as the best predictor of exposure. Age, sex, sampling season and duration of exposure significantly influenced the analyzed parameters, while smoking habits did not show any influence. CONCLUSION Based on the observed results, premature centromere division can be considered a valuable parameter of genotoxic risk for individuals occupationally exposed to low doses of ionizing radiation.
Collapse
Affiliation(s)
- Jelena Pajic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Belgrade, Serbia
| | - Aleksandar P S Milovanovic
- Occupational Health Department, Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, Serbia; Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Belgrade, Serbia
| |
Collapse
|
7
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
8
|
Azizova TV, Bannikova MV, Briks KV, Grigoryeva ES, Hamada N. Incidence risks for subtypes of heart diseases in a Russian cohort of Mayak Production Association nuclear workers. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:51-71. [PMID: 36326926 DOI: 10.1007/s00411-022-01005-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Heart diseases are one of the main causes of death. The incidence risks were assessed for various types of heart diseases (HDs) in a cohort of Russian nuclear workers of the Mayak Production Association (PA) who had been chronically occupationally exposed to external gamma and/ or internal alpha radiation. The study cohort included all workers (22,377 individuals) who had been hired at the Mayak PA during 1948-1982 and followed up until 31 December 2018. The mean gamma-absorbed dose to the liver (standard deviation) was 0.43 (0.63) Gy, and the mean alpha-absorbed dose to the liver was 0.25 (1.19) Gy. Excess relative risk (ERR) per unit liver-absorbed dose (Gy) was calculated based on maximum likelihood. At the end of the follow-up, 559 chronic rheumatic heart disease (CRHD), 7722 ischemic heart disease (IHD) [including 2185 acute myocardial infarction (AMI) and 3976 angina pectoris (AP)], 4939 heart failure (HF), and 3689 cardiac arrhythmia and conduction disorder (CACD) cases were verified in the study cohort. Linear model fits of the gamma dose response for HDs were best once adjustments for non-radiation factors (sex, attained age, calendar period, smoking status and alcohol consumption) and alpha dose were included. ERR/Gy in males and females was 0.17 (95% confidence intervals: 0.10, 0.26) and 0.23 (0.09, 0.38) for IHD; 0.18 (0.09, 0.29) and 0.26 (0.08, 0.49) for AP; - 0.01 (n/a, 0.1) and - 0.01 (n/a, 0.27) for AMI; 0.27 (0.16, 0.40) and 0.27 (0.10, 0.49) for HF; 0.32 (0.19, 0.46) and 0.05 (- 0.09, 0.22) for CACD; 0.73 (- 0.02, 2.40) and - 0.12 (- 0.50, 0.69) for CRHD, respectively. Sensitivity analyses demonstrated the persistence of a significant dose-response regardless of exclusion/inclusion of adjustments for known potential non-radiation confounders (smoking, alcohol consumption, body mass index, hypertension, diabetes mellitus), and it was only the magnitude of the risk estimate that varied. The risks of HD incidence were not modified with sex (except for the CACD risk). This study provides evidence for a significant association of certain types of HDs with cumulative dose of occupational chronic external exposure to gamma radiation.
Collapse
Affiliation(s)
- Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia.
| | - Maria V Bannikova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia
| | - Ksenia V Briks
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia
| | - Evgeniya S Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
9
|
Development and experimental verification of C-arm camera shooting locator. Sci Rep 2022; 12:22222. [PMID: 36564502 PMCID: PMC9789101 DOI: 10.1038/s41598-022-26286-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to develop a self-made C-arm camera shooting locator and verify its accuracy and advantages. A total of 60 physicians and nurses from the Surgical System of Sanmen People's Hospital, Zhejiang Province, China, were randomly selected as filming operators. The C-arm machine with a self-made locator and a C-arm machine without a locator were used to measure the center of the circular plate. The iron nails were used to shoot. The distance between the iron nail and the center point of the circular display area on display was defined as the shooting deviation. When it was less than 3 cm, the shooting was stopped. The number of shots, total shooting time, and first-shot deviation in the C-arm camera shooting groups with and without the locator were statistically analyzed, and the advantages and disadvantages of the two were compared. The average number of shots, average total shooting time, and average first-shot deviation of the C-arm camera using the locator were significantly better than those in the group without the locator, and the differences were statistically significant. When the shooting distance (X) was equal to 30 cm and the shooting angle (Y) was equal to 0°, the average number of shots, average total shooting time, and average first-shot deviation were optimal. The C-arm camera shooting locator can improve the shooting accuracy of the C-arm camera and effectively reduce the number of shots and total shooting time. Hence, it can be applied in clinical and surgical practice.
Collapse
|
10
|
Identification and characterization of patients being exposed to computed-tomography associated radiation-doses above 100 mSv in a real-life setting. Eur J Radiol Open 2022; 10:100470. [PMID: 36590327 PMCID: PMC9800257 DOI: 10.1016/j.ejro.2022.100470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale and objectives Patients receiving high cumulative effective doses (CED) from recurrent computed tomography (CT) in a real-life setting are not well identified. Evaluation of causes and patient characteristics may help to define individuals potentially at risk of radiation-induced secondary malignancies. Materials and methods Patients who received a CED > 100 mSv from CT scans during October 2012 and April 2020 at a tertiary university center were identified with the help of a radiological radiation dose monitoring system. The primary disease and referral diagnosis, number of CT exams, time period, age, BMI and gender distribution of the 1000 patients with the highest CED were analysed. Results 3431 patients had a CED of more than 100 mSv, which corresponded to 2.75% of all patients who received a CT exam. From the 1000 patients with the highest CED, mean number of CT exams per patient was 14.6, mean CED was 257 mSv (SD 98, range 177-1339). Mean age of patients was 63.9 years (SD 10.6), male to female ratio 3:2, and mean BMI 28.7 kg/m2 (SD 5.5). 728 (72.9%) patients had cancer. The leading primary diagnosis was liver cirrhosis in 197 patients and 103 patients had a liver transplantation. In patients with liver cirrhosis, 750 exams were indicated for the follow-up of the disease, 662 for the clarification of an acute clinical condition, and 202 for CT-guided stereotactic radiofrequency ablation. Conclusion Recurrent CT scans of patients with cancer, liver cirrhosis and liver transplantation may lead to critically high CED.
Collapse
|
11
|
Dong S, Koutrakis P, Li L, Coull BA, Schwartz J, Kosheleva A, Zanobetti A. Synergistic Effects of Particle Radioactivity (Gross β Activity) and Particulate Matter ≤2.5 μm Aerodynamic Diameter on Cardiovascular Disease Mortality. J Am Heart Assoc 2022; 11:e025470. [PMID: 36197036 PMCID: PMC9673676 DOI: 10.1161/jaha.121.025470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Background Although the effects of fine particulate matter (particulate matter ≤2.5 μm aerodynamic diameter [PM2.5]) on cardiovascular disease (CVD) morbidity and mortality are well established, little is known about the CVD health effects of particle radioactivity. In addition, there are still questions about which of the PM2.5 physical, chemical, or biological properties are mostly responsible for its toxicity. Methods and Results We investigated the association between particle radioactivity, measured as gross β activity from highly resolved spatiotemporal predictions, and mortality for CVD, myocardial infarction, stroke, and all-cause nonaccidental mortality in Massachusetts (2001-2015). Within both difference-in-differences model and generalized linear mixed model frameworks, we fit both single-exposure and 2-exposure models adjusting for PM2.5 and examined the interaction between PM2.5 and gross β activity. We found significant associations between gross β activity and PM2.5 and each mortality cause. Using difference-in-differences and adjusting for PM2.5, we found the highest associations with myocardial infarction (rate ratio, 1.16 [95% CI, 1.08-1.24]) and stroke (rate ratio, 1.11 [95% CI, 1.04-1.18]) for an interquartile range increase (0.055 millibecquerels per cubic meter) in gross β activity. We found a significant positive interaction between PM2.5 and gross β activity, with higher associations between PM2.5 and mortality at a higher level of gross β activity. We also observed that the associations varied across age groups. The results were comparable between the 2 statistical methods also with and without adjusting for PM2.5. Conclusions This is the first study that, using highly spatiotemporal predictions of gross β-activity, provides evidence that particle radioactivity increases CVD mortality and enhances PM2.5 CVD mortality. Therefore, particle radioactivity can be an important property of PM2.5 that must be further investigated. Addressing this important question can lead to cost-effective air-quality regulations.
Collapse
Affiliation(s)
- Shuxin Dong
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Petros Koutrakis
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Longxiang Li
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Brent A. Coull
- Department of Biostatistics, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Joel Schwartz
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
- Department of Epidemiology, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Anna Kosheleva
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| | - Antonella Zanobetti
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMA
| |
Collapse
|
12
|
Tanno B, Novelli F, Leonardi S, Merla C, Babini G, Giardullo P, Kadhim M, Traynor D, Medipally DKR, Meade AD, Lyng FM, Tapio S, Marchetti L, Saran A, Pazzaglia S, Mancuso M. MiRNA-Mediated Fibrosis in the Out-of-Target Heart following Partial-Body Irradiation. Cancers (Basel) 2022; 14:cancers14143463. [PMID: 35884524 PMCID: PMC9323333 DOI: 10.3390/cancers14143463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Recent reports have shown a link between radiation exposure and non-cancer diseases such as radiation-induced heart disease (RIHD). Radiation exposures are often inhomogeneous, and out-of-target effects have been studied in terms of cancer risk, but very few studies have been carried out for non-cancer diseases. Here, the role of miRNAs in the pathogenesis of RIHD was investigated. C57Bl/6J female mice were whole- (WBI) or partial-body-irradiated (PBI) with 2 Gy of X-rays or sham-irradiated (SI). In PBI exposure, the lower third of the mouse body was irradiated, while the upper two-thirds were shielded. From all groups, hearts were collected 15 days or 6 months post-irradiation. The MiRNome analysis at 15 days post-irradiation showed that miRNAs, belonging to the myomiR family, were highly differentially expressed in WBI and PBI mouse hearts compared with SI hearts. Raman spectral data collected 15 days and 6 months post-irradiation showed biochemical differences among SI, WBI and PBI mouse hearts. Fibrosis in WBI and PBI mouse hearts, indicated by the increased deposition of collagen and the overexpression of genes involved in myofibroblast activation, was found 6 months post-irradiation. Using an in vitro co-culture system, involving directly irradiated skeletal muscle and unirradiated ventricular cardiac human cells, we propose the role of miR-1/133a as mediators of the abscopal response, suggesting that miRNA-based strategies could be relevant for limiting tissue-dependent reactions in non-directly irradiated tissues.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Correspondence: (B.T.); (M.M.)
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Caterina Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University (OBU), Oxford OX3 0BP, UK;
| | - Damien Traynor
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Dinesh K. R. Medipally
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Aidan D. Meade
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, D-85764 Neuherberg, Germany;
| | - Luca Marchetti
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Department of Agricultural and Forestry Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Department of Radiation Physics, Guglielmo Marconi University, 00193 Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Correspondence: (B.T.); (M.M.)
| |
Collapse
|
13
|
Barnard S, Uwineza A, Kalligeraki A, McCarron R, Kruse F, Ainsbury EA, Quinlan RA. Lens Epithelial Cell Proliferation in Response to Ionizing Radiation. Radiat Res 2022; 197:92-99. [PMID: 33984857 DOI: 10.1667/rade-20-00294.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Lens epithelial cell proliferation and differentiation are naturally well regulated and controlled, a characteristic essential for lens structure, symmetry and function. The effect of ionizing radiation on lens epithelial cell proliferation has been demonstrated in previous studies at high acute doses, but the effect of dose and dose rate on proliferation has not yet been considered. In this work, mice received single acute doses of 0.5, 1 and 2 Gy of radiation, at dose rates of 0.063 and 0.3 Gy/min. Eye lenses were isolated postirradiation at 30 min up until 14 days and flat-mounted. Then, cell proliferation rates were determined using biomarker Ki67. As expected, radiation increased cell proliferation 2 and 24 h postirradiation transiently (undetectable 14 days postirradiation) and was dose dependent (changes were very significant at 2 Gy; P = 0.008). A dose-rate effect did not reach significance in this study (P = 0.054). However, dose rate and lens epithelial cell region showed significant interactions (P < 0.001). These observations further our mechanistic understanding of how the lens responds to radiation.
Collapse
Affiliation(s)
- S Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - A Uwineza
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - A Kalligeraki
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - R McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - F Kruse
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - R A Quinlan
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| |
Collapse
|
14
|
Estimation of radiation-induced health hazards from a "dirty bomb" attack with radiocesium under different assault and rescue conditions. Mil Med Res 2021; 8:65. [PMID: 34879871 PMCID: PMC8656004 DOI: 10.1186/s40779-021-00349-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/14/2021] [Indexed: 01/23/2023] Open
Abstract
In the case of a terrorist attack by a "dirty bomb", blast injuries, external irradiation and the incorporation of radioactivity are to be expected. Departing from information about the radiological attack scenario with cesium-137 in the U.S. National Scenario Planning Guide, we estimated the radiological doses absorbed. Similar calculations were performed for a smaller plume size and a detonation in a subway. For conditions as described in the U.S. scenario, the committed effective dose amounted to a maximum of 848 mSv, even for very unfavorable conditions. Red bone marrow equivalent doses are insufficient to induce acute radiation sickness (ARS). In the case of a smaller plume size, the ARS threshold may be exceeded in some cases. In a subway bombing, doses are much higher and the occurrence of ARS should be expected. The health hazards from a dirty bomb attack will depend on the location and the explosive device. The derived Haddon matrix indicates that preparing for such an event includes education of all the medical staff about radiation effects, the time lines of radiation damages and the treatment priorities. Further determinants of the outcome include rapid evacuation even from difficult locations, the availability of a specific triage tool to rapidly identify victims at risk for ARS, the availability of an antidote stockpile and dedicated hospital beds to treat seriously irradiated victims.
Collapse
|
15
|
Loganovsky KM, Fedirko PA, Marazziti D, Kuts KV, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV, Malinyak AV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT: PART II - RADIATION CEREBRO/OPHTALMIC EFFECTS IN CHILDREN, PERSONS EXPOSED IN UTERO, ASTRONAUTS AND INTERVENTIONAL RADIOLOGISTS. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:57-97. [PMID: 34965543 DOI: 10.33145/2304-8336-2021-26-57-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ionizing radiation (IR) can affect the brain and the visual organ even at low doses, while provoking cognitive, emotional, behavioral, and visual disorders. We proposed to consider the brain and the visual organ as potential targets for the influence of IR with the definition of cerebro-ophthalmic relationships as the «eye-brain axis». OBJECTIVE The present work is a narrative review of current experimental, epidemiological and clinical data on radiation cerebro-ophthalmic effects in children, individuals exposed in utero, astronauts and interventional radiologists. MATERIALS AND METHODS The review was performed according to PRISMA guidelines by searching the abstract and scientometric databases PubMed/MEDLINE, Scopus, Web of Science, Embase, PsycINFO, Google Scholar, published from 1998 to 2021, as well as the results of manual search of peer-reviewed publications. RESULTS Epidemiological data on the effects of low doses of IR on neurodevelopment are quite contradictory, while data on clinical, neuropsychological and neurophysiological on cognitive and cerebral disorders, especially in the left, dominant hemisphere of the brain, are nore consistent. Cataracts (congenital - after in utero irradiation) and retinal angiopathy are more common in prenatally-exposed people and children. Astronauts, who carry out longterm space missions outside the protection of the Earth's magnetosphere, will be exposed to galactic cosmic radiation (heavy ions, protons), which leads to cerebro-ophthalmic disorders, primarily cognitive and behavioral disorders and cataracts. Interventional radiologists are a special risk group for cerebro-ophthalmic pathology - cognitivedeficits, mainly due to dysfunction of the dominant and more radiosensitive left hemisphere of the brain, andcataracts, as well as early atherosclerosis and accelerated aging. CONCLUSIONS Results of current studies indicate the high radiosensitivity of the brain and eye in different contingents of irradiated persons. Further research is needed to clarify the nature of cerebro-ophthalmic disorders in different exposure scenarios, to determine the molecular biological mechanisms of these disorders, reliable dosimetric support and taking into account the influence of non-radiation risk factors.
Collapse
Affiliation(s)
- K M Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Str., Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - A V Malinyak
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| |
Collapse
|
16
|
Dahl H, Eide DM, Tengs T, Duale N, Kamstra JH, Oughton DH, Olsen AK. Perturbed transcriptional profiles after chronic low dose rate radiation in mice. PLoS One 2021; 16:e0256667. [PMID: 34428250 PMCID: PMC8384182 DOI: 10.1371/journal.pone.0256667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse health outcomes of ionizing radiation given chronically at low dose rates are highly debated, a controversy also relevant for other stressors. Increased knowledge is needed for a more comprehensive understanding of the damaging potential of ionizing radiation from all dose rates and doses. There is a lack of relevant low dose rate data that is partly ascribed to the rarity of exposure facilities allowing chronic low dose rate exposures. Using the FIGARO facility, we assessed early (one day post-radiation) and late (recovery time of 100-200 days) hepatic genome-wide transcriptional profiles in male mice of two strains (CBA/CaOlaHsd and C57BL/6NHsd) exposed chronically to a low dose rate (2.5 mGy/h; 1200h, LDR), a mid-dose rate (10 mGy/h; 300h, MDR) and acutely to a high dose rate (100 mGy/h; 30h, HDR) of gamma irradiation, given to an equivalent total dose of 3 Gy. Dose-rate and strain-specific transcriptional responses were identified. Differently modulated transcriptional responses across all dose rate exposure groups were evident by the representation of functional biological pathways. Evidence of changed epigenetic regulation (global DNA methylation) was not detected. A period of recovery markedly reduced the number of differentially expressed genes. Using enrichment analysis to identify the functional significance of the modulated genes, perturbed signaling pathways associated with both cancer and non-cancer effects were observed, such as lipid metabolism and inflammation. These pathways were seen after chronic low dose rate and were not restricted to the acute high dose rate exposure. The transcriptional response induced by chronic low dose rate ionizing radiation suggests contribution to conditions such as cardiovascular diseases. We contribute with novel genome wide transcriptional data highlighting dose-rate-specific radiation responses and emphasize the importance of considering both dose rate, duration of exposure, and variability in susceptibility when assessing risks from ionizing radiation.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dag M. Eide
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Torstein Tengs
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nur Duale
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jorke H. Kamstra
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Deborah H. Oughton
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Karin Olsen
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
17
|
Oslina D, Rybkina V, Adamova G, Zhuntova G, Bannikova M, Azizova T. Biomarkers of Atherosclerotic Vascular Disease in Workers Chronically Exposed to Ionizing Radiation. HEALTH PHYSICS 2021; 121:92-101. [PMID: 33867435 DOI: 10.1097/hp.0000000000001416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ABSTRACT It is well established that cohorts of individuals exposed to ionizing radiation demonstrate increased risks of cardio- and cerebrovascular diseases. However, mechanisms of these radiation-induced diseases developing in individuals exposed to ionizing radiation remain unclear. To identify biomarkers of the atherosclerotic vessel damage in workers chronically exposed to ionizing radiation, this study considered 49 workers of the Russian nuclear production facility-the Mayak Production Association (mean age of 68.73 ± 6.92 years)-and 38 unexposed individuals (mean age of 68.84 ± 6.20 y) who had never been exposed to ionizing radiation (control). All workers were chronically exposed to combined radiation (external gamma rays and internal alpha particles). The mean cumulative liver absorbed dose from external gamma-ray exposure was 0.18 ± 0.12 Gy; the mean cumulative liver absorbed dose from internal alpha-particles was 0.14 ± 0.21 Gy. Levels of biomarkers in blood serum of the study participants were measured using the ELISA method. Elevated levels of apolipoprotein B, superoxide dismutase, monocyte chemoattractant protein 1, vascular cell adhesion protein 1, and a decreased level of endothelin-1 were observed in blood serum of Mayak PA workers chronically exposed to combined radiation compared to control individuals. A significant positive correlation was demonstrated between the vascular cell adhesion protein 1 level and cumulative liver absorbed doses from external gamma radiation and internal alpha radiation. Findings of the study suggest that molecular changes in blood of individuals occupationally exposed to ionizing radiation (combined internal exposure to alpha particles and external exposure to gamma rays) may indicate dyslipidemia, oxidative stress, inflammation, and endothelial dysfunction involved in atherosclerosis development.
Collapse
Affiliation(s)
- Darya Oslina
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation, Ozyorskoe shosse 19, Ozyorsk Chelyabinsk Region, 456780 Russia
| | | | | | | | | | | |
Collapse
|
18
|
Mohd Ridzwan SF, Bhoo-Pathy N, Wee LH, Isahak M. Beliefs, Facilitating Factors, and Barriers in Using Personal Dosimeter among Medical Radiation Workers in a Middle-Income Asian Setting. Ann Work Expo Health 2021; 65:940-954. [PMID: 34037205 DOI: 10.1093/annweh/wxab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
This qualitative study explores the medical radiation workers' (MRWs) beliefs with the support of the theory of planned behaviour's constructs regarding the use of personal dosimeters in order to identify the facilitating factors and barriers to practising good personal dose monitoring. The exploration was conducted through semi-structured face-to-face interviews with 63 MRWs from the public, private, and university hospitals. Belief statements from the informants were organized under the behavioural, normative, and control belief, as guided by the theory. A thematic analysis found that a majority of informants acknowledged the benefits of using dosimeters. However, several factors influenced the actual usage. The informants were hesitant to use the dosimeter as the loss of the device involved an expensive penalty. They also mentioned that delayed dosimeter supplies due to late budget approval in the hospitals and some other reasons had got them disconnected from the monitoring system. The workers' attitudes and social norms highly induced their dosimeter usage as well; some perceived themselves to be at low risk for high exposure to radiation, and forgetfulness was also mentioned as a reason for lack of adherence. Device physical factor influenced low dosimeter use too. This study highlighted some unique findings in Asian settings. A better understanding of the underlying reasons for the lack of dosimeter use will be useful in developing strategies to increase good practices in personal radiation monitoring.
Collapse
Affiliation(s)
- Siti Farizwana Mohd Ridzwan
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.,Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Nirmala Bhoo-Pathy
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Lei Hum Wee
- Health Education Program, Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Marzuki Isahak
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Mehner C, Krishnan S, Chou J, Freeman ML, Freeman WD, Patel T, Turnbull MT. Real versus simulated galactic cosmic radiation for investigating cancer risk in the hematopoietic system - are we comparing apples to apples? LIFE SCIENCES IN SPACE RESEARCH 2021; 29:8-14. [PMID: 33888292 DOI: 10.1016/j.lssr.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Deep space exploration missions need strategies to mitigate the potentially harmful exposure to galactic cosmic radiation. This form of radiation can cause significant damage to biological systems and organisms, which include radiation-induced carcinogenesis in the hematopoietic system. Ongoing studies investigate these effects using cell- and animal-based studies in low earth orbit. The logistic challenges and costs involved with sending biological specimens to space have prompted the development of surrogate ground-based radiation experiments to study the mechanisms of biological injury and cancer risk. However, simulating galactic cosmic radiation has proven difficult and current studies are only partially succeeding at replicating the complexity of this radiation and its downstream injury pathways. Accurate simulation of chronic, low dose galactic radiation will improve our ability to test mitigation strategies such as drug development and improved shielding materials that could be crucial and essential for successful space exploration.
Collapse
Affiliation(s)
- Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, FL, United States
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | | | - William D Freeman
- Department of Critical Care Medicine, Mayo Clinic, FL, United States; Department of Neurology, Mayo Clinic, FL, United States; Department of Neurologic Surgery, Mayo Clinic, FL, United States
| | - Tushar Patel
- Department of Physiology and Biomedical Engineering, Mayo Clinic, FL, United States; Department of Transplantation, Mayo Clinic, FL, United States.
| | | |
Collapse
|
20
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
21
|
Pawliczek D, Fuchs H, Gailus-Durner V, de Angelis MH, Quinlan R, Graw J, Dalke C. On the Nature of Murine Radiation-Induced Subcapsular Cataracts: Optical Coherence Tomography-Based Fine Classification, In Vivo Dynamics and Impact on Visual Acuity. Radiat Res 2021; 197:7-21. [PMID: 33631790 DOI: 10.1667/rade-20-00163.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation is widely known to induce various kinds of lens cataracts, of which posterior subcapsular cataracts (PSCs) have the highest prevalence. Despite some studies regarding the epidemiology and biology of radiation-induced PSCs, the mechanism underscoring the formation of this type of lesions and their dose dependency remain uncertain. Within the current study, our team investigated the in vivo characteristics of PSCs in B6C3F1 mice (F1-hybrids of BL6 × C3H) that received 0.5-2 Gy γ-ray irradiation after postnatal day 70. For purposes of assessing lenticular damages, spectral domain optical coherence tomography was utilized, and the visual acuity of the mice was measured to analyze their levels of visual impairment, and histological sections were then prepared in to characterize in vivo phenotypes. Three varying in vivo phenotype anterior and posterior lesions were thus revealed and correlated with the applied doses to understand their marginal influence on the visual acuity of the studied mice. Histological data indicated no significantly increased odds ratios for PSCs below a dose of 1 Gy at the end of the observation time. Furthermore, our team demonstrated that when the frequencies of the posterior and anterior lesions were calculated at early time points, their responses were in accordance with a deterministic model, whereas at later time points, their responses were better described via a stochastic model. The current study will aid in honing the current understanding of radiation-induced cataract formation and contributes greatly to addressing the fundamental questions of lens dose response within the field of radiation biology.
Collapse
Affiliation(s)
- Daniel Pawliczek
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabê de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZB), Neuherberg, Germany
| | - Roy Quinlan
- Department of Biosciences, School of Biological and Medical Sciences, University of Durham, Durham, United Kingdom
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
22
|
Abstract
Historically, the field of radiation chemistry began shortly after the discovery of radioactivity, and its development has been closely related to discoveries in other related fields such as radiation and nuclear physics. Radiolysis of water and radiation chemistry have been very important in elucidating how radiation affects living matter and how it induces DNA damage. Nowadays, we recognize the importance of chemistry to understanding the effects of radiation on cells; however, it took several decades to obtain this insight, and much is still unknown. The radiolysis of water and aqueous solutions have been the subject of much experimental and theoretical research for many decades. One important concept closely related to radiation chemistry is radiation track structure. Track structure results from early physical and physicochemical events that lead to a highly non-homogenous distribution of radiolytic species. Because ionizing radiation creates unstable species that are distributed non-homogenously, the use of conventional reaction kinetics methods does not describe this chemistry well. In recent years, several methods have been developed for simulating radiation chemistry. In this review, we give a brief history of the field and the development of the simulation codes. We review the current methods used to simulate radiolysis of water and radiation chemistry, and we describe several radiation chemistry codes and their applications.
Collapse
Affiliation(s)
- Ianik Plante
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States of America
| |
Collapse
|
23
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Su Y, Wang Y, Yoshinaga S, Zhu W, Tokonami S, Zou J, Tan G, Tsuji M, Akiba S, Sun Q. Lens opacity prevalence among the residents in high natural background radiation area in Yangjiang, China. JOURNAL OF RADIATION RESEARCH 2021; 62:67-72. [PMID: 33006372 PMCID: PMC7779357 DOI: 10.1093/jrr/rraa073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/03/2020] [Indexed: 05/28/2023]
Abstract
The aim of the study was to evaluate the risk and threshold doses of lens opacity among residents exposed to low-dose radiation. Residents aged ≥45 years were recruited from a high natural background radiation (HNBR) area in Yangjiang City and a control area selected from nearby Enping City. Lens opacities (LOPs) were classified according to the Lens Opacities Classification System (LOCS) III system. Face-to-face interviews were conducted to collect information on lifestyles, migration and medical history. Life-time cumulative doses were estimated using gender, age, occupancy factors and environmental radiation doses received indoors and outdoors. Logistic regression analyses were conducted to estimate the dose response and determine thresholds. In the HNBR area, among 479 study participants, 101 (21.1%), 245(51.1%) and 23 cases (4.8%), respectively, of cortical, nuclear and posterior subcapsular (PSC) LOPs were found. In the control area, those types of LOPs were identified among 58 cases (12.6%), 206 cases (51.2%) and 6 cases (1.3%) of 462 examinees, respectively. Cumulative eye lens dose was estimated to be 189.5 ± 36.5 mGy in the HNBR area. Logistic analyses gave odds ratios at 100 mGy of 1.26 [95% confidence interval (CI) 1.00-1.60], 0.81 (95% CI 0.64-1.01) and 1.73 (95% CI 1.05-2.85) for cortical, nuclear and PSC LOPs, respectively. For cortical LOPs, a logistic analysis with a threshold dose gave a threshold estimate of 140 mGy (90% CI 110-160 mGy). The results indicated that population exposed to life-time, low-dose-rate environmental radiation was at an elevated risk of cortical and PSC LOPs. A statistically significant threshold dose was obtained for cortical LOPs and no threshold dose for PSC LOPs.
Collapse
Affiliation(s)
- Yinping Su
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yan Wang
- Linyi Center for Disease Control and Prevention, Linyi, Shandong 276000, China
| | - Shinji Yoshinaga
- Department of Environmetrics and Biometrics. Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Weiguo Zhu
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | | | - Jianming Zou
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Guangxiang Tan
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Mayumi Tsuji
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Suminori Akiba
- Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8520, Japan
| | - Quanfu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
25
|
Kim DY, Lee M, Kim EJ. Involvement of Klotho, TNF‑α and ADAMs in radiation‑induced senescence of renal epithelial cells. Mol Med Rep 2020; 23:22. [PMID: 33179086 PMCID: PMC7673348 DOI: 10.3892/mmr.2020.11660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022] Open
Abstract
While radiation nephropathy is a major problem associated with radiotherapy, the exact mechanisms underlying its pathogenesis and the mediators involved in kidney deterioration remain to be elucidated. In view of the finding that senescence is typically increased post‑irradiation, the present study examined whether ionizing radiation may cause kidney injury by enhancing premature senescence. The present study explored the relevance of the aging suppressor, Klotho, which has anti‑aging activity and is highly expressed in murine renal cells/kidney tissues, under irradiation conditions. Firstly, the effects of radiation on mouse inner medullary collecting duct‑3 (mIMCD‑3) cells and kidney tissues of mice were assessed. Subsequently, the mRNA expression levels of Klotho, TNF‑α and ADAM metallopeptidase domain (ADAM)9/10/17 were analyzed by reverse transcription‑quantitative PCR following exposure to radiation. In addition, the levels of these proteins were measured by western blotting or ELISA. The results revealed that irradiation of mIMCD‑3 cells clearly triggered cellular senescence. Notably, Klotho gene expression was considerably decreased in radiation‑exposed mIMCD‑3 cells and in the kidney tissues of irradiated BALB/c mice, and the corresponding translated protein was consistently expressed following radiation exposure. Moreover, expression of TNF‑α, a negative regulator of Klotho, was significantly increased, whereas ADAM9/10/17, an ectodomain shedding enzyme of Klotho, was decreased in irradiated mIMCD‑3 cells and in the kidney tissues of BALB/c mice. Collectively, these data suggested that TNF‑α‑mediated inhibition of Klotho expression and blockage of soluble Klotho formation via decreased ADAM expression following irradiation may contribute to the development of renal dysfunction through acceleration of radiation‑induced cellular senescence.
Collapse
Affiliation(s)
- Da Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Minyoung Lee
- Department of Radiological and Medico‑Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun Ju Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
26
|
Hamada N, Azizova TV, Little MP. An update on effects of ionizing radiation exposure on the eye. Br J Radiol 2020; 93:20190829. [PMID: 31670577 PMCID: PMC8519632 DOI: 10.1259/bjr.20190829] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
The International Commission on Radiological Protection (ICRP) has considered for over 60 years that the lens of the eye is among the most radiosensitive tissues, and has recommended dose limits for the lens to prevent occurrence of vision impairing cataracts (VICs). Epidemiological evidence that doses much lower than previously thought produce cataracts led ICRP to recommend reducing dose threshold for VICs and reducing an occupational equivalent dose limit for the lens in 2011, when only a single threshold of 0.5 Gy was recommended. On the basis of epidemiological evidence, ICRP assumed progression of minor opacities into VICs and no dose rate effect. This contrasts with previously recommended separate thresholds for minor opacities and VICs, and for different exposure scenarios. Progression was assumed based on similar risks of cataracts and cataract surgery in Japanese atomic bomb survivors. The absence of dose rate effect derived from the observed similar thresholds for protracted exposures in Chernobyl cleanup workers and in atomic bomb survivors. Since 2011, there has been an increasing body of epidemiological evidence relating to cataracts and other ocular diseases (i.e. glaucoma and macular degeneration), particularly at low doses and low dose rates. This review paper gives an overview of the scientific basis of the 2011 ICRP recommendation, discusses the plausibility of these two assumptions in the light of emerging scientific evidence, and considers the radiosensitivity of the lens among ocular structures.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Tamara V. Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, 456780, Ozersk, Russia
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, MSC 9778, Bethesda, MD 20892-9778, USA
| |
Collapse
|
27
|
Peralta AA, Link MS, Schwartz J, Luttmann-Gibson H, Dockery DW, Blomberg A, Wei Y, Mittleman MA, Gold DR, Laden F, Coull BA, Koutrakis P. Exposure to Air Pollution and Particle Radioactivity With the Risk of Ventricular Arrhythmias. Circulation 2020; 142:858-867. [PMID: 32795087 PMCID: PMC7484430 DOI: 10.1161/circulationaha.120.046321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Individuals are exposed to air pollution and ionizing radiation from natural sources through inhalation of particles. This study investigates the association between cardiac arrhythmias and short-term exposures to fine particulate matter (particulate matter ≤2.5 µm aerodynamic diameter; PM2.5) and particle radioactivity. METHODS Ventricular arrhythmic events were identified among 176 patients with dual-chamber implanted cardioverter-defibrillators in Boston, Massachusetts between September 2006 and June 2010. Patients were assigned exposures based on residential addresses. Daily PM2.5 levels were estimated at 1-km×1-km grid cells from a previously validated prediction model. Particle gross β activity was used as a surrogate for particle radioactivity and was measured from several monitoring sites by the US Environmental Protection Agency's monitoring network. The association of the onset of ventricular arrhythmias (VA) with 0- to 21-day moving averages of PM2.5 and particle radioactivity (2 single-pollutant models and a 2-pollutant model) before the event was examined using time-stratified case-crossover analyses, adjusted for dew point and air temperatures. RESULTS A total of 1,050 VA were recorded among 91 patients, including 123 sustained VA among 25 of these patients. In the single-pollutant model of PM2.5, each interquartile range increase in daily PM2.5 levels for a 21-day moving average was associated with 39% higher odds of a VA event (95% CI, 12%-72%). In the single-pollutant model of particle radioactivity, each interquartile range increase in particle radioactivity for a 2-day moving average was associated with 13% higher odds of a VA event (95% CI, 1%-26%). In the 2-pollutant model, for the same averaging window of 21 days, each interquartile range increase in daily PM2.5 was associated with an 48% higher odds of a VA event (95% CI, 15%-90%), and each interquartile range increase of particle radioactivity with a 10% lower odds of a VA event (95% CI, -29% to 14%). We found that with higher levels of particle radioactivity, the effect of PM2.5 on VAs is reduced. CONCLUSIONS In this high-risk population, intermediate (21-day) PM2.5 exposure was associated with higher odds of a VA event onset among patients with known cardiac disease and indication for implanted cardioverter-defibrillator implantation independently of particle radioactivity.
Collapse
Affiliation(s)
- Adjani A. Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Mark S. Link
- UTSouthwestern Medical Center, Department of Internal Medicine, Division of Cardiology, Cardiac Arrhythmia Service, Dallas, TX
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Douglas W. Dockery
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Annelise Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Murray A. Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
28
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
29
|
Little MP, Patel A, Hamada N, Albert P. Analysis of Cataract in Relationship to Occupational Radiation Dose Accounting for Dosimetric Uncertainties in a Cohort of U.S. Radiologic Technologists. Radiat Res 2020; 194:153-161. [PMID: 32845990 PMCID: PMC10656143 DOI: 10.1667/rr15529.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/07/2020] [Indexed: 11/19/2023]
Abstract
Cataract is one of the major morbidities in the U.S. population and it has long been appreciated that high and acutely delivered radiation doses of 1 Gy or more can induce cataract. Some more recent studies, in particular those of the U.S. Radiologic Technologists, have suggested that cataract may be induced by much lower, chronically delivered doses of ionizing radiation. It is well recognized that dosimetric measurement error can substantially alter the shape of the radiation dose-response relationship and thus, the derived study risk estimates, and can also inflate the variance of the estimates. In the current study, we evaluate the impact of uncertainties in eye-lens absorbed doses on the estimated risk of cataract in the U.S. Radiologic Technologists' Monte Carlo Dosimetry System, using both absolute and relative risk models. Among 11,345 cases we show that the inflation in the standard error for the excess relative risk (ERR) is generally modest, at most approximately 20% of the unadjusted standard error, depending on the model used for the baseline risk. The largest adjustment results from use of relative risk models, so that the ERR/Gy and its 95% confidence intervals change from 1.085 (0.645, 1.525) to 1.085 (0.558, 1.612) after adjustment. However, the inflation in the standard error of the excess absolute risk (EAR) coefficient is generally minimal, at most approximately 0.04% of the standard error.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD 20892-9778, USA
| | - Ankur Patel
- Radiation Epidemiology Branch, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD 20892-9778, USA
- Biostatistics Branch, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD 20892-9778, USA
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Paul Albert
- Biostatistics Branch, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD 20892-9778, USA
| |
Collapse
|
30
|
Shafiee M, Borzoueisileh S, Rashidfar R, Dehghan M, Jaafarian Sisakht Z. Chromosomal aberrations in C-arm fluoroscopy, CT-scan, lithotripsy, and digital radiology staff. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503131. [PMID: 32087852 DOI: 10.1016/j.mrgentox.2020.503131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 11/16/2022]
Abstract
We have assessed chromosome-type aberrations and micronuclei in the peripheral lymphocytes of personnel working with C-arm fluoroscopy, multi-slice CT-scan, lithotripsy, and digital radiology medical procedures. The study population comprised of 46 exposed workers and 35 controls matched for age, gender, and other confounding factors. Chromosome-type aberrations and micronuclei were analyzed and compared with occupational dosimetry data. The highest frequency of both chromosome aberrations (1.62 CA/100 cells) and MN (MN = 7.47 ± 2.55) was observed in the operating room group. According to occupational dosimetry, surgeons and medical staff received 0-2.99 mSv over the previous year, well below the limit established by the International Committee on Radiation Protection. An increased level of chromosomal aberrations was observed among workers exposed in the operating rooms. We recommend that operating room radiation safety programs be improved and better supervised, in particular for orthopedic surgeons and personnel performing fluoroscopically guided procedures.
Collapse
Affiliation(s)
- Mohsen Shafiee
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajad Borzoueisileh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Razieh Rashidfar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Dehghan
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | | |
Collapse
|
31
|
Little MP, Cahoon EK, Kitahara CM, Simon SL, Hamada N, Linet MS. Occupational radiation exposure and excess additive risk of cataract incidence in a cohort of US radiologic technologists. Occup Environ Med 2020; 77:1-8. [PMID: 31792080 PMCID: PMC10673645 DOI: 10.1136/oemed-2019-105902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Previous analyses of cataract in radiation-exposed populations have assessed relative risk; radiogenic excess additive risk (EAR), arguably of more public health importance, has not been estimated. Previous analysis of a large prospective cohort of US radiologic technologists (USRT) quantified excess relative risk of cataract in relation to occupational radiation dose. We aim to assess EARs of cataract. METHODS We estimated EARs of cataract/cataract surgery in the USRT cohort using generalised additive models in relation to occupational radiation exposure, and assessed risk modification by a priori-selected cataract risk factors (diabetes, body mass index, smoking, race, sex, birth-year, ultraviolet B (UVB) radiation exposure). RESULTS There were 11 345 cataract diagnoses and 5440 of cataract surgery during 832 462 and 888 402 person-years of follow-up, respectively. Cumulative occupational radiation exposure was associated with self-reported cataract, but not with cataract surgery, with EAR/104 person-year Gy=94 (95% CI: 47 to 143, p<0.001) and EAR/104 person-year Gy=13 (95% CI: <0 to 57, p=0.551), respectively. There was marked (p<0.001) variation of EAR by age and by diabetes status, with risk higher among persons ≥75 years and diabetics. There were indications of elevated risk among those with higher UVB radiation (p=0.045), whites (p=0.056) and among those with higher levels of cigarette smoking (p=0.062). Elevated additive risk was observed for estimated occupational radiation eye-lens doses <100 mGy (p=0.004) with no dose-response curvature (p=0.903). CONCLUSIONS The elevated additive risks associated with low-dose radiation, if confirmed elsewhere, have important public health and clinical implications for radiation workers as well as regulatory measures.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven L Simon
- Epidemiology and Biostatistics Program, NCI, Bethesda, Maryland, USA
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Ngetu L, Marais W, Rose A, Rae WI. Ophthalmic manifestations of ionising radiation among interventionalists. AFRICAN VISION AND EYE HEALTH 2019. [DOI: 10.4102/aveh.v78i1.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background: Ionising radiation (IR) is an occupational hazard for interventionalists. Dry eye syndrome may develop. There may be damage to the corneal epithelium, causing irritation and ulceration. Radiation-induced cataracts commonly develop in the posterior sub-capsular (PSC) region of the lens and are more common in the left eye.Aim: The aim of this study was to describe the ophthalmological findings in South African interventionalists occupationally exposed to IR.Setting: This study was conducted in South Africa.Methods: A prospective cross-sectional study was conducted. Interventional radiologists (25), adult cardiologists (42) and paediatric cardiologists (31) were recruited at conferences and included in the study. Convenience sampling was used. Participants completed a survey that collected data on their demographics, their cataract risk factors and co-morbid diseases, their occupational history, their radiation safety practices and their training in occupational history. Participants’ eyes were examined using a slit lamp after dilation of the eyes. Ethics clearance was obtained and each participant gave informed consent. A descriptive analysis was done.Results: The median age of the 98 interventionalists screened was 43.5 years. They worked with radiation for a median of 7.5 years. Cataracts occurred in the left eye of 17 (17.3%) participants and in the right eye of nine (9.2%). There were five (5.1%) PSC cataracts in the left eye and one (1%) in the right eye. The vitreous was abnormal in 19.4% of participants. The tear break-up time was abnormal in 48% of participants.Conclusion: Ionising radiation is an occupational hazard posing a risk to interventionalists’ eyes. They are at increased risk of cataracts and dry eye syndrome, which can affect their occupational performance and quality of life. Education can positively influence the radiation safety practices of interventionalists that could reduce the detrimental effects of IR on their eyes.
Collapse
|
33
|
Harbron RW, Ainsbury EA, Barnard SGR, Lee C, McHugh K, Berrington de González A, Edyvean S, Pearce MS. Radiation dose to the lens from CT of the head in young people. Clin Radiol 2019; 74:816.e9-816.e17. [PMID: 31375261 DOI: 10.1016/j.crad.2019.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
AIM To determine cumulative scan frequencies and estimate lens dose for paediatric computed tomography (CT) head examinations in the context of potential cataract risk. MATERIALS AND METHODS The cumulative number of head-region CT examinations among a cohort of 410,997 children and young adults who underwent CT in the UK between 1985 and 2014 was calculated. Images from a sample of these head examinations (n=668) were reviewed to determine the level of eye inclusion. Lens dose per scan was estimated using the computer program, NCICT V1.0, for different levels of eye inclusion and exposure settings typical of past and present clinical practice. RESULTS In total 284,878 patients underwent 448,108 head-region CT examinations. The majority of patients (72%) had a single recorded head-region examination. A small subset (∼1%, n=2,494) underwent ≥10 examinations, while 0.1% (n=387) underwent ≥20. The lens was included within the imaged region for 57% of reviewed routine head examinations. In many cases, this appeared to be intentional, i.e. protocol driven. In others, there appeared to have been an attempt to exclude the eyes through gantry angulation. Estimated lens doses were 20-75 mGy (mean: 47 mGy) where the eye was fully included within the examination range and 2-7 mGy (mean: 3.1 mGy) where the lens was fully excluded. Potential cumulative lens doses ranged from ∼3 mGy to ∼4,700 mGy, with 2,335 patients potentially receiving >500 mGy. CONCLUSION The majority of young people will receive cumulative lens doses well below 500 mGy, meaning the risk of cataract induction is likely to be very small.
Collapse
Affiliation(s)
- R W Harbron
- Institute of Health and Society, Newcastle University, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne NE1 4LP, UK; NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Newcastle University, UK.
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, UK
| | - S G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, UK
| | - C Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - K McHugh
- Radiology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - A Berrington de González
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Edyvean
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, UK
| | - M S Pearce
- Institute of Health and Society, Newcastle University, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne NE1 4LP, UK; NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Newcastle University, UK
| |
Collapse
|
34
|
Sakashita T, Sato T, Hamada N. A biologically based mathematical model for spontaneous and ionizing radiation cataractogenesis. PLoS One 2019; 14:e0221579. [PMID: 31442279 PMCID: PMC6707595 DOI: 10.1371/journal.pone.0221579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cataracts have long been known, but a biomathematical model is still unavailable for cataratogenesis. There has been a renewed interest in ionizing radiation cataracts because the recent international recommendation of the reduced lens dose limit stimulated the discussion toward its regulatory implementation in various countries. Nevertheless, a relationship between radiation (dose and dose rate) and response (e.g., incidence, onset and progression) remains incompletely understood, raising the need for a risk-predictive mathematical model. We here report for the first time an in silico model for cataractogenesis. First, a simplified cell proliferation model was developed for human lens growth based on stem and progenitor cell proliferation as well as epithelial-fiber cell differentiation. Then, a model for spontaneous cataractogenesis was developed to reproduce the human data on a relationship between age and cataract incidence. Finally, a model for radiation cataractogenesis was developed that can reproduce the human data on a relationship between dose and cataract onset at various ages, which was further applied to estimate cataract incidence following chronic lifetime exposure. The model can serve as the foundation for further development of the risk-predictive model for cataractogenesis along with additional considerations of various biological mechanisms and epidemiological datasets.
Collapse
Affiliation(s)
- Tetsuya Sakashita
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Watanuki, Takasaki, Gunma, Japan
| | - Tatsuhiko Sato
- Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Shirakata, Tokai, Ibaraki, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Iwado-kita, Komae, Tokyo, Japan
| |
Collapse
|
35
|
He Y, Thummuri D, Zheng G, Okunieff P, Citrin DE, Vujaskovic Z, Zhou D. Cellular senescence and radiation-induced pulmonary fibrosis. Transl Res 2019; 209:14-21. [PMID: 30981698 PMCID: PMC6857805 DOI: 10.1016/j.trsl.2019.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a serious treatment complication that affects about 9%-30% cancer patients receiving radiotherapy for thoracic tumors. RIPF is characterized by progressive and irreversible destruction of lung tissues and deterioration of lung function, which can compromise quality of life and eventually lead to respiratory failure and death. Unfortunately, the mechanisms by which radiation causes RIPF have not been well established nor has an effective treatment for RIPF been developed. Recently, an increasing body of evidence suggests that induction of senescence by radiation may play an important role in RIPF and clearance of senescent cells (SnCs) with a senolytic agent, small molecule that can selectively kill SnCs, has the potential to be developed as a novel therapeutic strategy for RIPF. This review discusses some of these new findings to promote further study on the role of cellular senescence in RIPF and the development of senolytic therapeutics for RIPF.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Dinesh Thummuri
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Paul Okunieff
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida
| | - Deborah E Citrin
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, College of Medicine, University of Maryland, Baltimore, Maryland
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
36
|
Camberos V, Baio J, Bailey L, Hasaniya N, Lopez LV, Kearns-Jonker M. Effects of Spaceflight and Simulated Microgravity on YAP1 Expression in Cardiovascular Progenitors: Implications for Cell-Based Repair. Int J Mol Sci 2019; 20:E2742. [PMID: 31167392 PMCID: PMC6600678 DOI: 10.3390/ijms20112742] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023] Open
Abstract
Spaceflight alters many processes of the human body including cardiac function and cardiac progenitor cell behavior. The mechanism behind these changes remains largely unknown; however, simulated microgravity devices are making it easier for researchers to study the effects of microgravity. To study the changes that take place in cardiac progenitor cells in microgravity environments, adult cardiac progenitor cells were cultured aboard the International Space Station (ISS) as well as on a clinostat and examined for changes in Hippo signaling, a pathway known to regulate cardiac development. Cells cultured under microgravity conditions, spaceflight-induced or simulated, displayed upregulation of downstream genes involved in the Hippo pathway such as YAP1 and SOD2. YAP1 is known to play a role in cardiac regeneration which led us to investigate YAP1 expression in a sheep model of cardiovascular repair. Additionally, to mimic the effects of microgravity, drug treatment was used to induce Hippo related genes as well as a regulator of the Hippo pathway, miRNA-302a. These studies provide insight into the changes that occur in space and how the effects of these changes relate to cardiac regeneration studies.
Collapse
Affiliation(s)
- Victor Camberos
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jonathan Baio
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Leonard Bailey
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Nahidh Hasaniya
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
37
|
Rose A, Rae WID. Personal Protective Equipment Availability and Utilization Among Interventionalists. Saf Health Work 2019; 10:166-171. [PMID: 31297278 PMCID: PMC6598824 DOI: 10.1016/j.shaw.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE This study explored personal protective equipment (PPE) availability and PPE utilization among interventionalists in the catheterization laboratory, which is a highly contextualized workplace. METHODS This is a cross-sectional study using mixed methods. Participants (108) completed a survey. A hyperlink was sent to the participants, or they were asked to complete a paper-based survey. Purposively selected participants (54) were selected for individual (30) or group (six) interviews. The interviews were conducted at conferences, or appointments were made to see the participants. Logistic regression analysis was performed. The qualitative data were analyzed thematically. RESULTS Lead glasses were consistently used 10.2% and never used 61.1% of the time. All forms of PPE were inconsistently used by 92.6% of participants. Women were 4.3 times more likely to report that PPE was not available. PPE compliance was related to fit and availability. CONCLUSIONS PPE use was inconsistent and not always available. Improving the culture of radiation protection in catheterization laboratories is essential to improve PPE compliance with the aim of protecting patients and operators. This culture of radiation protection must include all those involved including the users of PPE and the administrators and managers who are responsible for supplying sufficient, appropriate, fitting PPE for all workers requiring such protection.
Collapse
Affiliation(s)
- André Rose
- Department of Community Health, University of the Free State, South Africa
| | | |
Collapse
|
38
|
Ricciotti E, Sarantopoulou D, Grant GR, Sanzari JK, Krigsfeld GS, Kiliti AJ, Kennedy AR, Grosser T. Distinct vascular genomic response of proton and gamma radiation-A pilot investigation. PLoS One 2019; 14:e0207503. [PMID: 30742630 PMCID: PMC6370185 DOI: 10.1371/journal.pone.0207503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
The cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge. We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5–200 cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes that showed a dose response. While fewer genes were dose-responsive to proton than gamma radiation (29 vs. 194 genes; q-value ≤ 0.1), the magnitude of the effect was greater. Highly responsive genes were enriched for radiation response pathways (DNA damage, apoptosis, cellular stress and inflammation; p-value ≤ 0.01). Gamma, but not proton radiation induced additionally genes in vasculature specific pathways. Genes responsive to both radiation types showed almost perfectly superimposable dose-response relationships. Despite the activation of canonical radiation response pathways by both radiation types, we detected marked differences in the genomic response of the murine aorta. Models of cardiovascular risk based on photon radiation may not accurately predict the risk associated with proton radiation.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel S. Krigsfeld
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amber J. Kiliti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Cataractogenic load – A concept to study the contribution of ionizing radiation to accelerated aging in the eye lens. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:68-81. [DOI: 10.1016/j.mrrev.2019.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
40
|
Little MP, Kitahara CM, Cahoon EK, Bernier MO, Velazquez-Kronen R, Doody MM, Borrego D, Miller JS, Alexander BH, Simon SL, Preston DL, Hamada N, Linet MS, Meyer C. Occupational radiation exposure and risk of cataract incidence in a cohort of US radiologic technologists. Eur J Epidemiol 2018; 33:1179-1191. [PMID: 30151727 PMCID: PMC10645574 DOI: 10.1007/s10654-018-0435-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022]
Abstract
It has long been known that relatively high-dose ionising radiation exposure (> 1 Gy) can induce cataract, but there has been no evidence that this occurs at low doses (< 100 mGy). To assess low-dose risk, participants from the US Radiologic Technologists Study, a large, prospective cohort, were followed from date of mailed questionnaire survey completed during 1994-1998 to the earliest of self-reported diagnosis of cataract/cataract surgery, cancer other than non-melanoma skin, or date of last survey (up to end 2014). Cox proportional hazards models with age as timescale were used, adjusted for a priori selected cataract risk factors (diabetes, body mass index, smoking history, race, sex, birth year, cumulative UVB radiant exposure). 12,336 out of 67,246 eligible technologists reported a history of diagnosis of cataract during 832,479 person years of follow-up, and 5509 from 67,709 eligible technologists reported undergoing cataract surgery with 888,420 person years of follow-up. The mean cumulative estimated 5-year lagged eye-lens absorbed dose from occupational radiation exposures was 55.7 mGy (interquartile range 23.6-69.0 mGy). Five-year lagged occupational radiation exposure was strongly associated with self-reported cataract, with an excess hazard ratio/mGy of 0.69 × 10-3 (95% CI 0.27 × 10-3 to 1.16 × 10-3, p < 0.001). Cataract risk remained statistically significant (p = 0.030) when analysis was restricted to < 100 mGy cumulative occupational radiation exposure to the eye lens. A non-significantly increased excess hazard ratio/mGy of 0.34 × 10-3 (95% CI - 0.19 × 10-3 to 0.97 × 10-3, p = 0.221) was observed for cataract surgery. Our results suggest that there is excess risk for cataract associated with radiation exposure from low-dose and low dose-rate occupational exposures.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA.
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
| | - Marie-Odile Bernier
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
- Laboratory of Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Raquel Velazquez-Kronen
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
| | - Michele M Doody
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
| | - David Borrego
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
| | - Jeremy S Miller
- Information Management Services, Silver Spring, MD, 20904, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55409, USA
| | - Steven L Simon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
| | | | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan
| | - Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892-9778, USA
| | - Craig Meyer
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55409, USA
| |
Collapse
|
41
|
Dauer LT. Seeing through a glass darkly and taking the next right steps. Eur J Epidemiol 2018; 33:1135-1137. [PMID: 30390232 DOI: 10.1007/s10654-018-0458-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
42
|
Barnard SGR, Moquet J, Lloyd S, Ellender M, Ainsbury EA, Quinlan RA. Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. Int J Radiat Biol 2018; 94:1116-1124. [PMID: 30359158 DOI: 10.1080/09553002.2018.1532609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Epidemiological evidence regarding the radiosensitivity of the lens of the eye and radiation cataract development has led to changes in the EU Basic Safety Standards for protection of the lens against ionizing radiation. However, mechanistic details of lens radiation response pathways and their significance for cataractogenesis remain unclear. Radiation-induced DNA damage and the potential impairment of repair pathways within the lens epithelium, a cell monolayer that covers the anterior hemisphere of the lens, are likely to be involved. MATERIALS AND METHODS In this work, the lens epithelium has been analyzed for its DNA double-strand break (DSB) repair response to ionizing radiation. The responses of epithelial cells located at the anterior pole (central region) have been compared to at the very periphery of the monolayer (germinative and transitional zones). Described here are the different responses in the two regions and across four strains (C57BL/6, 129S2, BALB/c and CBA/Ca) over a low dose (0-25 mGy) in-vivo whole body X-irradiation range up to 24 hours post exposure. RESULTS DNA damage and repair as visualized through 53BP1 staining was present across the lens epithelium, although repair kinetics appeared non-uniform. Epithelial cells in the central region have significantly more 53BP1 foci. The sensitivities of different mouse strains have also been compared. CONCLUSIONS 129S2 and BALB/c showed higher levels of DNA damage, with BALB/c showing significantly less inter-individual variability and appearing to be a more robust model for future DNA damage and repair studies. As a result of this study, BALB/c was identified as a suitable radiosensitive lens strain to detect and quantify early low dose ionizing radiation DNA damage effects in the mouse eye lens specifically, as an indicator of cataract formation.
Collapse
Affiliation(s)
- S G R Barnard
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,b Department of Biosciences , Durham University , Durham , UK
| | - J Moquet
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - S Lloyd
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,c School of Biosciences , The University of Birmingham , Edgbaston , UK
| | - M Ellender
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - E A Ainsbury
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - R A Quinlan
- b Department of Biosciences , Durham University , Durham , UK
| |
Collapse
|
43
|
Yahyapour R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Farhood B, Nouruzi F, Shabeeb D, Eleojo Musa A, Najafi M. Metformin Protects Against Radiation-Induced Heart Injury and Attenuates the Upregulation of Dual Oxidase Genes Following Rat's Chest Irradiation. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:193-202. [PMID: 31565651 PMCID: PMC6744616 DOI: 10.22088/ijmcm.bums.7.3.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023]
Abstract
Radiation-induced heart toxicity is one of the serious side effects after a radiation disaster or radiotherapy for patients with chest cancers, leading to a reduction in the quality of life of the patients. Evidence has shown that infiltration of inflammatory cells plays a key role in the development of functional damages to the heart via chronic upregulation of some pro-fibrotic and pro-inflammatory cytokines. These changes are associated with continuous free radical production and increased stiffness of heart muscle. IL-4 and IL-13 are two important pro-fibrotic cytokines which contribute to the side effects of ionizing radiation exposure. Recent studies have proposed that IL-4 through upregulation of DUOX2, and IL-13 via stimulation of DUOX1 gene expression, are involved in the development of radiation late effects. In the present study, we aimed to detect changes in the expression of these pathways following irradiation of rat’s heart. Furthermore, we evaluated the possible protective effect of metformin on the development of these abnormal changes. 20 male rats were divided into 4 groups (control, radiation, metformin treated, metformin + radiation). These rats were irradiated with 15 Gy 60Co gamma rays, and sacrificed after 10 weeks for evaluation of the changes in the expression of IL4R1, IL-13R2a, DUOX1 and DUOX2. In addition, the levels of IL-4 and IL-13 cytokines, as well as infiltration of macrophages and lymphocytes were detected. Results showed an upregulation of both DUOX1 and DUOX2 pathways in the presence of metformin, while the level of IL-13 did not show any significant change. This was associated with infiltration of macrophages and lymphocytes. Also, treatment with metformin could significantly attenuate accumulation of inflammatory cells, and upregulate these pathways. Therefore, suppression of dual oxidase genes by metformin may be a contributory factor to its protective effect.
Collapse
Affiliation(s)
- Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Wojcik A, Bouffler S, Hauptmann M, Rajaraman P. Considerations on the use of the terms radiosensitivity and radiosusceptibility. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:N25-N29. [PMID: 29877193 DOI: 10.1088/1361-6498/aacb03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The separate use of the terms 'radiosensitivity' and 'radiosusceptibility' has been suggested to describe variability in the risk of, respectively, adverse tissue reactions (deterministic effect) following radiotherapy and radiation-induced cancer (stochastic effect). The aim of this note is to present arguments against such distinction. We feel that it is premature to make a concrete final judgement on these definitions because of the limited understanding of the mechanisms underlying individual sensitivity to both radiation-related cancers and radiation-related tissue injury. Moreover, the exclusive application of 'radiosensitivity' in relation to deterministic effects and the term 'radiosusceptibility' in relation to cancer carries the risk of being wrongly interpreted as evidence for a high, genetically driven sensitivity to radiation in all patients who develop adverse tissue reactions and a high genetic susceptibility to cancer in those who develop radiation-induced malignancies. There is a need for further research to better define these phenomena and their interrelationships.
Collapse
Affiliation(s)
- Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Sweden and Institute for Biology, Jan Kochanowski University, Kielce, Poland
| | | | | | | |
Collapse
|
45
|
Zhao Y, Yan N, Yu S, Zhang T, Wang C, He S, Gu G. Reduced Radiation Exposure and Puncture Time of Percutaneous Transpedicular Puncture with Real-Time Ultrasound Volume Navigation. World Neurosurg 2018; 119:e997-e1005. [PMID: 30121413 DOI: 10.1016/j.wneu.2018.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The present study introduced ultrasound volume navigation (UVN) to reduce the radiation exposure and puncture time of percutaneous transpedicular puncture in percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). METHODS We retrospectively reviewed the medical records of patients with osteoporotic vertebral compression fracture who had undergone PVP or PKP guided by UVN or fluoroscopy from September 2017 to December 2017. RESULTS We enrolled 10 patients (6 women, 4 men) with 24 pedicles involved in the present study. Significant reductions in fluoroscopy frequency (2.58 vs. 17.42; P < 0.01), exposure time (2.36 vs. 15.69 seconds; P < 0.01), and puncture time (4.13 vs. 19.21 minutes; P < 0.01) for each pedicle were observed in the UVN group compared with the fluoroscopy group. Obvious correlations among fluoroscopy frequency, exposure time, and puncture time for each pedicle were observed (P < 0.01). The visual analog scale scores and Oswestry Disability Index were both significantly improved after the procedures. All patients achieved excellent or good clinical outcomes. No complications were observed in any patient. CONCLUSIONS UVN could obviously reduce the radiation exposure and puncture time of percutaneous transpedicular puncture in PVP and PKP.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Orthopedic Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ning Yan
- Orthopedic Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shunzhi Yu
- Orthopedic Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianqi Zhang
- Orthopedic Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanfeng Wang
- Orthopedic Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shisheng He
- Orthopedic Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Guangfei Gu
- Orthopedic Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
46
|
Little MP, Kitahara CM, Cahoon EK, Bernier MO, Velazquez-Kronen R, Doody MM, Borrego D, Miller JS, Alexander BH, Simon SL, Preston DL, Meyer C, Linet MS, Hamada N. Occupational radiation exposure and glaucoma and macular degeneration in the US radiologic technologists. Sci Rep 2018; 8:10481. [PMID: 29992993 PMCID: PMC6041262 DOI: 10.1038/s41598-018-28620-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/21/2018] [Indexed: 12/02/2022] Open
Abstract
There are well-documented associations of glaucoma with high-dose radiation exposure, but only a single study suggesting risk of glaucoma, and less conclusively macular degeneration, associated with moderate-dose exposure. We assessed risk of glaucoma and macular degeneration associated with occupational eye-lens radiation dose, using participants from the US Radiologic Technologists Study, followed from the date of surveys in 1994-1998, 2003-2005 to the earliest of diagnosis of glaucoma or macular degeneration, cancer other than non-melanoma skin cancer, or date of last survey (2012-2014). We excluded those with baseline disease or previous radiotherapy history. Cox proportional hazards models with age as timescale were used. There were 1631 cases of newly self-reported doctor-diagnosed cases of glaucoma and 1331 of macular degeneration among 69,568 and 69,969 eligible subjects, respectively. Estimated mean cumulative eye-lens absorbed dose from occupational radiation exposures was 0.058 Gy. The excess relative risk/Gy for glaucoma was -0.57 (95% CI -1.46, 0.60, p = 0.304) and for macular degeneration was 0.32 (95% CI -0.32, 1.27, p = 0.381), suggesting that there is no appreciable risk for either endpoint associated with low-dose and low dose-rate radiation exposure. Since this is the first examination of glaucoma and macular degeneration associated with low-dose radiation exposure, this result needs to be replicated in other low-dose studies.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA.
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
| | - Marie-Odile Bernier
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
- Laboratory of Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Raquel Velazquez-Kronen
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
| | - Michele M Doody
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
| | - David Borrego
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
| | - Jeremy S Miller
- Information Management Services, Silver Spring, Maryland, 20904, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, 55409, USA
| | - Steven L Simon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
| | | | - Craig Meyer
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, 55409, USA
| | - Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-9778, USA
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan
| |
Collapse
|
47
|
Vaiserman A, Koliada A, Zabuga O, Socol Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose Response 2018; 16:1559325818796331. [PMID: 30263019 PMCID: PMC6149023 DOI: 10.1177/1559325818796331] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
Health impacts of low-dose ionizing radiation are significant in important fields such as X-ray imaging, radiation therapy, nuclear power, and others. However, all existing and potential applications are currently challenged by public concerns and regulatory restrictions. We aimed to assess the validity of the linear no-threshold (LNT) model of radiation damage, which is the basis of current regulation, and to assess the justification for this regulation. We have conducted an extensive search in PubMed. Special attention has been given to papers cited in comprehensive reviews of the United States (2006) and French (2005) Academies of Sciences and in the United Nations Scientific Committee on Atomic Radiation 2016 report. Epidemiological data provide essentially no evidence for detrimental health effects below 100 mSv, and several studies suggest beneficial (hormetic) effects. Equally significant, many studies with in vitro and in animal models demonstrate that several mechanisms initiated by low-dose radiation have beneficial effects. Overall, although probably not yet proven to be untrue, LNT has certainly not been proven to be true. At this point, taking into account the high price tag (in both economic and human terms) borne by the LNT-inspired regulation, there is little doubt that the present regulatory burden should be reduced.
Collapse
|
48
|
Baljinnyam E, Venkatesh S, Gordan R, Mareedu S, Zhang J, Xie LH, Azzam EI, Suzuki CK, Fraidenraich D. Effect of densely ionizing radiation on cardiomyocyte differentiation from human-induced pluripotent stem cells. Physiol Rep 2018; 5:5/15/e13308. [PMID: 28801517 PMCID: PMC5555881 DOI: 10.14814/phy2.13308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022] Open
Abstract
The process of human cardiac development can be faithfully recapitulated in a culture dish with human pluripotent stem cells, where the impact of environmental stressors can be evaluated. The consequences of ionizing radiation exposure on human cardiac differentiation are largely unknown. In this study, human-induced pluripotent stem cell cultures (hiPSCs) were subjected to an external beam of 3.7 MeV α-particles at low mean absorbed doses of 0.5, 3, and 10 cGy. Subsequently, the hiPSCs were differentiated into beating cardiac myocytes (hiPSC-CMs). Pluripotent and cardiac markers and morphology did not reveal differences between the irradiated and nonirradiated groups. While cell number was not affected during CM differentiation, cell number of differentiated CMs was severely reduced by ionizing radiation in a dose-responsive manner. β-adrenergic stimulation causes calcium (Ca2+) overload and oxidative stress. Although no significant increase in Ca2+ transient amplitude was observed in any group after treatment with 1 μmol/L isoproterenol, the incidence of spontaneous Ca2+ waves/releases was more frequent in hiPSC-CMs of the irradiated groups, indicating arrhythmogenic activities at the single cell level. Increased transcript expression of mitochondrial biomarkers (LONP1, TFAM) and mtDNA-encoded genes (MT-CYB, MT-RNR1) was detected upon differentiation of hiPSC-CMs suggesting increased organelle biogenesis. Exposure of hiPSC-CM cultures to 10 cGy significantly upregulated MT-CYB and MT-RNR1 expression, which may reflect an adaptive response to ionizing radiation. Our results indicate that important aspects of differentiation of hiPSCs into cardiac myocytes may be affected by low fluences of densely ionizing radiations such as α-particles.
Collapse
Affiliation(s)
- Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Satvik Mareedu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| |
Collapse
|
49
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
50
|
Jourdain JR, Landon G, Clero E, Doroshchenko V, Silenok A, Kurnosova I, Butsenin A, Denjoy I, Franck D, Heuze JP, Gourmelon P. Is exposure to ionising radiation associated with childhood cardiac arrhythmia in the Russian territories contaminated by the Chernobyl fallout? A cross-sectional population-based study. BMJ Open 2018; 8:e019031. [PMID: 29581199 PMCID: PMC5875654 DOI: 10.1136/bmjopen-2017-019031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate childhood cardiac arrhythmia and chronic exposure to caesium-137 (137Cs) resulting from the Chernobyl accident. DESIGN Prospective cross-sectional study using exposed/unexposed design conducted in the Bryansk region from May 2009 to May 2013 on children selected on the basis of 137Cs soil deposition: control territories ([137Cs]<37 kBq per square metre, where children were considered as unexposed) and contaminated territories ([137Cs]>555 kBq per square metre, where children were considered as exposed). SETTING Russian territories affected by the Chernobyl fallout (Bryansk region). PARTICIPANTS This cross-sectional study included 18 152 children aged 2-18 years and living in the Bryansk region (Russia). MAIN OUTCOME MEASURES All children received three medical examinations (ECG, echocardiography and 137Cs whole-body activity measurement) and some of them were given with a 24-hour Holter monitoring and blood tests. RESULTS Cardiac arrhythmia was diagnosed in 1172 children living in contaminated territories and 1354 children living in control territories. The crude prevalence estimated to 13.3% in contaminated territories was significantly lower than in control territories with 15.2% over the period 2009-2013 (P<0.001). Considering 137Cs whole-body burden as exposure, cardiac arrhythmia was found in 449 contaminated children and 2077 uncontaminated children, corresponding to an estimated crude prevalence of 14.5% and 14.2%, respectively, which does not differ significantly (P=0.74). Also, we investigated the association between territory, exposure to 137Cs and cardiac arrhythmia: the adjusted OR was not significant (0.90 with 95% CI 0.81 to 1.00; P=0.06) for the territory. For 137Cs whole-body burden, the ORs close to 1 did not reach statistical significance (P for trend=0.97). CONCLUSION This study does not observe an association between cardiac arrhythmia and 137Cs deposition levels in the Bryansk region exposed to Chernobyl fallout. The suspected increase of cardiac arrhythmia in children exposed to Chernobyl fallout is not confirmed.
Collapse
Affiliation(s)
- Jean-Rene Jourdain
- Division of Radiological Protection and Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Geraldine Landon
- Division of Radiological Protection and Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Enora Clero
- Division of Radiological Protection and Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Aleksandr Silenok
- Department of Cardiology, Bryansk Diagnostic Center, Bryansk, Russia
| | - Irina Kurnosova
- Department of Cardiology, Bryansk Diagnostic Center, Bryansk, Russia
| | - Andrei Butsenin
- Department of Cardiology, Bryansk Diagnostic Center, Bryansk, Russia
| | - Isabelle Denjoy
- Department of Cardiology, Bichat Hospital (AP-HP), Paris, France
| | - Didier Franck
- Division of Radiological Protection and Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Jean-Pierre Heuze
- Division of Radiological Protection and Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Patrick Gourmelon
- Division of Radiological Protection and Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|