1
|
Henyoh AMS, Laurent O, Mandin C, Clero E. Radon exposure and potential health effects other than lung cancer: a systematic review and meta-analysis. Front Public Health 2024; 12:1439355. [PMID: 39386959 PMCID: PMC11461271 DOI: 10.3389/fpubh.2024.1439355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Context and objective To date, lung cancer is the only well-established health effect associated with radon exposure in humans. To summarize available evidence on other potential health effects of radon exposure, we performed a comprehensive qualitative and quantitative synthesis of the available literature on radon exposure and health effects other than lung cancer, in both occupational and general populations. Method Eligible studies published from January 1990 to March 2023, in English and French languages, were identified in PubMed, ScienceDirect, Scopus, ScieLo and HAL. In the meta-analysis, we estimated average weighted standardized incidence ratios (metaSIR), standardized mortality ratios (metaSMR), and risk ratio (metaRR) per 100 unit (Bq/m3 or Working level Month) increase in radon exposure concentration by combining estimates from the eligible studies using the random-effect inverse variance method. DerSimonian & Laird estimator was used to estimate the between-study variance. For each health outcome, analyses were performed separately for mine workers, children, and adults in the general population. Results A total of 129 studies were included in the systematic review and 40 distinct studies in the meta-analysis. For most of these health outcomes, the results of the meta-analyses showed no statistically significant association, and heterogeneity was only present among occupational studies, especially between those included in the metaSIR or metaSMR analyses. However, the estimated exposure-risk associations were positive and close to the statistical significance threshold for: lymphohematological cancer incidence in children (metaRR = 1.01; 95%CI: 1.00-1.03; p = 0.08); malignant melanoma mortality among adults in the general population (metaRR = 1.10; 95%CI: 0.99-1.21; p = 0.07); liver cancer mortality among mine workers (metaRR = 1.04; 95%CI: 1.00-1.10; p = 0.06); intestine and rectal cancer mortality combined among mine workers (metaRR = 1.02; 95%CI: 1.00-1.04; p = 0.06). Conclusion Although none of the exposure-risk associations estimated in the meta-analyses reached statistical significance, the hypothesis that radon may have other health effects apart from lung cancer could not be ruled-out and call for additional research. Larger and well-designed studies are needed to further investigate this question. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474542, ID: CRD42023474542.
Collapse
Affiliation(s)
- Afi Mawulawoe Sylvie Henyoh
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LEPID, Fontenay-aux-Roses, France
| | | | | | - Enora Clero
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LEPID, Fontenay-aux-Roses, France
| |
Collapse
|
2
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Rosenberger A, Bickeböller H, Christiani DC, Liu G, Schabath MB, Duarte LF, Le Marchand L, Haiman C, Landi T, Consonni D, Field JK, Davies MPA, Albanes D, Tardón A, Fernández-Tardón G, Rennert G, Amos CI, Hung RJ. On the informative value of community-based indoor radon values in relation to lung cancer. Cancer Med 2024; 13:e70126. [PMID: 39194344 DOI: 10.1002/cam4.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Radon is a radioactive gas and a major risk factor for lung cancer (LC). METHODS We investigated the dose-response relationship between radon and LC risk in the International Lung Cancer Consortium with 8927 cases and 5562 controls from Europe, North America, and Israel, conducted between 1992 and 2016. Spatial indoor radon exposure in the residential area (sIR) obtained from national surveys was linked to the participants' residential geolocation. Parametric linear and spline functions were fitted within a logistic regression framework. RESULTS We observed a non-linear spatial-dose response relationship for sIR < 200 Bq/m3. The lowest risk was observed for areas of mean exposure of 58 Bq/m3 (95% CI: 56.1-59.2 Bq/m3). The relative risk of lung cancer increased to the same degree in areas averaging 25 Bq/m3 (OR = 1.31, 95% CI: 1.01-1.59) as in areas with a mean of 100 Bq/m3 (OR = 1.34, 95% CI: 1.20-1.45). The strongest association was observed for small cell lung cancer and the weakest for squamous cell carcinoma. A stronger association was also observed in men, but only at higher exposure levels. The non-linear association is primarily observed among the younger population (age < 69 years), but not in the older population, which can potentially represent different biological radiation responses. CONCLUSIONS The sIR is useful as proxy of individual radon exposure in epidemiological studies on lung cancer. The usual assumption of a linear, no-threshold dose-response relationship, as can be made for individual radon exposures, may not be optimal for sIR values of less than 200 Bq/m3.
Collapse
Affiliation(s)
- Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health and Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Geoffrey Liu
- Medical Oncology and Medical Biophysics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Medicine and Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Luisa F Duarte
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Christopher Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - John K Field
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool, Liverpool, UK
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool, Liverpool, UK
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Adonina Tardón
- Faculty of Medicine, University of Oviedo, ISPA and CIBERESP, Oviedo, Spain
| | | | - Gad Rennert
- Clalit National Cancer Control Center and Department of Community Medicine and Epidemiology at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Martinelli S, Medeiros AN, de Souza RF, Marconi AM, Navoni JA. Analysis of the cancer occurrence related to natural radioactivity in the Rio Grande do Norte State, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89140-89152. [PMID: 37442937 DOI: 10.1007/s11356-023-28708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The state of Rio Grande do Norte, located in the Northeast region of Brazil, has areas of granites and pegmatites with minerals that have varying concentrations of uranium. Consequently, high concentrations of radon gas, a carcinogenic substance for humans, can occur. The present study aimed to assess the occurrence of cancer and its association with exposure to sources of natural radioactivity using geological and geophysical information in the aforementioned state. The spatial dependence of pulmonary, breast, stomach, leukemia, and skin cancer cases with the location of radioisotope sources were analyzed using geoprocessing tools. The geoprocessing analysis showed a differential pattern of uranium emission throughout the state, with the highest emission from areas with pegmatites outcrops. A spatial dependency of cancer cases was shown (Moran index: 0.43; p < 0.01). Moreover, a higher rate of natural radioactivity-cancer cases was associated with the high-intensity natural radioactivity areas: odds ratio:1.21 (95% CI 1.20; 1.23), following the same pattern when separately compared the different related types of cancer. These results highlight the importance of natural radioactivity as a public health problem in the Brazilian environmental scenario, confirming the need for further studies as the first toward understanding and implementing health management strategies mitigating the exposures, especially in areas of environmental risk.
Collapse
Affiliation(s)
- Simone Martinelli
- Development and Environment, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Amanda Nogueira Medeiros
- Development and Environment, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Raquel Franco de Souza
- Development and Environment, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
- Center for Exact and Earth Sciences - Department of Geology, Laboratory of Geochemistry, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | | | - Julio Alejandro Navoni
- Development and Environment, Biosciences Center, Federal University of Rio Grande Do Norte, Avenida Sen. Salgado Filho, No. 3000, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
5
|
Zou K, Sun P, Huang H, Zhuo H, Qie R, Xie Y, Luo J, Li N, Li J, He J, Aschebrook-Kilfoy B, Zhang Y. Etiology of lung cancer: Evidence from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:216-225. [PMID: 39036545 PMCID: PMC11256564 DOI: 10.1016/j.jncc.2022.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and mortality worldwide. While smoking, radon, air pollution, as well as occupational exposure to asbestos, diesel fumes, arsenic, beryllium, cadmium, chromium, nickel, and silica are well-established risk factors, many lung cancer cases cannot be explained by these known risk factors. Over the last two decades the incidence of adenocarcinoma has risen, and it now surpasses squamous cell carcinoma as the most common histologic subtype. This increase warrants new efforts to identify additional risk factors for specific lung cancer subtypes as well as a comprehensive review of current evidence from epidemiologic studies to inform future studies. Given the myriad exposures individuals experience in real-world settings, it is essential to investigate mixture effects from complex exposures and gene-environment interactions in relation to lung cancer and its subtypes.
Collapse
Affiliation(s)
- Kaiyong Zou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyuan Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huang Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhuo
- Yale School of Public Health, New Haven, United States of America
| | - Ranran Qie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajun Luo
- Department of Public Health Sciences, the University of Chicago, Chicago, United States of America
| | - Ni Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Cheng ES, Weber M, Steinberg J, Yu XQ. Lung cancer risk in never-smokers: An overview of environmental and genetic factors. Chin J Cancer Res 2021; 33:548-562. [PMID: 34815629 PMCID: PMC8580800 DOI: 10.21147/j.issn.1000-9604.2021.05.02] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, accounting for 1.8 million deaths in 2020. While the vast majority are caused by tobacco smoking, 15%-25% of all lung cancer cases occur in lifelong never-smokers. The International Agency for Research on Cancer (IARC) has classified multiple agents with sufficient evidence for lung carcinogenesis in humans, which include tobacco smoking, as well as several environmental exposures such as radon, second-hand tobacco smoke, outdoor air pollution, household combustion of coal and several occupational hazards. However, the IARC evaluation had not been stratified based on smoking status, and notably lung cancer in never-smokers (LCINS) has different epidemiological, clinicopathologic and molecular characteristics from lung cancer in ever-smokers. Among several risk factors proposed for the development of LCINS, environmental factors have the most available evidence for their association with LCINS and their roles cannot be overemphasized. Additionally, while initial genetic studies largely focused on lung cancer as a whole, recent studies have also identified genetic risk factors for LCINS. This article presents an overview of several environmental factors associated with LCINS, and some of the emerging evidence for genetic factors associated with LCINS. An increased understanding of the risk factors associated with LCINS not only helps to evaluate a never-smoker's personal risk for lung cancer, but also has important public health implications for the prevention and early detection of the disease. Conclusive evidence on causal associations could inform longer-term policy reform in a range of areas including occupational health and safety, urban design, energy use and particle emissions, and the importance of considering the impacts of second-hand smoke in tobacco control policy.
Collapse
Affiliation(s)
- Elvin S Cheng
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Marianne Weber
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Julia Steinberg
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Xue Qin Yu
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| |
Collapse
|
7
|
Guo C, Mi J, Li H, Su P, Nie H. Dysregulated circular RNAs as novel biomarkers in esophageal squamous cell carcinoma: a meta-analysis. Cancer Med 2021; 10:7895-7908. [PMID: 34704390 PMCID: PMC8607254 DOI: 10.1002/cam4.3703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/18/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Circular RNAs (circRNAs) play critical roles in tumorigenesis, but their clinical efficacy in esophageal squamous cell carcinoma (ESCC) still retains controversial. This meta‐analysis aims at evaluating the associations between circRNA expressions and clinicopathologic features as well as the diagnostic and prognostic values of circRNAs in ESCC. Materials & Methods PubMed, EMBASE, and other online databases were systematically searched to collect studies on circRNAs and clinicopathological features, diagnostic, and/or prognostic assessments of ESCC. The quality of included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS‐2) and Newcastle‐Ottawa Scale (NOS) scales. The included studies were quantitatively weighted and merged, and diagnostic indicators, hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) were calculated. P values were merged by Fisher᾽s method. Sources of heterogeneity were traced using subgroup, sensitivity, and meta‐regression analyses. Results As a result, 12 studies were included, representing 769 ESCC patients. The meta‐analysis showed that abnormal expressions of circRNAs were associated to TNM stage as well as lymph node and distant metastases in ESCC cases. CircRNA was used to distinguish ESCC patients from healthy controls, and the merged sensitivity, specificity, and the area under the curve (AUC) of ESCC were 0.78 (95% CI: 0.74–0.81), 0.79 (95% CI: 0.75–0.83), and 0.86, respectively. The survival analysis showed that upregulated oncogenic circRNA levels in ESCC tissues was associated with the shorter overall survival (OS) of the patients (univariate analysis: HR = 2.25, 95% CI: 1.71–2.95, p = 0.000, I2 = 0.0%; multivariate analysis: HR = 2.50, 95% CI: 1.61–3.89, p = 0.000, I2 = 0.0%), while the OS of ESCC patients presenting overexpressions of tumor‐suppressive circRNAs was significantly ameliorated (HR = 0.29, 95% CI: 0.20–0.42, p = 0.000, I2 = 0.0%). The subgroup analyses based on circRNA biofunctions, sample size, and reference gene also revealed robust results. Conclusion CircRNAs can be used as promising molecular biomarkers for the early diagnosis and prognosis monitoring of ESCC.
Collapse
Affiliation(s)
- Chengcheng Guo
- Department of Pathology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jianqiang Mi
- Department of Pathology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Haike Li
- Faculty of Basic Medicine, Henan Vocational College of Tuina, Luoyang, China
| | - Panke Su
- Department of Pathology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - He Nie
- Department of Nuclear Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Yarmoshenko I, Zhukovsky M, Onishchenko A, Vasilyev A, Malinovsky G. Factors influencing temporal variations of radon concentration in high-rise buildings. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 232:106575. [PMID: 33711618 DOI: 10.1016/j.jenvrad.2021.106575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/21/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Long-term radon time series were analyzed in 14 rooms and offices to search factors influencing indoor radon concentration in high-rise buildings. Radon entry to living rooms is determined both by diffusion from building materials and advection from adjoined low-ventilated spaces. Humans affect on seasonal and diurnal radon concentration changes in high-rise buildings by activating ventilation system. Indoor-outdoor temperature difference significantly influence on the air exchange rate under uncontrolled ventilation, which is especially important in new energy efficient buildings.
Collapse
Affiliation(s)
- I Yarmoshenko
- Institute of Industrial Ecology UB RAS, Ekaterinburg, Russia.
| | - M Zhukovsky
- Institute of Industrial Ecology UB RAS, Ekaterinburg, Russia
| | - A Onishchenko
- Institute of Industrial Ecology UB RAS, Ekaterinburg, Russia
| | - A Vasilyev
- Institute of Industrial Ecology UB RAS, Ekaterinburg, Russia
| | - G Malinovsky
- Institute of Industrial Ecology UB RAS, Ekaterinburg, Russia
| |
Collapse
|
9
|
Pylak M, Fornalski KW, Reszczyńska J, Kukulski P, Waligórski MPR, Dobrzyński L. Analysis of Indoor Radon Data Using Bayesian, Random Binning, and Maximum Entropy Methods. Dose Response 2021; 19:15593258211009337. [PMID: 34035781 PMCID: PMC8132103 DOI: 10.1177/15593258211009337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
Three statistical methods: Bayesian, randomized data binning and Maximum Entropy Method (MEM) are described and applied in the analysis of US radon data taken from the US registry. Two confounding factors-elevation of inhabited dwellings, and UVB (ultra-violet B) radiation exposure-were considered to be most correlated with the frequency of lung cancer occurrence. MEM was found to be particularly useful in extracting meaningful results from epidemiology data containing such confounding factors. In model testing, MEM proved to be more effective than the least-squares method (even via Bayesian analysis) or multi-parameter analysis, routinely applied in epidemiology. Our analysis of the available residential radon epidemiology data consistently demonstrates that the relative number of lung cancers decreases with increasing radon concentrations up to about 200 Bq/m3, also decreasing with increasing altitude at which inhabitants live. Correlation between UVB intensity and lung cancer has also been demonstrated.
Collapse
Affiliation(s)
- Maciej Pylak
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland.,Institute of Physics, Polish Academy of Sciences (IF PAN), Warszawa, Poland
| | | | - Joanna Reszczyńska
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland.,Department of Biophysics and Human Physiology, Medical University of Warsaw (WUM), Warszawa, Poland
| | - Piotr Kukulski
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Michael P R Waligórski
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Kraków, Poland
| | | |
Collapse
|
10
|
Devi V, Chauhan RP. Implications on dose estimation and dispersion patterns of thoron in a typical indoor environment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:309-316. [PMID: 33689025 DOI: 10.1007/s00411-021-00899-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
A model that describes the pollutant sources/sinks and inlet-outlet can help to assess the indoor exposure. Short half-life of radioactive thoron (220Rn) makes it vital and an interesting element to study its dispersion behavior. This work presents an extensive depiction of the influence of indoor environment thoron dispersion under fixed boundary conditions within the volume domain of 90 m3 using computational fluid dynamics (CFD) software. For the desirable air flow, inlet and outlet are considered in the room and the k-ɛ model is used. The thoron distribution is studied at different locations and different heights to cover the whole room. Obtained dispersion patterns vary at different locations and indicate non-uniformity of thoron level with elevated values in the room corners. Mean concentration was found to be 11 Bq/m3 with the exhalation rate of 0.102 Bqm-2 s-1. Some stagnant zones were found especially at the corners where the concentration is almost 5 times the average concentration. Such varying thoron level results in the overestimation and underestimation of the dose. The inhomogeneous behavior of thoron may cause variation in equilibrium factor. A simulated model is beneficial in understanding the radioactive gas behavior and has its importance in planning to find the correct dose estimation and, therefore, the best mitigation techniques.
Collapse
Affiliation(s)
- Vandana Devi
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, 136119, India
| | - R P Chauhan
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
11
|
Cheng ES, Egger S, Hughes S, Weber M, Steinberg J, Rahman B, Worth H, Ruano-Ravina A, Rawstorne P, Yu XQ. Systematic review and meta-analysis of residential radon and lung cancer in never-smokers. Eur Respir Rev 2021; 30:30/159/200230. [PMID: 33536262 PMCID: PMC9488946 DOI: 10.1183/16000617.0230-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Background Globally, radon is the leading risk factor for lung cancer in never-smokers (LCINS). In this study, we systematically reviewed and meta-analysed the evidence of the risk of LCINS associated with residential radon exposure. Methods Medline and Embase databases were searched using predefined inclusion and exclusion criteria to identify relevant studies published from 1 January 1990 to 5 March 2020 focused on never-smokers. We identified four pooled collaborative studies (incorporating data from 24 case–control studies), one case–control study and one cohort study for systematic review. Meta-analysis was performed on the results of the four pooled studies due to different measures of effect and outcome reported in the cohort study and insufficient information reported for the case–control study. In a post hoc analysis, the corresponding risk for ever-smokers was also examined. Results Risk estimates of lung cancer from residential radon exposure were pooled in the meta-analysis for 2341 never-smoker cases, 8967 never-smoker controls, 9937 ever-smoker cases and 12 463 ever-smoker controls. Adjusted excess relative risks (aERRs) per 100 Bq·m−3 of radon level were 0.15 (95% CI 0.06–0.25) for never-smokers and 0.09 (95% CI 0.03–0.16) for ever-smokers, and the difference between them was statistically insignificant (p=0.32). The aERR per 100 Bq·m−3was higher for men (0.46; 95% CI 0.15–0.76) than for women (0.09; 95% CI −0.02–0.20) among never-smokers (p=0.027). Conclusion This study provided quantified risk estimates for lung cancer from residential radon exposure among both never-smokers and ever-smokers. Among never-smokers in radon-prone areas, men were at higher risk of lung cancer than women. Globally, radon is the leading cause of lung cancer in never-smokers. Yet its quantified link with lung cancer risk among never-smokers is not known. This study computes the risk estimate of lung cancer from residential radon exposure among never-smokers.https://bit.ly/32frCbq
Collapse
Affiliation(s)
- Elvin S Cheng
- Cancer Research Division, Cancer Council NSW, Sydney, Australia .,School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sam Egger
- Cancer Research Division, Cancer Council NSW, Sydney, Australia
| | - Suzanne Hughes
- Cancer Research Division, Cancer Council NSW, Sydney, Australia.,School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Marianne Weber
- Cancer Research Division, Cancer Council NSW, Sydney, Australia.,School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Julia Steinberg
- Cancer Research Division, Cancer Council NSW, Sydney, Australia.,School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Bayzidur Rahman
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Heather Worth
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Alberto Ruano-Ravina
- Dept of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP, Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública), Madrid, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Patrick Rawstorne
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia.,Equal contribution as last author
| | - Xue Qin Yu
- Cancer Research Division, Cancer Council NSW, Sydney, Australia.,School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Equal contribution as last author
| |
Collapse
|
12
|
Rojas-Rueda D, Morales-Zamora E, Alsufyani WA, Herbst CH, AlBalawi SM, Alsukait R, Alomran M. Environmental Risk Factors and Health: An Umbrella Review of Meta-Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E704. [PMID: 33467516 PMCID: PMC7830944 DOI: 10.3390/ijerph18020704] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Background: Environmental health is a growing area of knowledge, continually increasing and updating the body of evidence linking the environment to human health. Aim: This study summarizes the epidemiological evidence on environmental risk factors from meta-analyses through an umbrella review. Methods: An umbrella review was conducted on meta-analyses of cohort, case-control, case-crossover, and time-series studies that evaluated the associations between environmental risk factors and health outcomes defined as incidence, prevalence, and mortality. The specific search strategy was designed in PubMed using free text and Medical Subject Headings (MeSH) terms related to risk factors, environment, health outcomes, observational studies, and meta-analysis. The search was limited to English, Spanish, and French published articles and studies on humans. The search was conducted on September 20, 2020. Risk factors were defined as any attribute, characteristic, or exposure of an individual that increases the likelihood of developing a disease or death. The environment was defined as the external elements and conditions that surround, influence, and affect a human organism or population's life and development. The environment definition included the physical environment such as nature, built environment, or pollution, but not the social environment. We excluded occupational exposures, microorganisms, water, sanitation and hygiene (WASH), behavioral risk factors, and no-natural disasters. Results: This umbrella review found 197 associations among 69 environmental exposures and 83 diseases and death causes reported in 103 publications. The environmental factors found in this review were air pollution, environmental tobacco smoke, heavy metals, chemicals, ambient temperature, noise, radiation, and urban residential surroundings. Among these, we identified 65 environmental exposures defined as risk factors and 4 environmental protective factors. In terms of study design, 57 included cohort and/or case-control studies, and 46 included time-series and/or case-crossover studies. In terms of the study population, 21 included children, and the rest included adult population and both sexes. In this review, the largest body of evidence was found in air pollution (91 associations among 14 air pollution definitions and 34 diseases and mortality diagnoses), followed by environmental tobacco smoke with 24 associations. Chemicals (including pesticides) were the third larger group of environmental exposures found among the meta-analyses included, with 19 associations. Conclusion: Environmental exposures are an important health determinant. This review provides an overview of an evolving research area and should be used as a complementary tool to understand the connections between the environment and human health. The evidence presented by this review should help to design public health interventions and the implementation of health in all policies approach aiming to improve populational health.
Collapse
Affiliation(s)
- David Rojas-Rueda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Environmental Health Building, 1601 Campus Delivery, Fort Collins, CO 80523, USA
| | | | - Wael Abdullah Alsufyani
- Saudi Center for Disease Prevention and Control, 70 SCDC Building, Al Aarid, King Abdulaziz Rd, Riyadh 13354, Saudi Arabia; (W.A.A.); (S.M.A.); (M.A.)
| | - Christopher H. Herbst
- Health, Nutrition and Population Global Practice, The World Bank, Diplomatic Quarter, Riyadh Country Office, Riyadh 94623, Saudi Arabia; (C.H.H.); (R.A.)
| | - Salem M. AlBalawi
- Saudi Center for Disease Prevention and Control, 70 SCDC Building, Al Aarid, King Abdulaziz Rd, Riyadh 13354, Saudi Arabia; (W.A.A.); (S.M.A.); (M.A.)
| | - Reem Alsukait
- Health, Nutrition and Population Global Practice, The World Bank, Diplomatic Quarter, Riyadh Country Office, Riyadh 94623, Saudi Arabia; (C.H.H.); (R.A.)
- Community Health Department, King Saud University, Riyadh 11433, Saudi Arabia
| | - Mashael Alomran
- Saudi Center for Disease Prevention and Control, 70 SCDC Building, Al Aarid, King Abdulaziz Rd, Riyadh 13354, Saudi Arabia; (W.A.A.); (S.M.A.); (M.A.)
| |
Collapse
|
13
|
Cui L, Wu Z, Han P, Taira Y, Wang H, Meng Q, Feng Z, Zhai S, Yu J, Zhu W, Kong Y, Wang H, Zhang H, Bai B, Lou Y, Ma Y. Chemical content and source apportionment of 36 heavy metal analysis and health risk assessment in aerosol of Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7005-7014. [PMID: 31879890 DOI: 10.1007/s11356-019-06427-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The concentration levels of 36 airborne heavy metals and atmospheric radioactivity in total suspended particulate (TSP) samples were measured to investigate the chemical characteristics, potential sources of aerosols, and health risk in Beijing, China, from September 2016 to September 2017. The TSP concentrations varied from 6.93 to 469.18 μg/m3, with a median of 133.97 μg/m3. The order for the mean concentrations of heavy metals, known as hazardous air pollutants (HAPs), was as follows: Mn > Pb > As > Cr > Ni > Se > Cd > Co > Sb > Hg > Be; Non-Designated HAPs Metals: Ca > Fe > Mg > Al > K > Na > Zn > P > Ba > Ti > Cu > Sr > B > Sn > I > V > Rb > Ce > Mo > Cs > Th > Ag > U > Pt. The median concentration of As was higher than China air quality standard (6 ng/m3). The gross α and β concentration levels in aerosols were (1.84 ± 1.59) mBg/m3 and (1.15 ± 0.85) mBg/m3, respectively. The enrichment factor values of Cu, Ba, B, Ce, Tl, Cs, Pb, As, Cd, Sb, Hg, Fe, Zn, Sn, I, Mo, and Ag were higher than 10, which indicated enriched results from anthropogenic sources. Pb, As, and Cd are considered to originate from multiple sources; fireworks released Ba during China spring festival; Fe, Ce, and Cs may come from stable emissions such as industrial gases. The health risks from anthropogenic metals via inhalation, ingestion, and dermal pathway were estimated on the basis of health quotient as well as the results indicated that children faced the higher risk than adults during the research period. For adults, the health risk posed by heavy metals in atmospheric particles was below the acceptable level.
Collapse
Affiliation(s)
- Limeng Cui
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
- Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 8528523, Japan
| | - Zhuona Wu
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing, 100850, China
| | - Peng Han
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing, 100850, China
| | - Yasuyuki Taira
- Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 8528523, Japan
| | - Huan Wang
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Qinghua Meng
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Zechen Feng
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Shuguang Zhai
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Jun Yu
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Weijie Zhu
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Yuxia Kong
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Hongfang Wang
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Hong Zhang
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Bin Bai
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Yun Lou
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China
| | - Yongzhong Ma
- Department of Radiation protection, Beijing Municipal Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, 100013, China.
| |
Collapse
|