1
|
Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends Immunol 2021; 42:323-335. [PMID: 33653660 DOI: 10.1016/j.it.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
The leukocyte nucleus must be sufficiently elastic to squeeze through tissue barriers during migration, but not so collapsible as to risk damaging chromatin. The proper balance is struck in part by the composition of the nuclear lamina, a flexible meshwork composed mainly of intermediate filaments woven from type A and type B lamin proteins, that is located subjacent to the inner nuclear membrane. There is now increasing evidence that, in addition to influencing nuclear shape and stiffness and cell migration, lamins and lamin-interacting proteins may also interact functionally with chromatin to influence leukocyte gene expression, differentiation, and effector function, including T cell differentiation, B cell somatic hypermutation, and the formation of neutrophil extracellular traps (NETosis).
Collapse
|
2
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
3
|
Jevtić P, Levy DL. Mechanisms of nuclear size regulation in model systems and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:537-69. [PMID: 24563365 DOI: 10.1007/978-1-4899-8032-8_25] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Changes in nuclear size have long been used by cytopathologists as an important parameter to diagnose, stage, and prognose many cancers. Mechanisms underlying these changes and functional links between nuclear size and malignancy are largely unknown. Understanding mechanisms of nuclear size regulation and the physiological significance of proper nuclear size control will inform the interplay between altered nuclear size and oncogenesis. In this chapter we review what is known about molecular mechanisms of nuclear size control based on research in model experimental systems including yeast, Xenopus, Tetrahymena, Drosophila, plants, mice, and mammalian cell culture. We discuss how nuclear size is influenced by DNA ploidy, nuclear structural components, cytoplasmic factors and nucleocytoplasmic transport, the cytoskeleton, and the extracellular matrix. Based on these mechanistic insights, we speculate about how nuclear size might impact cell physiology and whether altered nuclear size could contribute to cancer development and progression. We end with some outstanding questions about mechanisms and functions of nuclear size regulation.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA,
| | | |
Collapse
|
4
|
Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc Natl Acad Sci U S A 2013; 110:18892-7. [PMID: 24191023 DOI: 10.1073/pnas.1304996110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic stem and progenitor cells, as well as nucleated erythroblasts and megakaryocytes, reside preferentially in adult marrow microenvironments whereas other blood cells readily cross the endothelial barrier into the circulation. Because the nucleus is the largest organelle in blood cells, we hypothesized that (i) cell sorting across microporous barriers is regulated by nuclear deformability as controlled by lamin-A and -B, and (ii) lamin levels directly modulate hematopoietic programs. Mass spectrometry-calibrated intracellular flow cytometry indeed reveals a lamin expression map that partitions human blood lineages between marrow and circulating compartments (P = 0.00006). B-type lamins are highly variable and predominate only in CD34(+) cells, but migration through micropores and nuclear flexibility in micropipette aspiration both appear limited by lamin-A:B stoichiometry across hematopoietic lineages. Differentiation is also modulated by overexpression or knockdown of lamins as well as retinoic acid addition, which regulates lamin-A transcription. In particular, erythroid differentiation is promoted by high lamin-A and low lamin-B1 expression whereas megakaryocytes of high ploidy are inhibited by lamin suppression. Lamins thus contribute to both trafficking and differentiation.
Collapse
|
5
|
Shin JW, Swift J, Ivanovska I, Spinler KR, Buxboim A, Discher DE. Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus in cell forms and fates. Differentiation 2013; 86:77-86. [PMID: 23790394 PMCID: PMC3964600 DOI: 10.1016/j.diff.2013.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022]
Abstract
Adult stem cells and progenitors are of great interest for their clinical application as well as their potential to reveal deep sensitivities to microenvironmental factors. The bone marrow is a niche for at least two types of stem cells, and the prototype is the hematopoietic stem cell/progenitors (HSC/Ps), which have saved many thousands of patients for several decades now. In bone marrow, HSC/Ps interact functionally with marrow stromal cells that are often referred to as mesenchymal stem cells (MSCs) or derivatives thereof. Myosin and matrix elasticity greatly affect MSC function, and these mechanobiological factors are now being explored with HSC/Ps both in vitro and in vivo. Also emerging is a role for the nucleus as a mechanically sensitive organelle that is semi-permeable to transcription factors which are modified for nuclear entry by cytoplasmic mechanobiological pathways. Since therapies envisioned with induced pluripotent stem cells and embryonic stem cells generally involve in vitro commitment to an adult stem cell or progenitor, a very deep understanding of stem cell mechanobiology is essential to progress with these multi-potent cells.
Collapse
Affiliation(s)
- Jae-Won Shin
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
6
|
Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett 2012; 331:18-23. [PMID: 23268335 PMCID: PMC7126488 DOI: 10.1016/j.canlet.2012.12.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
Abstract
In recent years, Karyopherin α 2 (KPNA2) has emerged as a potential biomarker in multiple cancer forms. The aberrant high levels observed in cancer tissue have been associated with adverse patient characteristics, prompting the idea that KPNA2 plays a role in carcinogenesis. This notion is supported by studies in cancer cells, where KPNA2 deregulation has been demonstrated to affect malignant transformation. By virtue of its role in nucleocytoplasmic transport, KPNA2 is implicated in the translocation of several cancer-associated proteins. We provide an overview of the clinical studies that have established the biomarker potential of KPNA2 and describe its functional role with an emphasis on established associations with cancer.
Collapse
Affiliation(s)
- Anders Christiansen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
7
|
He L, Ding H, Wang JH, Zhou Y, Li L, Yu YH, Huang L, Jia WH, Zeng M, Yun JP, Luo RZ, Zheng M. Overexpression of karyopherin 2 in human ovarian malignant germ cell tumor correlates with poor prognosis. PLoS One 2012; 7:e42992. [PMID: 22962582 PMCID: PMC3433466 DOI: 10.1371/journal.pone.0042992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/16/2012] [Indexed: 01/02/2023] Open
Abstract
Background The aim of this study was to identify a biomarker useful in the diagnosis and therapy of ovarian malignant germ cell tumor (OMGCT). Methods The karyopherin 2 (KPNA2) expression in OMGCT and normal ovarian tissue was determined by standard gene microarray assays, and further validated by a quantitative RT-PCR and immunohistochemistry. The correlation between KPNA2 expression in OMGCT and certain clinicopathological features were analyzed. Expression of SALL4, a stem cell marker, was also examined in comparison with KPNA2. Results KPNA2 was found to be over-expressed by approximately eight-fold in yolk sac tumors and immature teratomas compared to normal ovarian tissue by microarray assays. Overexpression was detected in yolk sac tumors, immature teratomas, dysgerminomas, embryonal carcinomas, mature teratomas with malignant transformation and mixed ovarian germ cell tumors at both the transcription and translation levels. A positive correlation between KPNA2 and SALL4 expression at both the transcription level (R = 0.5120, P = 0.0125), and the translation level (R = 0.6636, P<0.0001), was presented. Extensive expression of KPNA2 was positively associated with pathologic type, recurrence and uncontrolled, ascitic fluid presence, suboptimal cytoreductive surgery necessity, resistance/refraction to initial chemotherapy, HCG level and SALL4 level in OMGCT patients. KPNA2 was found to be an independent factor for 5-year disease-free survival (DFS) of OMGCT (P = 0.02). The 5-year overall survival (OS) and DFS rate for KPNA2-low expression patients (88% and 79%, n = 48) were significantly higher than the OS and DFS rate for KPNA2-high expression patients (69% and 57.1%, n = 42)(P = 0.0151, P = 0.0109, respectively). The 5-year OS and DFS rate for SALL4-low expression patients (84% and 74%, n = 62) was marginally significantly higher than the high expression patients (78.6% and 71.4%, n = 28)(P = 0.0519, P = 0.0647, respectively). Conclusions KPNA2 is a potential candidate molecular marker and important prognostic marker in OMGCT patients.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Department of Gynecology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Hui Ding
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Department of Gynecology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jian-Hua Wang
- Department of Chest, Second People's Hospital of Guangdong Province, Guangzhou, Guangdong, People's Republic of China
| | - Yun Zhou
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Department of Gynecology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Li Li
- Department of Gynecology, Huang-pu District Hospital, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Long Huang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Department of Gynecology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Musheng Zeng
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jing-Ping Yun
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Rong-Zhen Luo
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Min Zheng
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Department of Gynecology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail:
| |
Collapse
|
8
|
Plasma membrane and nuclear envelope integrity during the blebbing stage of apoptosis: a time‐lapse study. Biol Cell 2012; 102:25-35. [DOI: 10.1042/bc20090077] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Friedl P, Wolf K, Lammerding J. Nuclear mechanics during cell migration. Curr Opin Cell Biol 2011; 23:55-64. [PMID: 21109415 PMCID: PMC3073574 DOI: 10.1016/j.ceb.2010.10.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/21/2010] [Accepted: 10/30/2010] [Indexed: 12/30/2022]
Abstract
During cell migration, the movement of the nucleus must be coordinated with the cytoskeletal dynamics at the leading edge and trailing end, and, as a result, undergoes complex changes in position and shape, which in turn affects cell polarity, shape, and migration efficiency. We here describe the steps of nuclear positioning and deformation during cell polarization and migration, focusing on migration through three-dimensional matrices. We discuss molecular components that govern nuclear shape and stiffness, and review how nuclear dynamics are connected to and controlled by the actin, tubulin and intermediate cytoskeleton-based migration machinery and how this regulation is altered in pathological conditions. Understanding the regulation of nuclear biomechanics has important implications for cell migration during tissue regeneration, immune defence and cancer.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, Nijmegen Center for Molecular Life Science, Radboud University Nijmegen Medical Centre, P.O. 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
10
|
Zheng M, Tang L, Huang L, Ding H, Liao WT, Zeng MS, Wang HY. Overexpression of Karyopherin-2 in Epithelial Ovarian Cancer and Correlation With Poor Prognosis. Obstet Gynecol 2010; 116:884-891. [DOI: 10.1097/aog.0b013e3181f104ce] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Liu D, Wu X, Summers MD, Lee A, Ryan KJ, Braunagel SC. Truncated Isoforms of Kap60 Facilitate Trafficking of Heh2 to the Nuclear Envelope. Traffic 2010; 11:1506-18. [DOI: 10.1111/j.1600-0854.2010.01119.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Baculovirus data suggest a common but multifaceted pathway for sorting proteins to the inner nuclear membrane. J Virol 2008; 83:1280-8. [PMID: 19019955 DOI: 10.1128/jvi.01661-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Multiple unique protein markers sorted to the inner nuclear membrane (INM) from the Autographa californica nucleopolyhedrovirus occlusion-derived virus (ODV) envelope were used to decipher common elements of the sorting pathway of integral membrane proteins from their site of insertion into the membrane of the endoplasmic reticulum (ER) through their transit to the INM. The data show that during viral infection, the viral protein FP25K is a partner for all known ODV envelope proteins and that BV/ODV-E26 (designated E26) is a partner for some, but not all, such proteins. The association with the ER membrane of FP25K, E26, and the cellular INM-sorting protein importin-alpha-16 is not static; rather, these sorting proteins are actively recruited to the ER membrane based upon requirements of the proteins in transit to the INM. Colocalization analysis using an ODV envelope protein and importin-alpha-16 shows that during viral infection, importin-alpha-16 translocates across the pore membrane to the INM and then is incorporated into the virus-induced intranuclear membranes. Thus, the association of importin-alpha-16 and INM-directed proteins appears to remain at least through protein translocation across the pore membrane to the INM. Overall, the data suggest that multiple levels of regulation facilitate INM-directed protein trafficking, and that proteins participating in this sorting pathway have a dynamic relationship with each other and the membrane of the ER.
Collapse
|
13
|
Dahl E, Kristiansen G, Gottlob K, Klaman I, Ebner E, Hinzmann B, Hermann K, Pilarsky C, Dürst M, Klinkhammer-Schalke M, Blaszyk H, Knuechel R, Hartmann A, Rosenthal A, Wild PJ. Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res 2007; 12:3950-60. [PMID: 16818692 DOI: 10.1158/1078-0432.ccr-05-2090] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of the present study was to identify human genes that might prove useful in the diagnosis and therapy of primary breast cancer. EXPERIMENTAL DESIGN Twenty-four matched pairs of invasive ductal breast cancer and corresponding benign breast tissue were investigated by a combination of laser microdissection and gene expression profiling. Differential expression of candidate genes was validated by dot blot analysis of cDNA in 50 pairs of matching benign and malignant breast tissue. Cellular expression of candidate genes was further validated by RNA in situ hybridization, quantitative reverse transcription-PCR, and immunohistochemistry using tissue microarray analysis of 272 nonselected breast cancers. Multivariate analysis of factors on overall survival and recurrence-free survival was done. RESULTS Fifty-four genes were found to be up-regulated and 78 genes were found to be down-regulated. Dot blot analysis reduced the number of up-regulated genes to 15 candidate genes that showed at least a 2-fold overexpression in >15 of 50 (30%) tumor/normal pairs. We selected phosphatidic acid phosphatase type 2 domain containing 1A (PPAPDC1A) and karyopherin alpha2 (KPNA2) for further validation. PPAPDC1A and KPNA2 RNA was up-regulated (fold change >2) in 84% and 32% of analyzed tumor/normal pairs, respectively. Nuclear protein expression of KPNA2 was significantly associated with shorter overall survival and recurrence-free survival. Testing various multivariate Cox regression models, KPNA2 expression remained a highly significant, independent and adverse risk factor for overall survival. CONCLUSIONS Gene expression profiling of laser-microdissected breast cancer tissue revealed novel genes that may represent potential molecular targets for breast cancer therapy and prediction of outcome.
Collapse
Affiliation(s)
- Edgar Dahl
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gagnaire B, Gay M, Huvet A, Daniel JY, Saulnier D, Renault T. Combination of a pesticide exposure and a bacterial challenge: in vivo effects on immune response of Pacific oyster, Crassostrea gigas (Thunberg). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 84:92-102. [PMID: 17628715 DOI: 10.1016/j.aquatox.2007.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 05/16/2023]
Abstract
To assess the impact of pollution induced by pesticides on Pacific oyster, Crassostrea gigas, health in France, in vivo effects of combined pesticide exposure and bacterial challenge on cell activities and gene expression in hemocytes were tested using flow cytometry and real-time PCR. As a first step, an in vivo model of experimental contamination was developed. Pacific oysters were exposed to a mixture of eight pesticides (atrazine, glyphosate, alachlor, metolachlor, fosetyl-alumimium, terbuthylazine, diuron and carbaryl) at environmentally relevant concentrations over a 7-day period. Hemocyte parameters (cell mortality, enzyme activities and phagocytosis) were monitored using flow cytometry and gene expression was evaluated by real-time PCR (RT-PCR). The expression of 19 genes involved in C. gigas hemocyte functions was characterized using RT-PCR. After 7 days of exposure, phagocytosis was significantly reduced and the 19 selected genes were down-regulated in treated animals. As a second step, the experimental contamination method previously developed was used to study interactions between pesticide exposure and bacterial challenge by intramuscular injection of two Vibrio splendidus-related pathogenic strains. Oyster mortality and expression of 10 of the 19 selected genes were followed 4 and 24h post-injection. Oyster mortality was higher in pesticide-treated oysters compared to untreated oysters after the bacterial challenge. Gene expression was up-regulated in pesticide-treated oysters compared to untreated oysters after the bacterial challenge. We hypothesize that gene over-expression due to an interaction between pesticides and bacteria could lead to an injury of host tissues, resulting in higher mortality rates. In conclusion, this study is the first to show effects of pesticides at environmentally relevant concentrations on C. gigas hemocytes and to hypothesize that pesticides modulate the immune response to a bacterial challenge in oysters.
Collapse
Affiliation(s)
- Beatrice Gagnaire
- Ifremer La Tremblade, Laboratoire de Génétique et Pathologie (LGP), 17390 La Tremblade, France.
| | | | | | | | | | | |
Collapse
|