1
|
Bolzán AD. Considerations on the scoring of telomere aberrations in vertebrate cells detected by telomere or telomere plus centromere PNA-FISH. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108507. [PMID: 38802042 DOI: 10.1016/j.mrrev.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Given that telomeres play a fundamental role in maintaining genomic stability, the study of the chromosomal aberrations involving telomeric sequences is a topic of considerable research interest. In recent years, the scoring of these types of aberrations has been used in vertebrate cells, particularly human cells, to evaluate the effects of genotoxic agents on telomeres and the involvement of telomeric sequences on chromosomal aberrations. Currently, chromosomal aberrations involving telomeric sequences are evaluated in peripheral blood lymphocytes or immortalized cell lines, using telomere or telomere plus centromere fluorescence in situ hybridization (FISH) with Peptide Nucleic Acid (PNA) probes (PNA-FISH). The telomere PNA probe is more efficient in the detection of telomeric sequences than conventional FISH with a telomere DNA probe. In addition, the intensity of the telomeric PNA-FISH probe signal is directly correlated with the number of telomeric repeats. Therefore, use of this type of probe can identify chromosomal aberrations involving telomeres as well as determine the telomere length of the sample. There are several mistakes and inconsistencies in the literature regarding the identification of telomere aberrations, which prevent accurate scoring and data comparison between different publications concerning these types of aberrations. The aim of this review is to clarify these issues, and provide proper terminology and criteria for the identification, scoring, and analysis of telomere aberrations.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-UNLP-CICPBA), calle 526 y Camino General Belgrano, La Plata, Buenos Aires B1906APO, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Vicari MR, Bruschi DP, Cabral-de-Mello DC, Nogaroto V. Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genet Mol Biol 2022; 45:e20220071. [DOI: 10.1590/1678-4685-gmb-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
|
3
|
Berardinelli F, Coluzzi E, Sgura A, Antoccia A. Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:204-219. [PMID: 28927529 DOI: 10.1016/j.mrrev.2017.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
One of the hallmarks of cancer consists in the ability of tumor cells to divide indefinitely, and to maintain stable telomere lengths throughout the activation of specific telomere maintenance mechanisms (TMM). Therefore in the last fifteen years, researchers proposed to target telomerase or telomeric structure in order to block limitless replicative potential of cancer cells providing a fascinating strategy for a broad-spectrum cancer therapy. In the present review, we report in vitro and in vivo evidence regarding the use of chemical agents targeting both telomerase or telomere structure and showing promising antitumor effects when used in combination with ionizing radiation (IR). RNA interference, antisense oligonucleotides (e.g., GRN163L), non-nucleoside inhibitors (e.g., BIBR1532) and nucleoside analogs (e.g., AZT) represent some of the most potent strategies to inhibit telomerase activity used in combination with IR. Furthermore, radiosensitizing effects were demonstrated also for agents acting directly on the telomeric structure such as G4-ligands (e.g., RHPS4 and Telomestatin) or telomeric-oligos (T-oligos). To date, some of these compounds are under clinical evaluation (e.g., GRN163L and KML001). Advantages of Telomere/Telomerase Targeting Compounds (T/TTCs) coupled with radiotherapy may be relevant in the treatment of radioresistant tumors and in the development of new optimized treatment plans with reduced dose adsorbed by patients and consequent attenuation of short- end long-term side effects. Pros and cons of possible future applications in cancer therapy based on the combination of T/TCCs and radiation treatment are discussed.
Collapse
Affiliation(s)
- F Berardinelli
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy.
| | - E Coluzzi
- Dipartimento di Scienze, Università Roma Tre, Rome Italy
| | - A Sgura
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| | - A Antoccia
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| |
Collapse
|
4
|
Caradonna F, Mauro M. Role of the antioxidant defence system and telomerase in arsenic-induced genomic instability. Mutagenesis 2016; 31:661-667. [DOI: 10.1093/mutage/gew034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
5
|
Lee WK, Cho MH. Telomere-binding protein regulates the chromosome ends through the interaction with histone deacetylases in Arabidopsis thaliana. Nucleic Acids Res 2016; 44:4610-24. [PMID: 26857545 PMCID: PMC4889915 DOI: 10.1093/nar/gkw067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/13/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Won Kyung Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeon Haeng Cho
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Abstract
The balance between DNA damage, especially double strand breaks, and DNA damage repair is a critical determinant of chromosomal translocation frequency. The non-homologous end-joining repair (NHEJ) pathways seem to play the major role in the generation of chromosomal translocations. The "landscape" of chromosomal translocation identified in malignancies is largely due to selection processes which operate on the growth advantages conveyed to the cells by the functional consequences of chromosomal translocations (i.e., oncogenic fusion proteins and overexpression of oncogenes, both compromising tumor suppressor gene functions). Newer studies have shown that there is an abundance of local rearrangements in many tumors, like small deletions and inversions. A better understanding of the interplay between DNA repair mechanisms and the generation of tumorigenic translocations will, among many other things, depend on an improved understanding of DNA repair mechanisms and their interplay with chromatin and the 3D organization of the interphase nucleus.
Collapse
|
7
|
Berardinelli F, Sgura A, Di Masi A, Leone S, Cirrone GAP, Romano F, Tanzarella C, Antoccia A. Radiation-induced telomere length variations in normal and in Nijmegen Breakage Syndrome cells. Int J Radiat Biol 2014; 90:45-52. [PMID: 24168161 DOI: 10.3109/09553002.2014.859400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The meiotic recombination protein 11 (MRE11), radiation sensitive 50 (RAD50) and nibrin (NBN) are members of the MRE11/RAD50/NBN (MRN) complex which plays a fundamental role in the double-strand break damage response, including DNA damage sensing, signalling and repair after exposure to ionizing radiations. In addition the MRN complex is involved in the mechanisms regulating telomere length maintenance. Based on our previous results indicating that, in contrast to X-rays, high linear energy transfer (LET) radiations were able to elongate telomeres, we investigated the behavior of cells mutated in components of the MRN complex after exposure either to 62 MeV carbon-ions (50 keV/μm, at cell surface) or X-rays. MATERIALS AND METHODS Epstein Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCL) established from normal, heterozygous for the NBN gene, homozygous for either mutant/deleted NBN, RAD50 or ataxia telangiectasia mutated (ATM) genes were irradiated with 4 Gy, with telomere length being evaluated 24 h later or in time course-experiments up to 15 days later. The induction of telomeric sister chromatid exchanges (T-SCE) was measured as a hallmark of homologous directed recombinational repair. RESULTS NBN and RAD50 mutated cells failed to elongate telomeres that instead occurred in the remaining cell lines as a response only to high-LET irradiation. Also, a kinetic study with 0.5-4 Gy up to 15 days from irradiation confirmed that NBN gene was indispensable for telomere elongation. Furthermore, such an elongation, was accompanied by an increased frequency of sister chromatid exchanges at telomeres (T-SCE). In contrast, the induction of genomic sister chromatid exchanges (G-SCE) occurred for carbon-ions irrespective of NBN gene status. CONCLUSIONS We speculate that the MRN is necessary to process a subclass of high-LET radiation-induced complex DNA damage through a recombinational-repair mediated mechanism which in turn is responsible for telomere elongation.
Collapse
|
8
|
Yasaei H, Gozaly-Chianea Y, Slijepcevic P. Analysis of telomere length and function in radiosensitive mouse and human cells in response to DNA-PKcs inhibition. Genome Integr 2013; 4:2. [PMID: 23521760 PMCID: PMC3614538 DOI: 10.1186/2041-9414-4-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/18/2013] [Indexed: 11/15/2022] Open
Abstract
Background Telomeres, the physical ends of chromosomes, play an important role in preserving genomic integrity. This protection is supported by telomere binding proteins collectively known as the shelterin complex. The shelterin complex protects chromosome ends by suppressing DNA damage response and acting as a regulator of telomere length maintenance by telomerase, an enzyme that elongates telomeres. Telomere dysfunction manifests in different forms including chromosomal end-to-end fusion, telomere shortening and p53-dependent apoptosis and/or senescence. An important shelterin-associated protein with critical role in telomere protection in human and mouse cells is the catalytic subunit of DNA-protein kinase (DNA-PKcs). DNA-PKcs deficiency in mouse cells results in elevated levels of spontaneous telomeric fusion, a marker of telomere dysfunction, but does not cause telomere length shortening. Similarly, inhibition of DNA-PKcs with chemical inhibitor, IC86621, prevents chromosomal end protection through mechanism reminiscent of dominant-negative reduction in DNA-PKcs activity. Results We demonstrate here that the IC86621 mediated inhibition of DNA-PKcs in two mouse lymphoma cell lines results not only in elevated frequencies of chromosome end-to-end fusions, but also accelerated telomere shortening in the presence of telomerase. Furthermore, we observed increased levels of spontaneous telomeric fusions in Artemis defective human primary fibroblasts in which DNA-PKcs was inhibited, but no significant changes in telomere length. Conclusion These results confirm that DNA-PKcs plays an active role in chromosome end protection in mouse and human cells. Furthermore, it appears that DNA-PKcs is also involved in telomere length regulation, independently of telomerase activity, in mouse lymphoma cells but not in human cells.
Collapse
Affiliation(s)
- Hemad Yasaei
- Division of Biosciences, Brunel Institute of Cancer Genetics and Pharmacogenomics, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK.
| | | | | |
Collapse
|
9
|
Chen M, Xing LN. siRNA-mediated Inhibition of hTERC Enhances Radiosensitivity of Cervical Cancer. Asian Pac J Cancer Prev 2012; 13:5975-9. [DOI: 10.7314/apjcp.2012.13.12.5975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Barsov EV. Immortalization of human and rhesus macaque primary antigen-specific T cells by retrovirally transduced telomerase reverse transcriptase. CURRENT PROTOCOLS IN IMMUNOLOGY 2011; Chapter 7:Unit 7.21B. [PMID: 22048804 PMCID: PMC3226752 DOI: 10.1002/0471142735.im0721bs95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human and rhesus macaque primary antigen-specific T cells derived from infected or immunized individuals or animals are a valuable material with which to study cellular immune responses against pathogens and tumors. Antigen-specific T cells can be expanded in vitro but have a finite proliferative life span. After a limited period in culture, primary T cells undergo replicative senescence and stop dividing. This restricts their applicability to short-term experiments and complicates their use in adoptive immunotherapy. The proliferative life span of primary human and rhesus macaque T cells can be considerably extended by ectopically expressed human telomerase reverse transcriptase (TERT). Antigen-specific T cells transduced with TERT-expressing retroviral vectors can proliferate and expand in culture for long periods of time while maintaining their primary T cell characteristics, including antigen-specific responses. Thus, TERT-immortalized T cells are an important and valuable resource for studying T cell-mediated immune responses and, potentially, for adoptive immunotherapy.
Collapse
Affiliation(s)
- Eugene V Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick, Maryland, USA
| |
Collapse
|
11
|
Bolzán AD. Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 2011; 27:1-15. [PMID: 21857006 DOI: 10.1093/mutage/ger052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Telomeres are specialised nucleoproteic complexes localised at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. In vertebrate chromosomes, the DNA component of telomeres is constituted by (TTAGGG)n repeats, which can be localised at the terminal regions of chromosomes (true telomeres) or at intrachromosomal sites (interstitial telomeric sequences or ITSs, located at the centromeric region or between the centromere and the telomere). In the past two decades, the use of molecular cytogenetic techniques has led to a new spectrum of spontaneous and clastogen-induced chromosomal aberrations being identified, involving telomeres and ITSs. Some aberrations involve the chromosome ends and, indirectly, the telomeric repeats located at the terminal regions of chromosomes (true telomeres). A second type of aberrations directly involves the telomeric sequences located at the chromosome ends. Finally, there is a third class of aberrations that specifically involves the ITSs. The aims of this review are to provide a detailed description of these aberrations and to summarise the available data regarding their induction by physical and chemical mutagens.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- La Carrera del Investigador Científico y Tecnológico del CONICET, Argentina, Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (CCT-CONICET La Plata-CICPBA), C.C. 403, 1900 La Plata, Argentina.
| |
Collapse
|
12
|
Barsov EV. Telomerase and primary T cells: biology and immortalization for adoptive immunotherapy. Immunotherapy 2011; 3:407-21. [PMID: 21395382 PMCID: PMC3120014 DOI: 10.2217/imt.10.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomeres are specialized repeats, present at the end of chromosomes, whose loss during cell division is followed by growth arrest, a central mechanism of replicative senescence in human cells. Telomere length in stem cells is maintained by telomerase, a specialized reverse transcriptase, whose function is to restore shortening telomeres. Unlike most somatic cell types, human T lymphocytes are capable of briefly reactivating telomerase expression at the time of stimulation. Telomerase expression in T lymphocytes is modulated by a variety of external stimuli and by viral infections. However, telomerase reactivation in stimulated, proliferating human T lymphocytes is limited and cannot prevent the ultimate onset of senescence. Ectopic telomerase expression can rescue human and macaque antigen-specific T cells from senescence. Primary T cells have been engineered with telomerase to have substantially extended replicative lifespans without the loss of primary cell functions or malignant transformation. 'Immortal' antigen-specific T-cell lines and clones overexpressing telomerase are an invaluable source of well-characterized quasi-primary T cells for research of T-cell biology and are potentially useful for immunotherapy of cancer and AIDS.
Collapse
Affiliation(s)
- Eugene V Barsov
- SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Characterization of TTAGG telomeric repeats, their interstitial occurrence and constitutively active telomerase in the mealybug Planococcus lilacinus (Homoptera; Coccoidea). Chromosoma 2010; 120:165-75. [PMID: 21088846 DOI: 10.1007/s00412-010-0299-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/12/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
We confirmed the occurrence of the insect TTAGG telomeric repeats in the mealybug Planococcus lilacinus, a radiation-resistant coccid, by single primer polymerase chain reaction (PCR) and Southern hybridization. Analysis of Bal31 nuclease-digested DNA by Southern hybridization and chromosomes by FISH suggests that these repeats occur mainly at the ends of the chromosomes. However, sequence analysis of the PCR products of TTAGG-associated sequences from genomic DNA showed their interstitial occurrence and association with certain unrelated low-copy repeats. Because of their shorter length, the interstitial TTAGG sequences were detectable by primed in situ hybridizations but not by FISH. Analysis of chromosomes recovered after irradiation by fluorescent in situ hybridization suggested acquisition of TTAGG repeats at a majority of the healed ends. We also observed mild telomerase activity in unirradiated insects which was further enhanced after irradiation. Taken together, these results suggest that the mealybug has an efficient mechanism of formation of TTAGG repeats at radiation-induced chromosome ends and constitutively active telomerase may be a feature associated with rapid recovery of chromosome ends damaged by ionizing radiation.
Collapse
|
14
|
Zhou FX, Xiong J, Luo ZG, Dai J, Yu HJ, Liao ZK, Lei H, Xie CH, Zhou YF. cDNA Expression Analysis of a Human Radiosensitive-Radioresistant Cell Line Model Identifies Telomere Function as a Hallmark of Radioresistance. Radiat Res 2010; 174:550-7. [DOI: 10.1667/rr1657.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Iwasaki T, Robertson N, Tsigani T, Finnon P, Scott D, Levine E, Badie C, Bouffler S. Lymphocyte telomere length correlates within vitroradiosensitivity in breast cancer cases but is not predictive of acute normal tissue reactions to radiotherapy. Int J Radiat Biol 2009; 84:277-84. [DOI: 10.1080/09553000801953326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Kurvinen K, Rantanen V, Syrjänen S, Johansson B. Radiation-induced effects on telomerase in gynecological cancer cell lines with different radiosensitivity and repair capacity. Int J Radiat Biol 2009; 82:859-67. [PMID: 17178626 DOI: 10.1080/09553000600969812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Telomerase activation in response to irradiation might enhance the radioresistance of cells. Thus, we have investigated radiation-induced effects on telomerase in six gynecological cancer cell lines, with different intrinsic radiosensitivity and capacity for sublethal damage repair (SLDR). MATERIALS AND METHODS Three endometrial adenocarcinoma (UM-EC-1, UT-EC-2B and UT-EC-3) and three vulvar squamous cell carcinoma (A431, UM-SCV-2 and UM-SCV-7) cell lines were irradiated with doses of 5, 10 and 25 Gy and the effects on telomerase were evaluated at 0.5, 6, 24 and 48 h post-irradiation. Telomerase activity was quantitatively measured by SYBR Green real-time telomeric repeat amplification protocol. RESULTS The most radioresistant cell line A431 had the strongest stimulatory effects (approximately 2.0 - 2.5-fold) on telomerase activity 24 and 48 h post-irradiation with the highest radiation doses. In contrast to that, telomerase activities in the highly radiosensitive cell line UT-EC-2B remained below the basal level throughout the 48-h period of post-irradiation with the highest doses, and even a decline to approximately 50% of the basal level was found 24 h after exposure. In other cell lines being either moderately or highly radiation resistant, telomerase activity levels in response to irradiation remained mainly at the basal level or gradually increased. CONCLUSIONS The present findings indicate that there might be a connection between the radiation-induced telomerase response and radiosensitivity. However, no correlation was found between the radiation-induced effects on telomerase and the sublethal damage repair capacity of the cells.
Collapse
Affiliation(s)
- Kaisa Kurvinen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry and MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
17
|
Pérez G, Pangilinan J, Pisabarro AG, Ramírez L. Telomere organization in the ligninolytic basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 2009; 75:1427-36. [PMID: 19114509 PMCID: PMC2648151 DOI: 10.1128/aem.01889-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/21/2008] [Indexed: 01/19/2023] Open
Abstract
Telomeres are structural and functional chromosome regions that are essential for the cell cycle to proceed normally. They are, however, difficult to map genetically and to identify in genome-wide sequence programs because of their structure and repetitive nature. We studied the telomeric and subtelomeric organization in the basidiomycete Pleurotus ostreatus using a combination of molecular and bioinformatics tools that permitted us to determine 19 out of the 22 telomeres expected in this fungus. The telomeric repeating unit in P. ostreatus is TTAGGG, and the numbers of repetitions of this unit range between 25 and 150. The mapping of the telomere restriction fragments to linkage groups 6 and 7 revealed polymorphisms compatible with those observed by pulsed field gel electrophoresis separation of the corresponding chromosomes. The subtelomeric regions in Pleurotus contain genes similar to those described in other eukaryotic systems. The presence of a cluster of laccase genes in chromosome 6 and a bipartite structure containing a Het-related protein and an alcohol dehydrogenase are especially relevant; this bipartite structure is characteristic of the Pezizomycotina fungi Neurospora crassa and Aspergillus terreus. As far as we know, this is the first report describing the presence of such structures in basidiomycetes and the location of a laccase gene cluster in the subtelomeric region, where, among others, species-specific genes allowing the organism to adapt rapidly to the environment usually map.
Collapse
Affiliation(s)
- Gúmer Pérez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006 Pamplona, Spain
| | | | | | | |
Collapse
|
18
|
Anderson JA, Gilliland WD, Langley CH. Molecular population genetics and evolution of Drosophila meiosis genes. Genetics 2009; 181:177-85. [PMID: 18984573 PMCID: PMC2621166 DOI: 10.1534/genetics.108.093807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022] Open
Abstract
While many functional elements of the meiotic process are well characterized in model organisms, the genetic basis of most of the natural phenotypic variation observed in meiotic pathways has not been determined. To begin to address this issue, we characterized patterns of polymorphism and divergence in the protein-coding regions of 33 genes across 31 lines of Drosophila melanogaster and 6 lines of Drosophila simulans. We sequenced genes known to be involved in chromosome segregation, recombination, DNA repair, and related heterochromatin binding. As expected, we found several of the genes to be highly conserved, consistent with purifying selection. However, a subset of genes showed patterns of polymorphism and divergence typical of other types of natural selection. Moreover, several intriguing differences between the two Drosophila lineages were evident: along the D. simulans lineage we consistently found evidence of adaptive protein evolution, whereas along the D. melanogaster lineage several loci exhibited patterns consistent with the maintenance of protein variation.
Collapse
|
19
|
Derradji H, Bekaert S, De Meyer T, Jacquet P, Abou-El-Ardat K, Ghardi M, Arlette M, Baatout S. Ionizing radiation-induced gene modulations, cytokine content changes and telomere shortening in mouse fetuses exhibiting forelimb defects. Dev Biol 2008; 322:302-13. [PMID: 18722365 DOI: 10.1016/j.ydbio.2008.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 07/03/2008] [Accepted: 07/25/2008] [Indexed: 01/04/2023]
Abstract
Several lines of evidence have linked limb teratogenesis to radiation-induced apoptosis and to the p53 status in murine fetuses. In previous reports, we studied the occurrence of various malformations after intrauterine irradiation and showed that these malformations were modulated by p53-deficiency as well as by the developmental stage at which embryos were irradiated. In this new study, we focused onto one particular phenotype namely forelimb defects to further unravel the cellular and molecular mechanisms underlying this malformation. We measured various parameters expected to be directly or indirectly influenced by irradiation damage. The mouse fetuses were irradiated at day 12 p.c. (post conception) and examined for forelimb defects on gestational days 15, 16, 17 and 19 of development. The release of inflammatory cytokines was determined in the amniotic fluid on day 16 p.c. and the mean telomere lengths assessed at days 12, 13 and 19 p.c. Differential gene expression within the forelimb bud tissues was determined using Real Time quantitative PCR (RTqPCR) 24 h following irradiation. Apoptosis was investigated in the normal and malformed fetuses using the TUNEL assay and RTqPCR. First, we found that irradiated fetuses with forelimb defects displayed excessive apoptosis in the predigital regions. Besides, overexpression of the pro-apoptotic Bax gene indicates a mitochondrial-mediated cell death. Secondly, our results showed overexpression of MKK3 and MKK7 (members of the stress-activated MAP kinase family) within the malformed fetuses. The latter could be involved in radiation-induced apoptosis through activation of the p38 and JNK pathways. Thirdly, we found that irradiated fetuses exhibiting forelimb defects showed a marked telomere shortening. Interestingly, telomere shortening was observed as the malformations became apparent. Fourthly, we measured cytokine levels in the amniotic fluid and detected a considerable inflammatory reaction among the irradiated fetuses as evidenced by the increase in pro-inflammatory cytokine levels. Altogether, our data suggest that transcriptional modulations of apoptotic, inflammation, stress, and DNA damage players are early events in radiation-induced forelimb defects. These changes resulted in harsh developmental conditions as indicated by a marked increase in cytokine levels in the amniotic fluid and telomere shortening, two features concomitant with the onset of the forelimb defect phenotype in our study.
Collapse
Affiliation(s)
- Hanane Derradji
- Laboratory for Molecular and Cellular Biology Belgian Nuclear Research Centre, SCKCEN, Mol, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nergadze SG, Santagostino MA, Salzano A, Mondello C, Giulotto E. Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol 2008; 8:R260. [PMID: 18067655 PMCID: PMC2246262 DOI: 10.1186/gb-2007-8-12-r260] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/28/2007] [Accepted: 12/07/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vertebrates, tandem arrays of TTAGGG hexamers are present at both telomeres and intrachromosomal sites (interstitial telomeric sequences (ITSs)). We previously showed that, in primates, ITSs were inserted during the repair of DNA double-strand breaks and proposed that they could arise from either the capture of telomeric fragments or the action of telomerase. RESULTS An extensive comparative analysis of two primate (Homo sapiens and Pan troglodytes) and two rodent (Mus musculus and Rattus norvegicus) genomes allowed us to describe organization and insertion mechanisms of all the informative ITSs present in the four species. Two novel observations support the hypothesis of telomerase involvement in ITS insertion: in a highly significant fraction of informative loci, the ITSs were introduced at break sites where a few nucleotides homologous to the telomeric hexamer were exposed; in the rodent genomes, complex ITS loci are present in which a retrotranscribed fragment of the telomerase RNA, far away from the canonical template, was inserted together with the telomeric repeats. Moreover, mutational analysis of the TTAGGG arrays in the different species suggests that they were inserted as exact telomeric hexamers, further supporting the participation of telomerase in ITS formation. CONCLUSION These results strongly suggest that telomerase was utilized, in some instances, for the repair of DNA double-strand breaks occurring in the genomes of rodents and primates during evolution. The presence, in the rodent genomes, of sequences retrotranscribed from the telomerase RNA strengthens the hypothesis of the origin of telomerase from an ancient retrotransposon.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Dipartimento di Genetica e Microbiologia 'Adriano Buzzati-Traverso', Università degli Studi di Pavia, Via Ferrata, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
21
|
Škrobot Vidaček N, Çukušić A, Ferenac Kiš M, Ivanković M, Jevtov I, Mrsić S, Rubelj I. Telomere dynamics and genome stability in the human pancreatic tumor cell line MIAPaCa-2. Cytogenet Genome Res 2007; 119:60-7. [DOI: 10.1159/000109620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/23/2007] [Indexed: 12/19/2022] Open
|
22
|
Abstract
Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage. This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplificator event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells.
Collapse
|
23
|
Lira CBB, Giardini MA, Neto JLS, Conte FF, Cano MIN. Telomere biology of trypanosomatids: beginning to answer some questions. Trends Parasitol 2007; 23:357-62. [PMID: 17580124 DOI: 10.1016/j.pt.2007.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 11/26/2022]
Abstract
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Collapse
Affiliation(s)
- Cristina B B Lira
- Laboratório de Telômeros, Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | | | | | | | | |
Collapse
|
24
|
Vannier JB, Depeiges A, White C, Gallego ME. Two roles for Rad50 in telomere maintenance. EMBO J 2006; 25:4577-85. [PMID: 16990794 PMCID: PMC1589983 DOI: 10.1038/sj.emboj.7601345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/21/2006] [Indexed: 11/08/2022] Open
Abstract
We describe two roles for the Rad50 protein in telomere maintenance and the protection of chromosome ends. Using fluorescence in situ hybridisation (FISH) and fibre-FISH analyses, we show that absence of AtRad50 protein leads to rapid shortening of a subpopulation of chromosome ends and subsequently chromosome-end fusions lacking telomeric repeats. In the absence of telomerase, mutation of atrad50 has a synergistic effect on the number of chromosome end fusions. Surprisingly, this 'deprotection' of the shortened telomeres does not result in increased exonucleolytic degradation, but in a higher proportion of anaphase bridges containing telomeric repeats in atrad50/tert plants, compared to tert mutant plants. Absence of AtRad50 thus facilitates the action of recombination on these shortened telomeres. We propose that this protective role of Rad50 protein on shortened telomeres results from its action in constraining recombination to sister chromatids and thus avoiding end-to-end interactions.
Collapse
Affiliation(s)
| | - Annie Depeiges
- UMR 6547 CNRS/Université Blaise Pascal, Aubière cedex, France
| | - Charles White
- UMR 6547 CNRS/Université Blaise Pascal, Aubière cedex, France
| | - Maria Eugenia Gallego
- UMR 6547 CNRS/Université Blaise Pascal, Aubière cedex, France
- UMR 6547 CNRS/Université Blaise Pascal, 24, avenue des Landais, 63177 Aubière cedex, France. Tel.: +33 473 407 978; Fax: +33 473 407 777; E-mail:
| |
Collapse
|
25
|
Ning HB, Li JC, Liu ZG, Fan DM. DNA damage increases telomerase activity and mRNA expression of telomeric repeat binding factor 2 in gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2006; 14:942-946. [DOI: 10.11569/wcjd.v14.i10.942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the possible involvement of telomerase and telomeric repeat binding factors (TRF1 and TRF2) in chemotherapeutic agents-induced DNA damage responses in gastric cancer cells.
METHODS: Gastric cancer cell line SGC7901 and MKN28 were treated with various concentrations of etoposide for 3, 6, 12, 24 and 36 h. Telomerase activity was measured by real-time quantitative telomeric repeat amplification protocol (RTQ-TRAP) assay. The expression of human telomerase reverse transcriptase (hTERT) mRNA was detected by real time reverse transcription polymerase chain reaction (RT-PCR). The expression of TRF1 and TRF2 were detected by Western blot and real time RT-PCR at protein and mRNA level, respectively.
RESULTS: Telomerase activity and TRF2 mRNA expression were up-regulated at the early stage of drug treatment in both cell lines (P < 0.05). The expression of TRF1 mRNA was also increased, but it was not significant (P > 0.05). The increase of telomerase activity was independent on hTERT mRNA levels, and TRF2 was significantly increased both in protein and mRNA levels (P < 0.05). The up-regulation was in a drug dose-dependent manner.
CONCLUSION: Telomerase activity and TRF2 expression is possibly involved in the responses of gastric cancer cells to DNA-damaging drugs.
Collapse
|
26
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
27
|
Genescà A, Martín M, Latre L, Soler D, Pampalona J, Tusell L. Telomere dysfunction: a new player in radiation sensitivity. Bioessays 2006; 28:1172-80. [PMID: 17120191 DOI: 10.1002/bies.20501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human individuals often exhibit important differences in their sensitivity to ionising radiation. Extensive literature links radiation sensitivity with impaired DNA repair which is due to a lack of correct functioning in many proteins involved in DNA-repair pathways and/or in DNA-damage checkpoint responses. Given that ionising radiation is an important and widespread diagnostic and therapeutic tool, it is important to investigate further those factors and mechanisms that underlie individual radiosensitivity. Recently, evidence is accumulating that telomere function may well be involved in cellular and organism responses to ionising radiation, broadening still further the currently complex and challenging scenario.
Collapse
Affiliation(s)
- Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|