1
|
Ostalé CM, Azpiazu N, Peropadre A, Martín M, Ruiz-Losada M, López-Varea A, Viales RR, Girardot C, Furlong EEM, de Celis JF. A function of Spalt proteins in heterochromatin organization and maintenance of genomic DNA integrity. Development 2025; 152:dev204258. [PMID: 40326666 PMCID: PMC12091872 DOI: 10.1242/dev.204258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
The conserved Spalt proteins regulate gene expression and cell fate choices during multicellular development, generally acting as transcriptional repressors in different gene regulatory networks. In addition to their roles as DNA sequence-specific transcription factors, Spalt proteins show a consistent localization to heterochromatic regions. Vertebrate Spalt-like proteins can act through the nucleosome remodeling and deacetylase complex to promote closing of open chromatin domains, but their activities also rely on interactions with DNA methyltransferases or with the lysine-specific histone demethylase LSD1, suggesting that they participate in multiple regulatory mechanisms. Here, we describe several consequences of loss of Spalt function in Drosophila cells, including changes in chromatin accessibility, generation of DNA damage, alterations in the localization of chromosomes within the nucleus in the salivary glands and misexpression of transposable elements. We suggest that these effects are related to roles of Spalt proteins in the regulation of heterochromatin formation and chromatin organization. We propose that Drosophila Spalt proteins have two complementary functions, acting as sequence-specific transcriptional repressors on specific target genes and regulating more global gene silencing through the generation or maintenance of heterochromatic domains.
Collapse
Affiliation(s)
- Cristina M. Ostalé
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Natalia Azpiazu
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana Peropadre
- Department of Biology, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mercedes Martín
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mireya Ruiz-Losada
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Rebecca R. Viales
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Eileen E. M. Furlong
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Jose F. de Celis
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; 16:12977-13011. [PMID: 39422615 PMCID: PMC11552638 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M. Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Carlier F, Castro Ramirez S, Kilani J, Chehboub S, Loïodice I, Taddei A, Gladyshev E. Remodeling of perturbed chromatin can initiate de novo transcriptional and post-transcriptional silencing. Proc Natl Acad Sci U S A 2024; 121:e2402944121. [PMID: 39052837 PMCID: PMC11295056 DOI: 10.1073/pnas.2402944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.
Collapse
Affiliation(s)
- Florian Carlier
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sebastian Castro Ramirez
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Jaafar Kilani
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sara Chehboub
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Isabelle Loïodice
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Angela Taddei
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Eugene Gladyshev
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| |
Collapse
|
4
|
Graca Marques J, Pavlovic B, Ngo QA, Pedot G, Roemmele M, Volken L, Kisele S, Perbet R, Wachtel M, Schäfer BW. The Chromatin Remodeler CHD4 Sustains Ewing Sarcoma Cell Survival by Controlling Global Chromatin Architecture. Cancer Res 2024; 84:241-257. [PMID: 37963210 DOI: 10.1158/0008-5472.can-22-3950] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Ewing sarcoma is an aggressive cancer with a defective response to DNA damage leading to an enhanced sensitivity to genotoxic agents. Mechanistically, Ewing sarcoma is driven by the fusion transcription factor EWS-FLI1, which reprograms the tumor cell epigenome. The nucleosome remodeling and deacetylase (NuRD) complex is an important regulator of chromatin function, controlling both gene expression and DNA damage repair, and has been associated with EWS-FLI1 activity. Here, a NuRD-focused CRISPR/Cas9 inactivation screen identified the helicase CHD4 as essential for Ewing sarcoma cell proliferation. CHD4 silencing induced tumor cell death by apoptosis and abolished colony formation. Although CHD4 and NuRD colocalized with EWS-FLI1 at enhancers and super-enhancers, CHD4 promoted Ewing sarcoma cell survival not by modulating EWS-FLI1 activity and its oncogenic gene expression program but by regulating chromatin structure. CHD4 depletion led to a global increase in DNA accessibility and induction of spontaneous DNA damage, resulting in an increased susceptibility to DNA-damaging agents. CHD4 loss delayed tumor growth in vivo, increased overall survival, and combination with PARP inhibition by olaparib treatment further suppressed tumor growth. Collectively, these findings highlight the NuRD subunit CHD4 as a therapeutic target in Ewing sarcoma that can potentiate the antitumor activity of genotoxic agents. SIGNIFICANCE CRISPR/Cas9 screening in Ewing sarcoma identifies a dependency on CHD4, which is crucial for the maintenance of chromatin architecture to suppress DNA damage and a promising therapeutic target for DNA damage repair-deficient malignancies.
Collapse
Affiliation(s)
- Joana Graca Marques
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Blaz Pavlovic
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Gloria Pedot
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michaela Roemmele
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Larissa Volken
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Ping W, Sheng Y, Hu G, Zhong H, Li Y, Liu Y, Luo W, Yan C, Wen Y, Wang X, Li Q, Guo R, Zhang J, Liu A, Pan G, Yao H. RBBP4 is an epigenetic barrier for the induced transition of pluripotent stem cells into totipotent 2C-like cells. Nucleic Acids Res 2023; 51:5414-5431. [PMID: 37021556 PMCID: PMC10287929 DOI: 10.1093/nar/gkad219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.
Collapse
Affiliation(s)
- Wangfang Ping
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxin Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yaoyi Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - YanJiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chenghong Yan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Larrigan S, Shah S, Fernandes A, Mattar P. Chromatin Remodeling in the Brain-a NuRDevelopmental Odyssey. Int J Mol Sci 2021; 22:ijms22094768. [PMID: 33946340 PMCID: PMC8125410 DOI: 10.3390/ijms22094768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
During brain development, the genome must be repeatedly reconfigured in order to facilitate neuronal and glial differentiation. A host of chromatin remodeling complexes facilitates this process. At the genetic level, the non-redundancy of these complexes suggests that neurodevelopment may require a lexicon of remodelers with different specificities and activities. Here, we focus on the nucleosome remodeling and deacetylase (NuRD) complex. We review NuRD biochemistry, genetics, and functions in neural progenitors and neurons.
Collapse
Affiliation(s)
- Sarah Larrigan
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Alex Fernandes
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Pierre Mattar
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Correspondence:
| |
Collapse
|
7
|
Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci Rep 2021; 11:3858. [PMID: 33594190 PMCID: PMC7886867 DOI: 10.1038/s41598-021-83395-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Neural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As additional temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through this common biochemical process to regulate neurogenesis.
Collapse
Affiliation(s)
- Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Thanh Dang
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Anatomy and Cell Biology, and Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
8
|
Saha P, Mishra RK. Heterochromatic hues of transcription-the diverse roles of noncoding transcripts from constitutive heterochromatin. FEBS J 2019; 286:4626-4641. [PMID: 31644838 DOI: 10.1111/febs.15104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023]
Abstract
Constitutive heterochromatin has been canonically considered as transcriptionally inert chromosomal regions, which silences the repeats and transposable elements (TEs), to preserve genomic integrity. However, several studies from the last few decades show that centromeric and pericentromeric regions also get transcribed and these transcripts are involved in multiple cellular processes. Regulation of such spatially and temporally controlled transcription and their relevance to heterochromatin function have emerged as an active area of research in chromatin biology. Here, we review the myriad of roles of noncoding transcripts from the constitutive heterochromatin in the establishment and maintenance of heterochromatin, kinetochore assembly, germline epigenome maintenance, early development, and diseases. Contrary to general expectations, there are active protein-coding genes in the heterochromatin although the regulatory mechanisms of their expression are largely unknown. We propose plausible hypotheses to explain heterochromatic gene expression using Drosophila melanogaster as a model, and discuss the evolutionary significance of these transcripts in the context of Drosophilid speciation. Such analyses offer insights into the regulatory pathways and functions of heterochromatic transcripts which open new avenues for further investigation.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Campbell AE, Shadle SC, Jagannathan S, Lim JW, Resnick R, Tawil R, van der Maarel SM, Tapscott SJ. NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. eLife 2018; 7:e31023. [PMID: 29533181 PMCID: PMC5849414 DOI: 10.7554/elife.31023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/05/2018] [Indexed: 12/19/2022] Open
Abstract
The DUX4 transcription factor is encoded by a retrogene embedded in each unit of the D4Z4 macrosatellite repeat. DUX4 is normally expressed in the cleavage-stage embryo, whereas chromatin repression prevents DUX4 expression in most somatic tissues. Failure of this repression causes facioscapulohumeral muscular dystrophy (FSHD) due to mis-expression of DUX4 in skeletal muscle. In this study, we used CRISPR/Cas9 engineered chromatin immunoprecipitation (enChIP) locus-specific proteomics to characterize D4Z4-associated proteins. These and other approaches identified the Nucleosome Remodeling Deacetylase (NuRD) and Chromatin Assembly Factor 1 (CAF-1) complexes as necessary for DUX4 repression in human skeletal muscle cells and induced pluripotent stem (iPS) cells. Furthermore, DUX4-induced expression of MBD3L proteins partly relieved this repression in FSHD muscle cells. Together, these findings identify NuRD and CAF-1 as mediators of DUX4 chromatin repression and suggest a mechanism for the amplification of DUX4 expression in FSHD muscle cells.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sean C Shadle
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleUnited States
| | - Sujatha Jagannathan
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Computational Biology Program, Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Jong-Won Lim
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Rebecca Resnick
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleUnited States
- Medical Scientist Training ProgramUniversity of WashingtonSeattleUnited States
| | - Rabi Tawil
- Department of NeurologyUniversity of Rochester Medical CenterRochesterUnited States
| | | | - Stephen J Tapscott
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of NeurologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|
10
|
Hoffmeister H, Fuchs A, Erdel F, Pinz S, Gröbner-Ferreira R, Bruckmann A, Deutzmann R, Schwartz U, Maldonado R, Huber C, Dendorfer AS, Rippe K, Längst G. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res 2017; 45:10534-10554. [PMID: 28977666 PMCID: PMC5737555 DOI: 10.1093/nar/gkx711] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Andreas Fuchs
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Fabian Erdel
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sophia Pinz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Regina Gröbner-Ferreira
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Schwartz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rodrigo Maldonado
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Claudia Huber
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Anne-Sarah Dendorfer
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Karsten Rippe
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Längst
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Xia L, Huang W, Bellani M, Seidman MM, Wu K, Fan D, Nie Y, Cai Y, Zhang YW, Yu LR, Li H, Zahnow CA, Xie W, Chiu Yen RW, Rassool FV, Baylin SB. CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell 2017; 31:653-668.e7. [PMID: 28486105 PMCID: PMC5587180 DOI: 10.1016/j.ccell.2017.04.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
An oncogenic role for CHD4, a NuRD component, is defined for initiating and supporting tumor suppressor gene (TSG) silencing in human colorectal cancer. CHD4 recruits repressive chromatin proteins to sites of DNA damage repair, including DNA methyltransferases where it imposes de novo DNA methylation. At TSGs, CHD4 retention helps maintain DNA hypermethylation-associated transcriptional silencing. CHD4 is recruited by the excision repair protein OGG1 for oxidative damage to interact with the damage-induced base 8-hydroxydeoxyguanosine (8-OHdG), while ZMYND8 recruits it to double-strand breaks. CHD4 knockdown activates silenced TSGs, revealing their role for blunting colorectal cancer cell proliferation, invasion, and metastases. High CHD4 and 8-OHdG levels plus low expression of TSGs strongly correlates with early disease recurrence and decreased overall survival.
Collapse
Affiliation(s)
- Limin Xia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wenjie Huang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Marina Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yi Cai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yang W Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Li-Rong Yu
- Biomarkers and Alternative Models Branch, Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huili Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wenbing Xie
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ray-Whay Chiu Yen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
12
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Hollar D. Epigenetic Significance of Chromatin Organization During Cellular Aging and Organismal Lifespan. EPIGENETICS, THE ENVIRONMENT, AND CHILDREN’S HEALTH ACROSS LIFESPANS 2016. [PMCID: PMC7153164 DOI: 10.1007/978-3-319-25325-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Hollar
- Pfeiffer University, Morrisville, North Carolina USA
| |
Collapse
|
14
|
Stengel KR, Hiebert SW. Class I HDACs Affect DNA Replication, Repair, and Chromatin Structure: Implications for Cancer Therapy. Antioxid Redox Signal 2015; 23:51-65. [PMID: 24730655 PMCID: PMC4492608 DOI: 10.1089/ars.2014.5915] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The contribution of epigenetic alterations to cancer development and progression is becoming increasingly clear, prompting the development of epigenetic therapies. Histone deacetylase inhibitors (HDIs) represent one of the first classes of such therapy. Two HDIs, Vorinostat and Romidepsin, are broad-spectrum inhibitors that target multiple histone deacetylases (HDACs) and are FDA approved for the treatment of cutaneous T-cell lymphoma. However, the mechanism of action and the basis for the cancer-selective effects of these inhibitors are still unclear. RECENT ADVANCES While the anti-tumor effects of HDIs have traditionally been attributed to their ability to modify gene expression after the accumulation of histone acetylation, recent studies have identified the effects of HDACs on DNA replication, DNA repair, and genome stability. In addition, the HDIs available in the clinic target multiple HDACs, making it difficult to assign either their anti-tumor effects or their associated toxicities to the inhibition of a single protein. However, recent studies in mouse models provide insights into the tissue-specific functions of individual HDACs and their involvement in mediating the effects of HDI therapy. CRITICAL ISSUES Here, we describe how altered replication contributes to the efficacy of HDAC-targeted therapies as well as discuss what knowledge mouse models have provided to our understanding of the specific functions of class I HDACs, their potential involvement in tumorigenesis, and how their disruption may contribute to toxicities associated with HDI treatment. FUTURE DIRECTIONS Impairment of DNA replication by HDIs has important therapeutic implications. Future studies should assess how best to exploit these findings for therapeutic gain.
Collapse
Affiliation(s)
- Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
15
|
Dege C, Hagman J. Mi-2/NuRD chromatin remodeling complexes regulate B and T-lymphocyte development and function. Immunol Rev 2015; 261:126-40. [PMID: 25123281 DOI: 10.1111/imr.12209] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mi-2/nucleosomal remodeling and deacetylase (NuRD) complexes are important epigenetic regulators of chromatin structure and gene expression. Mi-2/NuRD complexes are an assemblage of proteins that combine key epigenetic regulators necessary for (i) histone deacetylation and demethylation, (ii) binding to methylated DNA, (iii) mobilization of nucleosomes, and (iv) recruitment of additional regulatory proteins. Depending on their context in chromatin, Mi-2/NuRD complexes either activate or repress gene transcription. In this regard, they are important regulators of hematopoiesis and lymphopoiesis. Mi-2/NuRD complexes maintain pools of hematopoietic stem cells. Specifically, components of these complexes control multiple stages of B-cell development by regulating B-cell specific transcription. With one set of components, they inhibit terminal differentiation of germinal center B cells into plasma B cells. They also mediate gene repression together with Blimp-1 during plasma cell differentiation. In cooperation with Ikaros, Mi-2/NuRD complexes also play important roles in T-cell development, including CD4 versus CD8 fate decisions and peripheral T-cell responses. Dysregulation of NuRD during lymphopoiesis promotes leukemogenesis. Here, we review general properties of Mi-2/NuRD complexes and focus on their functions in gene regulation and development of lymphocytes.
Collapse
Affiliation(s)
- Carissa Dege
- Integrated Department of Immunology, National Jewish Health and School of Medicine, University of Colorado, Denver, Aurora, CO, USA
| | | |
Collapse
|
16
|
Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015; 8:3. [PMID: 25788984 PMCID: PMC4363358 DOI: 10.1186/1756-8935-8-3] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
Constitutive heterochromatin, mainly formed at the gene-poor regions of pericentromeres, is believed to ensure a condensed and transcriptionally inert chromatin conformation. Pericentromeres consist of repetitive tandem satellite repeats and are crucial chromosomal elements that are responsible for accurate chromosome segregation in mitosis. The repeat sequences are not conserved and can greatly vary between different organisms, suggesting that pericentromeric functions might be controlled epigenetically. In this review, we will discuss how constitutive heterochromatin is formed and maintained at pericentromeres in order to ensure their integrity. We will describe the biogenesis and the function of main epigenetic pathways that are involved and how they are interconnected. Interestingly, recent findings suggest that alternative pathways could substitute for well-established pathways when disrupted, suggesting that constitutive heterochromatin harbors much more plasticity than previously assumed. In addition, despite of the heterochromatic nature of pericentromeres, there is increasing evidence for active and regulated transcription at these loci, in a multitude of organisms and under various biological contexts. Thus, in the second part of this review, we will address this relatively new aspect and discuss putative functions of pericentromeric expression.
Collapse
Affiliation(s)
- Nehmé Saksouk
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Elisabeth Simboeck
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Jérôme Déjardin
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| |
Collapse
|
17
|
Cubeñas-Potts C, Srikumar T, Lee C, Osula O, Subramonian D, Zhang XD, Cotter RJ, Raught B, Matunis MJ. Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes. Proteomics 2015; 15:763-72. [PMID: 25367092 DOI: 10.1002/pmic.201400400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/07/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023]
Abstract
Sumoylation is essential for progression through mitosis, but the specific protein targets and functions remain poorly understood. In this study, we used chromosome spreads to more precisely define the localization of SUMO-2/3 (small ubiquitin-related modifier) to the inner centromere and protein scaffold of mitotic chromosomes. We also developed methods to immunopurify proteins modified by endogenous, untagged SUMO-2/3 from mitotic chromosomes. Using these methods, we identified 149 chromosome-associated SUMO-2/3 substrates by nLC-ESI-MS/MS. Approximately one-third of the identified proteins have reported functions in mitosis. Consistent with SUMO-2/3 immunolocalization, we identified known centromere- and kinetochore-associated proteins, as well as chromosome scaffold associated proteins. Notably, >30 proteins involved in chromatin modification or remodeling were identified. Our results provide insights into the roles of sumoylation as a regulator of chromatin structure and other diverse processes in mitosis. Furthermore, our purification and fractionation methodologies represent an important compliment to existing approaches to identify sumoylated proteins using exogenously expressed and tagged SUMOs.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry & Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The tandem PHD (plant homeodomain) fingers of the CHD4 (chromodomain helicase DNA-binding protein 4) ATPase are epigenetic readers that bind either unmodified histone H3 tails or H3K9me3 (histone H3 trimethylated at Lys⁹). This dual function is necessary for the transcriptional and chromatin remodelling activities of the NuRD (nucleosome remodelling and deacetylase) complex. In the present paper, we show that calixarene-based supramolecular hosts disrupt binding of the CHD4 PHD2 finger to H3K9me3, but do not affect the interaction of this protein with the H3K9me0 (unmodified histone H3) tail. A similar inhibitory effect, observed for the association of chromodomain of HP1γ (heterochromatin protein 1γ) with H3K9me3, points to a general mechanism of methyl-lysine caging by calixarenes and suggests a high potential for these compounds in biochemical applications. Immunofluorescence analysis reveals that the supramolecular agents induce changes in chromatin organization that are consistent with their binding to and disruption of H3K9me3 sites in living cells. The results of the present study suggest that the aromatic macrocyclic hosts can be used as a powerful new tool for characterizing methylation-driven epigenetic mechanisms.
Collapse
|
19
|
Errico A, Aze A, Costanzo V. Mta2 promotes Tipin-dependent maintenance of replication fork integrity. Cell Cycle 2014; 13:2120-8. [PMID: 24830473 PMCID: PMC4111703 DOI: 10.4161/cc.29157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Orderly progression of S phase requires the action of replisome-associated Tipin and Tim1 proteins, whose molecular function is poorly understood. Here, we show that Tipin deficiency leads to the accumulation of aberrant replication intermediates known as reversed forks. We identified Mta2, a subunit of the NuRD chromatin remodeler complex, as a novel Tipin binding partner and mediator of its function. Mta2 is required for Tipin-dependent Polymerase α binding to replicating chromatin, and this function is essential to prevent the accumulation of reversed forks. Given the role of the Mta2-NuRD complex in the maintenance of heterochromatin, which is usually associated with hard-to-replicate DNA sequences, we tested the role of Tipin in the replication of such regions. Using a novel assay we developed to monitor replication of specific genomic loci in Xenopus laevis egg extract we demonstrated that Tipin is directly required for efficient replication of vertebrate centromeric DNA. Overall these results suggest that Mta2 and Tipin cooperate to maintain replication fork integrity, especially on regions that are intrinsically difficult to duplicate.
Collapse
Affiliation(s)
- Alessia Errico
- Genome Stability Laboratory; London Research Institute; South Mimms, UK; 2The FIRC Institute of Molecular Oncology (IFOM) Foundation; Milan, Italy
| | - Antoine Aze
- Genome Stability Laboratory; London Research Institute; South Mimms, UK; 2The FIRC Institute of Molecular Oncology (IFOM) Foundation; Milan, Italy
| | - Vincenzo Costanzo
- Genome Stability Laboratory; London Research Institute; South Mimms, UK; 2The FIRC Institute of Molecular Oncology (IFOM) Foundation; Milan, Italy
| |
Collapse
|
20
|
The Mi-2 homolog Mit1 actively positions nucleosomes within heterochromatin to suppress transcription. Mol Cell Biol 2014; 34:2046-61. [PMID: 24662054 DOI: 10.1128/mcb.01609-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mit1 is the putative chromatin remodeling subunit of the fission yeast Snf2/histone deacetylase (HDAC) repressor complex (SHREC) and is known to repress transcription at regions of heterochromatin. However, how Mit1 modifies chromatin to silence transcription is largely unknown. Here we report that Mit1 mobilizes histone octamers in vitro and requires ATP hydrolysis and conserved chromatin tethering domains, including a previously unrecognized chromodomain, to remodel nucleosomes and silence transcription. Loss of Mit1 remodeling activity results in nucleosome depletion at specific DNA sequences that display low intrinsic affinity for the histone octamer, but its contribution to antagonizing RNA polymerase II (Pol II) access and transcription is not restricted to these sites. Genetic epistasis analyses demonstrate that SHREC subunits and the transcription-coupled Set2 histone methyltransferase, which is involved in suppression of cryptic transcription at actively transcribed regions, cooperate to silence heterochromatic transcripts. In addition, we have demonstrated that Mit1's remodeling activity contributes to SHREC function independently of Clr3's histone deacetylase activity on histone H3 K14. We propose that Mit1 is a chromatin remodeling factor that cooperates with the Clr3 histone deacetylase of SHREC and other chromatin modifiers to stabilize heterochromatin structure and to prevent access to the transcriptional machinery.
Collapse
|
21
|
Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:728-36. [PMID: 24583555 DOI: 10.1016/j.bbagrm.2014.02.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 01/08/2023]
Abstract
Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sarah G Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
22
|
Budhavarapu VN, Chavez M, Tyler JK. How is epigenetic information maintained through DNA replication? Epigenetics Chromatin 2013; 6:32. [PMID: 24225278 PMCID: PMC3852060 DOI: 10.1186/1756-8935-6-32] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/12/2013] [Indexed: 12/23/2022] Open
Abstract
DNA replication is a highly conserved process that accurately copies the genetic information from one generation to the next. The processes of chromatin disassembly and reassembly during DNA replication also have to be precisely regulated to ensure that the genetic material is compactly packaged to fit into the nucleus while also maintaining the epigenetic information that is carried by the histone proteins bound to the DNA, through cell divisions. Half of the histones that are deposited during replication are from the parental chromatin and carry the parental epigenetic information, while the other half of the histones are newly-synthesized. It has been of growing interest to understand how the parental pattern of epigenetic marks is re-established on the newly-synthesized histones, in a DNA sequence-specific manner, in order to maintain the epigenetic information through cell divisions. In this review we will discuss how histone chaperone proteins precisely coordinate the chromatin assembly process during DNA replication. We also discuss the recent evidence that histone-modifying enzymes, rather than the parental histones, are themselves epigenetic factors that remain associated with the DNA through replication to re-establish the epigenetic information on the newly-assembled chromatin.
Collapse
Affiliation(s)
- Varija N Budhavarapu
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Myrriah Chavez
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jessica K Tyler
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
23
|
Sun F, Yang Q, Weng W, Zhang Y, Yu Y, Hong A, Ji Y, Pan Q. Chd4 and associated proteins function as corepressors of Sox9 expression during BMP-2-induced chondrogenesis. J Bone Miner Res 2013; 28:1950-61. [PMID: 23519980 DOI: 10.1002/jbmr.1932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/21/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Abstract
Mouse embryonic fibroblasts (MEFs) differentiate into fully functional chondrocytes in response to bone morphogenetic protein-2 (BMP-2). However, the comprehensive proteomic aspect of BMP-2-induced chondrogenesis remains unknown. We took advantage of quantitative proteomic analysis based on isobaric tag for relative and absolute quantitation (iTRAQ) and on-line 2D nano-liquid chromatography/tandem mass spectrometry (LC/MS/MS) to identify proteins differentially expressed during BMP-2-induced chondrogenic differentiation of MEFs. We found 85 downregulated proteins, and ingenuity pathways analysis (IPA) revealed a protein-protein network with chromodomain-helicase-DNA-binding protein 4 (Chd4) in the center. Chromatin immunoprecipitation (ChIP) and nuclease hypersensitivity assays showed that Chd4, interacting with Hdac1/2, cooperates with its related proteins Kap1 and Cbx1 to bind at -207/-148 of the Sox9 promoter. We also provided evidence that let-7a targets the 3'UTR of Chd4 to promote chondrogenesis of MEFs. Together, our findings indicate that BMP-2 induced the upregulation of let-7a, targeting Chd4 and positively controlling the chondrogenic differentiation of MEFs. These findings illustrate epigenetic regulation of the chondrogenic differentiation process and also expand the understanding of the involved intracellular mechanisms.
Collapse
Affiliation(s)
- Fenyong Sun
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The NuRD architecture. Cell Mol Life Sci 2013; 70:3513-24. [PMID: 23340908 DOI: 10.1007/s00018-012-1256-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/06/2012] [Accepted: 12/27/2012] [Indexed: 02/02/2023]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex regulates chromatin organization, gene transcription, genomic stability and developmental signaling. NuRD has a unique dual enzymatic activity, containing an ATPase and a histone deacetylase among its six core subunits. Recent studies indicate that NuRD composition and the interplay between subunits may dictate the diverse functions of the complex. In this review, we examine the structures and biological roles of the NuRD subunits and discuss new avenues of research to advance our understanding of the NuRD-mediated signaling network.
Collapse
|
25
|
Wagner E, Brehm A. Muscles and tendons of a nucleosome remodeling machine. J Mol Biol 2012; 422:1-2. [PMID: 22664199 DOI: 10.1016/j.jmb.2012.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Eugenia Wagner
- Institute for Molecular and Tumor Biology, Philipps University Marburg, 35032 Marburg, Germany
| | | |
Collapse
|
26
|
Todd MAM, Picketts DJ. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. J Proteome Res 2012; 11:4326-37. [PMID: 22720776 DOI: 10.1021/pr3004369] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutations in PHF6 are the cause of Börjeson-Forssman-Lehman syndrome (BFLS), an X-linked intellectual disability (XLID) disorder, and both T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). The PHF6 gene encodes a protein with two plant homeodomain (PHD)-like zinc finger domains. As many PHD-like domains function to target chromatin remodelers to post-translationally modified histones, this suggests a role for PHF6 in chromatin regulation. However, PHD domains are usually found in association with a catalytic domain, a feature that is lacking in PHF6. This distinct domain structure and the minimal information on its cellular function prompted us to perform a proteomic screen to identify PHF6 binding partners. We expressed recombinant Flag-tagged PHF6 in HEK 293T cells for coimmunoprecipitation, and analyzed the purified products by mass spectrometry. We identified proteins involved in ribosome biogenesis, RNA splicing, and chromatin regulation, consistent with PHF6 localization to both the nucleoplasm and nucleolus. Notably, PHF6 copurified with multiple constituents of the nucleosome remodeling and deacetylation (NuRD) complex, including CHD4, HDAC1, and RBBP4. We demonstrate that this PHF6-NuRD complex is not present in the nucleolus but is restricted to the nucleoplasm. The association with NuRD represents the first known interaction for PHF6 and implicates it in chromatin regulation.
Collapse
Affiliation(s)
- Matthew A M Todd
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8L6
| | | |
Collapse
|
27
|
Kwintkiewicz J, Padilla-Banks E, Jefferson WN, Jacobs IM, Wade PA, Williams CJ. Metastasis-associated protein 3 (MTA3) regulates G2/M progression in proliferating mouse granulosa cells. Biol Reprod 2012; 86:1-8. [PMID: 22075476 PMCID: PMC3316264 DOI: 10.1095/biolreprod.111.096032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/18/2011] [Accepted: 10/25/2011] [Indexed: 01/10/2023] Open
Abstract
Metastasis-associated protein 3 (MTA3) is a constituent of the Mi-2/nucleosome remodeling and deacetylase (NuRD) protein complex that regulates gene expression by altering chromatin structure and can facilitate cohesin loading onto DNA. The biological function of MTA3 within the NuRD complex is unknown. Herein, we show that MTA3 was expressed highly in granulosa cell nuclei of all ovarian follicle stages and at lower levels in corpora lutea. We tested the hypothesis that MTA3-NuRD complex function is required for granulosa cell proliferation. In the ovary, MTA3 interacted with NuRD proteins CHD4 and HDAC1 and the core cohesin complex protein RAD21. In cultured mouse primary granulosa cells, depletion of endogenous MTA3 using RNA interference slowed cell proliferation; this effect was rescued by coexpression of exogenous MTA3. Slowing of cell proliferation correlated with a significant decrease in cyclin B1 and cyclin B2 expression. Granulosa cell populations lacking MTA3 contained a significantly higher percentage of cells in G2/M phase and a lower percentage in S phase compared with control cells. Furthermore, MTA3 depletion slowed entry into M phase as indicated by reduced phosphorylation of histone H3 at serine 10. These findings provide the first evidence to date that MTA3 interacts with NuRD and cohesin complex proteins in the ovary in vivo and regulates G2/M progression in proliferating granulosa cells.
Collapse
Affiliation(s)
- Jakub Kwintkiewicz
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Elizabeth Padilla-Banks
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Wendy N. Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Ilana M. Jacobs
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Paul A. Wade
- Eukaryotic Transcriptional Regulation Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Carmen J. Williams
- Eukaryotic Transcriptional Regulation Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
28
|
Functions of chromatin remodeling factors in heterochromatin formation and maintenance. SCIENCE CHINA-LIFE SCIENCES 2012; 55:89-96. [DOI: 10.1007/s11427-012-4267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
29
|
Mermoud JE, Rowbotham SP, Varga-Weisz PD. Keeping chromatin quiet: how nucleosome remodeling restores heterochromatin after replication. Cell Cycle 2011; 10:4017-25. [PMID: 22101266 DOI: 10.4161/cc.10.23.18558] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Disruption of chromatin organization during replication poses a major challenge to the maintenance and integrity of genome organization. It creates the need to accurately reconstruct the chromatin landscape following DNA duplication but there is little mechanistic understanding of how chromatin based modifications are restored on newly synthesized DNA. ATP-dependent chromatin remodeling activities serve multiple roles during replication and recent work underscores their requirement in the maintenance of proper chromatin organization. A new component of chromatin replication, the SWI/SNF-like chromatin remodeler SMARCAD1, acts at replication sites to facilitate deacetylation of newly assembled histones. Deacetylation is a pre-requisite for the restoration of epigenetic signatures in heterochromatin regions following replication. In this way, SMARCAD1, in concert with histone modifying activities and transcriptional repressors, reinforces epigenetic instructions to ensure that silenced loci are correctly perpetuated in each replication cycle. The emerging concept is that remodeling of nucleosomes is an early event imperative to promote the re-establishment of histone modifications following DNA replication.
Collapse
|
30
|
Sims JK, Wade PA. Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Mol Biol Cell 2011; 22:3094-102. [PMID: 21737684 PMCID: PMC3164457 DOI: 10.1091/mbc.e11-03-0258] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/27/2011] [Accepted: 06/27/2011] [Indexed: 01/28/2023] Open
Abstract
During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra-S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression.
Collapse
Affiliation(s)
- Jennifer K. Sims
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Paul A. Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
31
|
Abstract
The nucleosome remodelling and histone deacetylase (NuRD; also known as Mi-2) complex regulates gene expression at the level of chromatin. The NuRD complex has been identified - using both genetic and molecular analyses - as a key determinant of differentiation in mouse embryonic stem cells and during development in various model systems. Similar to other chromatin remodellers, such as SWI/SNF and Polycomb complexes, NuRD has also been implicated in the regulation of transcriptional events that are integral to oncogenesis and cancer progression. Emerging molecular details regarding the recruitment of NuRD to specific loci during development, and the modulation of these events in cancer, are used to illustrate how the inappropriate localization of the complex could contribute to tumour biology.
Collapse
Affiliation(s)
- Anne Y Lai
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina NC 27709, USA.
| | | |
Collapse
|
32
|
Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, Hawkes N, Choudhary P, Will WR, Webster J, Oxley D, Green CM, Varga-Weisz P, Mermoud JE. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol Cell 2011; 42:285-96. [PMID: 21549307 DOI: 10.1016/j.molcel.2011.02.036] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/11/2011] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
Abstract
Epigenetic marks such as posttranslational histone modifications specify the functional states of underlying DNA sequences, though how they are maintained after their disruption during DNA replication remains a critical question. We identify the mammalian SWI/SNF-like protein SMARCAD1 as a key factor required for the re-establishment of repressive chromatin. The ATPase activity of SMARCAD1 is necessary for global deacetylation of histones H3/H4. In this way, SMARCAD1 promotes methylation of H3K9, the establishment of heterochromatin, and faithful chromosome segregation. SMARCAD1 associates with transcriptional repressors including KAP1, histone deacetylases HDAC1/2 and the histone methyltransferase G9a/GLP and modulates the interaction of HDAC1 and KAP1 with heterochromatin. SMARCAD1 directly interacts with PCNA, a central component of the replication machinery, and is recruited to sites of DNA replication. Our findings suggest that chromatin remodeling by SMARCAD1 ensures that silenced loci, such as pericentric heterochromatin, are correctly perpetuated.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Nuclear Dynamics and Function, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Y. Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer). GENE REGULATION AND SYSTEMS BIOLOGY 2011; 5:1-26. [PMID: 21523247 PMCID: PMC3080740 DOI: 10.4137/grsb.s6510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dynamic chromatin activities of Mi-2/Nucleosome Remodeling and Histone deacetylation (Mi-2/NuRD) complexes in mammals are at the basis of current research on stemness, longevity/ageing, and cancer (4-2-1/SLAC), and have been widely studied over the past decade in mammals and the elegant model organism, Caenorhabditis elegans. Interestingly, a common emergent theme from these studies is that of distinct coregulator-recruited Mi-2/NuRD complexes largely orchestrating the 4-2-1/SLAC within a unique paradigm by maintaining genome stability via DNA repair and controlling three types of transcriptional programs in concert in a number of cellular, tissue, and organism contexts. Thus, the core Mi-2/NuRD complex plays a central role in 4-2-1/SLAC. The plasticity and robustness of 4-2-1/SLAC can be interpreted as modulation of specific coregulator(s) within cell-specific, tissue-specific, stage-specific, or organism-specific niches during stress induction, ie, a functional module and its networking, thereby conferring differential responses to different environmental cues. According to “Occam’s razor”, a simple theory is preferable to a complex one, so this simplified notion might be useful for exploring 4-2-1/SLAC with a holistic view. This thought could also be valuable in forming strategies for future research, and could open up avenues for cancer prevention and antiageing strategies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
34
|
Abstract
The combinatorial pattern of DNA and histone modifications constitutes an epigenetic 'code' that shapes gene-expression patterns by enabling or restricting the transcriptional potential of genomic domains. DNA methylation is associated with histone modifications, particularly the absence of histone H3 lysine 4 methylation (H3K4me0) and the presence of H3K9 methylation. This article focuses on three protein domains (ATRX-Dnmt3-Dnmt3L [ADD], Cys-X-X-Cys [CXXC] and the methyl-CpG-binding domain [MBD]) and the functional implications of domain architecture in the mechanisms linking histone methylation and DNA methylation in mammalian cells. The DNA methyltransferase DNMT3a and its accessory protein Dnmt 3L contain a H3K4me0-interacting ADD domain that links the DNA methylation reaction with unmodified H3K4. The H3K4 methyltransferase MLL1 contains a CpG-interacting CXXC domain that may couple the H3K4 methylation reaction to unmethylated DNA. Another H3K4 methyltransferase, SET1, although lacking an intrinsic CXXC domain, interacts directly with an accessory protein CFP1 that contains the same domain. The H3K9 methyltransferase SETDB1 contains a putative MBD that potentially links the H3K4 methylation reaction to methylated DNA or may do so through the interaction with the MBD containing protein MBD1. Finally, we consider the domain structure of the DNA methyltransferase DNMT1, its accessory protein UHRF1 and their associated proteins, and propose a mechanism by which DNA methylation and histone methylation may be coordinately maintained through mitotic cell division, allowing for the transmission of parental DNA and for the histone methylation patterns to be copied to newly replicated chromatin.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paula M Vertino
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Pegoraro G, Misteli T. The central role of chromatin maintenance in aging. Aging (Albany NY) 2009; 1:1017-22. [PMID: 20157584 PMCID: PMC2815750 DOI: 10.18632/aging.100106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/08/2009] [Indexed: 12/20/2022]
Abstract
Epigenetic regulation of chromatin and the DNA damage response are now well appreciated key players in human aging. What contributions chromatin and DAN repair make to aging, whether they are causal, and how these relate to other aging pathways, however, is unclear. Novel insights into the aging-related molecular mechanisms that link chromatin and DNA damage repair have recently been gained by studying models of both premature and physiological aging. Here we discuss these findings and we propose a broad framework for the role of chromatin in aging to reconcile apparently contradicting evidence obtained in various experimental systems.
Collapse
|