1
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Shan J, Li H, Meyerson M. Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing. CELL GENOMICS 2024; 4:100588. [PMID: 38917803 PMCID: PMC11293586 DOI: 10.1016/j.xgen.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - Mitchell L Leibowitz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heng Li
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Kinzig CG, Zakusilo G, Takai KK, Myler LR, de Lange T. ATR blocks telomerase from converting DNA breaks into telomeres. Science 2024; 383:763-770. [PMID: 38359122 PMCID: PMC11267623 DOI: 10.1126/science.adg3224] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/13/2023] [Indexed: 02/17/2024]
Abstract
Telomerase, the enzyme that maintains telomeres at natural chromosome ends, should be repressed at double-strand breaks (DSBs), where neotelomere formation can cause terminal truncations. We developed an assay to detect neotelomere formation at Cas9- or I-SceI-induced DSBs in human cells. Telomerase added telomeric repeats to DSBs, leading to interstitial telomeric repeat insertions or the formation of functional neotelomeres accompanied by terminal deletions. The threat that telomerase poses to genome integrity was minimized by ataxia telangiectasia and Rad3-related (ATR) kinase signaling, which inhibited telomerase at resected DSBs. In addition to acting at resected DSBs, telomerase used the extruded strand in the Cas9 enzyme-product complex as a primer for neotelomere formation. We propose that although neotelomere formation is detrimental in normal human cells, it may allow cancer cells to escape from breakage-fusion-bridge cycles.
Collapse
Affiliation(s)
- Charles G. Kinzig
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD/PhD Program, New York, NY 10065, USA
| | - George Zakusilo
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD/PhD Program, New York, NY 10065, USA
| | - Kaori K. Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Logan R. Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
3
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Kuse R, Ishii K. Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes. Biomolecules 2023; 13:1016. [PMID: 37371596 DOI: 10.3390/biom13061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Accurate transmission of genomic information across multiple cell divisions and generations, without any losses or errors, is fundamental to all living organisms. To achieve this goal, eukaryotes devised chromosomes. Eukaryotic genomes are represented by multiple linear chromosomes in the nucleus, each carrying a centromere in the middle, a telomere at both ends, and multiple origins of replication along the chromosome arms. Although all three of these DNA elements are indispensable for chromosome function, centromeres and telomeres possess the potential to detach from the original chromosome and attach to new chromosomal positions, as evident from the events of telomere fusion, centromere inactivation, telomere healing, and neocentromere formation. These events seem to occur spontaneously in nature but have not yet been elucidated clearly, because they are relatively infrequent and sometimes detrimental. To address this issue, experimental setups have been developed using model organisms such as yeast. In this article, we review some of the key experiments that provide clues as to the extent to which these paradoxical and elusive features of chromosomally indispensable elements may become valuable in the natural context.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| |
Collapse
|
5
|
Leibowitz ML, Papathanasiou S, Doerfler PA, Blaine LJ, Sun L, Yao Y, Zhang CZ, Weiss MJ, Pellman D. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat Genet 2021; 53:895-905. [PMID: 33846636 PMCID: PMC8192433 DOI: 10.1038/s41588-021-00838-7] [Citation(s) in RCA: 352] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR-Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR-Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.
Collapse
Affiliation(s)
- Mitchell L Leibowitz
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stamatis Papathanasiou
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Logan J Blaine
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lili Sun
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng-Zhong Zhang
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
6
|
Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, Kostyusheva A, Artyuhov A, Dashinimaev E, Avdoshina D, Kondrashova A, Valuev-Elliston V, Latyshev O, Eliseeva O, Petkov S, Abakumov M, Hippe L, Kholodnyuk I, Starodubova E, Gorodnicheva T, Ivanov A, Gordeychuk I, Isaguliants M. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel) 2020; 8:318. [PMID: 32570805 PMCID: PMC7350266 DOI: 10.3390/vaccines8020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Alisa Kurlanda
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Ilze Fridrihsone
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Anastasia Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 127994, Russia
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Vladimir Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maxim Abakumov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISIS, Moscow 127994, Russia
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia
| | - Laura Hippe
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Irina Kholodnyuk
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | | | - Alexander Ivanov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Maria Isaguliants
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| |
Collapse
|
7
|
Umbreit NT, Zhang CZ, Lynch LD, Blaine LJ, Cheng AM, Tourdot R, Sun L, Almubarak HF, Judge K, Mitchell TJ, Spektor A, Pellman D. Mechanisms generating cancer genome complexity from a single cell division error. Science 2020; 368:eaba0712. [PMID: 32299917 PMCID: PMC7347108 DOI: 10.1126/science.aba0712] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
The chromosome breakage-fusion-bridge (BFB) cycle is a mutational process that produces gene amplification and genome instability. Signatures of BFB cycles can be observed in cancer genomes alongside chromothripsis, another catastrophic mutational phenomenon. We explain this association by elucidating a mutational cascade that is triggered by a single cell division error-chromosome bridge formation-that rapidly increases genomic complexity. We show that actomyosin forces are required for initial bridge breakage. Chromothripsis accumulates, beginning with aberrant interphase replication of bridge DNA. A subsequent burst of DNA replication in the next mitosis generates extensive DNA damage. During this second cell division, broken bridge chromosomes frequently missegregate and form micronuclei, promoting additional chromothripsis. We propose that iterations of this mutational cascade generate the continuing evolution and subclonal heterogeneity characteristic of many human cancers.
Collapse
Affiliation(s)
- Neil T Umbreit
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cheng-Zhong Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luke D Lynch
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Logan J Blaine
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna M Cheng
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard Tourdot
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lili Sun
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hannah F Almubarak
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kim Judge
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Alexander Spektor
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
8
|
Kong X, Cruz GMS, Trinh SL, Zhu XD, Berns MW, Yokomori K. Biphasic recruitment of TRF2 to DNA damage sites promotes non-sister chromatid homologous recombination repair. J Cell Sci 2018; 131:jcs219311. [PMID: 30404833 PMCID: PMC10682959 DOI: 10.1242/jcs.219311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2023] Open
Abstract
TRF2 (TERF2) binds to telomeric repeats and is critical for telomere integrity. Evidence suggests that it also localizes to non-telomeric DNA damage sites. However, this recruitment appears to be precarious and functionally controversial. We find that TRF2 recruitment to damage sites occurs by a two-step mechanism: the initial rapid recruitment (phase I), and stable and prolonged association with damage sites (phase II). Phase I is poly(ADP-ribose) polymerase (PARP)-dependent and requires the N-terminal basic domain. The phase II recruitment requires the C-terminal MYB/SANT domain and the iDDR region in the hinge domain, which is mediated by the MRE11 complex and is stimulated by TERT. PARP-dependent recruitment of intrinsically disordered proteins contributes to transient displacement of TRF2 that separates two phases. TRF2 binds to I-PpoI-induced DNA double-strand break sites, which is enhanced by the presence of complex damage and is dependent on PARP and the MRE11 complex. TRF2 depletion affects non-sister chromatid homologous recombination repair, but not homologous recombination between sister chromatids or non-homologous end-joining pathways. Our results demonstrate a unique recruitment mechanism and function of TRF2 at non-telomeric DNA damage sites.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Gladys Mae Saquilabon Cruz
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Sally Loyal Trinh
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Michael W Berns
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92617, USA
- Department of Biomedical Engineering and Surgery, University of California, Irvine, CA 92617, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| |
Collapse
|
9
|
A Heterochromatin Domain Forms Gradually at a New Telomere and Is Dynamic at Stable Telomeres. Mol Cell Biol 2018; 38:MCB.00393-17. [PMID: 29784772 PMCID: PMC6048312 DOI: 10.1128/mcb.00393-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Heterochromatin domains play important roles in chromosome biology, organismal development, and aging, including centromere function, mammalian female X chromosome inactivation, and senescence-associated heterochromatin foci. In the fission yeast Schizosaccharomyces pombe and metazoans, heterochromatin contains histone H3 that is dimethylated at lysine 9. Heterochromatin domains play important roles in chromosome biology, organismal development, and aging, including centromere function, mammalian female X chromosome inactivation, and senescence-associated heterochromatin foci. In the fission yeast Schizosaccharomyces pombe and metazoans, heterochromatin contains histone H3 that is dimethylated at lysine 9. While factors required for heterochromatin have been identified, the dynamics of heterochromatin formation are poorly understood. Telomeres convert adjacent chromatin into heterochromatin. To form a new heterochromatic region in S. pombe, an inducible DNA double-strand break (DSB) was engineered next to 48 bp of telomere repeats in euchromatin, which caused formation of a new telomere and the establishment and gradual spreading of a new heterochromatin domain. However, spreading was dynamic even after the telomere had reached its stable length, with reporter genes within the heterochromatin domain showing variegated expression. The system also revealed the presence of repeats located near the boundaries of euchromatin and heterochromatin that are oriented to allow the efficient healing of a euchromatic DSB to cap the chromosome end with a new telomere. Telomere formation in S. pombe therefore reveals novel aspects of heterochromatin dynamics and fail-safe mechanisms to repair subtelomeric breaks, with implications for similar processes in metazoan genomes.
Collapse
|
10
|
Andriuskevicius T, Kotenko O, Makovets S. Putting together and taking apart: assembly and disassembly of the Rad51 nucleoprotein filament in DNA repair and genome stability. Cell Stress 2018; 2:96-112. [PMID: 31225474 PMCID: PMC6551702 DOI: 10.15698/cst2018.05.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Homologous recombination is a key mechanism providing both genome stability and genetic diversity in all living organisms. Recombinases play a central role in this pathway: multiple protein subunits of Rad51 or its orthologues bind single-stranded DNA to form a nucleoprotein filament which is essential for initiating recombination events. Multiple factors are involved in the regulation of this step, both positively and negatively. In this review, we discuss Rad51 nucleoprotein assembly and disassembly, how it is regulated and what functional significance it has in genome maintenance.
Collapse
Affiliation(s)
| | - Oleksii Kotenko
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh
| | - Svetlana Makovets
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh
| |
Collapse
|
11
|
Abstract
The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called “telomere healing,” and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric regions of the genome that harbor the multicopy gene families important for virulence and the maintenance of infection. We show that parasites utilize two competing molecular mechanisms to repair double-strand breaks, homologous recombination and de novo telomere addition, with the pathway used being determined by the surrounding DNA sequence. In combination, these two pathways balance the need to maintain genome stability with the selective advantage of generating antigenic diversity.
Collapse
|
12
|
Ouenzar F, Lalonde M, Laprade H, Morin G, Gallardo F, Tremblay-Belzile S, Chartrand P. Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage. J Cell Biol 2017. [PMID: 28637749 PMCID: PMC5551704 DOI: 10.1083/jcb.201610071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Telomerase can generate a novel telomere at a DNA break, with potentially lethal consequences for the cell. Ouenzar et al. reveal novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair during the cell cycle. Telomerase can generate a novel telomere at DNA double-strand breaks (DSBs), an event called de novo telomere addition. How this activity is suppressed remains unclear. Combining single-molecule imaging and deep sequencing, we show that the budding yeast telomerase RNA (TLC1 RNA) is spatially segregated to the nucleolus and excluded from sites of DNA repair in a cell cycle–dependent manner. Although TLC1 RNA accumulates in the nucleoplasm in G1/S, Pif1 activity promotes TLC1 RNA localization in the nucleolus in G2/M. In the presence of DSBs, TLC1 RNA remains nucleolar in most G2/M cells but accumulates in the nucleoplasm and colocalizes with DSBs in rad52Δ cells, leading to de novo telomere additions. Nucleoplasmic accumulation of TLC1 RNA depends on Cdc13 localization at DSBs and on the SUMO ligase Siz1, which is required for de novo telomere addition in rad52Δ cells. This study reveals novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair.
Collapse
Affiliation(s)
- Faissal Ouenzar
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Hadrien Laprade
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Franck Gallardo
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
13
|
Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci U S A 2016; 113:E5024-33. [PMID: 27503890 DOI: 10.1073/pnas.1602379113] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc-dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression.
Collapse
|
14
|
Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins. Mol Cell Biol 2016; 36:1908-19. [PMID: 27161319 PMCID: PMC4936065 DOI: 10.1128/mcb.00943-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telomerase activity in dividing cells, telomeres eventually become critically short, inducing a permanent cell cycle arrest (senescence). We recently showed that even early after telomerase inactivation (ETI), yeast cells have accelerated mother cell aging and mildly perturbed cell cycles. Here, we show that the complete disruption of DNA damage response (DDR) adaptor proteins in ETI cells causes severe growth defects. This synthetic-lethality phenotype was as pronounced as that caused by extensive DNA damage in wild-type cells but showed genetic dependencies distinct from such damage and was completely alleviated by SML1 deletion, which increases deoxynucleoside triphosphate (dNTP) pools. Our results indicated that these deleterious effects in ETI cells cannot be accounted for solely by the slow erosion of telomeres due to incomplete replication that leads to senescence. We propose that normally occurring telomeric DNA replication stress is resolved by telomerase activity and the DDR in two parallel pathways and that deletion of Sml1 prevents this stress.
Collapse
|
15
|
Rocha LC, Mittelmann A, Houben A, Techio VH. Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray. Mol Biol Rep 2016; 43:659-65. [PMID: 27174104 DOI: 10.1007/s11033-016-4003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 01/24/2023]
Abstract
Sites of 45S rDNA of Lolium are regions denominated fragile sites (FSs), constituting regions slightly stained with DAPI due to increased DNA unpacking in metaphasic chromosomes. Considered to be fragile regions in the genome, the FSs might be more responsive to induced breaks and result in chromosomal fragments and rearrangements, unless repairing mechanisms such as recombination or de novo telomere formation play a role at the break site of the DNA. Thus, this study aimed at investigating if SFs from Lolium are hotspots for the occurrence of breakages induced by X-ray and if they are regions favorable to synthesize new telomeres, using Hordeum vulgare as a comparative model. Lolium multiflorum and H. vulgare seedlings were irradiated with 20 and 50 Gy X-ray and evaluated one day following the irradiation and at 7-days intervals for a 28-days period, using FISH technique with 45S rDNA and Arabidopsis-type telomere probes in order to investigate the presence of chromosomal breakages and new telomere formation. H. vulgare did not survive after a few days of irradiation due to the increased rate of abnormalities. L. multiflorum also exhibited chromosomal abnormalities following the exposure, yet over the 28-days trial it had a decrease in the chromosomal damage rate and formation of de novo telomere has not been detected along this time. Despite being considered to be fragile regions in the genome, the 45S rDNA sites of Lolium are not hotspots to chromosomal breakages after the induction of breakages.
Collapse
Affiliation(s)
- Laiane Corsini Rocha
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | - Andrea Mittelmann
- Embrapa Dairy Cattle/Embrapa Temperate Agriculture, Juiz de Fora/Pelotas, Minas Gerais State/Rio Grande do Sul State, Brazil
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, StadtSeeland, Germany.
| | - Vânia Helena Techio
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Santos-Serejo JA, Aguiar-Perecin MLR. Breakage-fusion-bridge cycles and de novo telomere formation on broken chromosomes in maize callus cultures. Genome 2016; 59:367-78. [PMID: 27203556 DOI: 10.1139/gen-2015-0211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breakpoints involved in chromosome alterations associated with heterochromatin have been detected in maize plants regenerated from callus culture. A cytogenetic analysis of plants regenerated from a maize callus was performed aiming to analyze the stability of a chromosome 7 bearing a deficiency-duplication (Df-Dp), which was interpreted as derived from a chromatid type breakage-fusion-bridge (BFB) cycle. The Df-Dp chromosome 7 was stable in mitotic and meiotic cells of the regenerated plants. Fluorescence in situ hybridization showed signals of telomeric sequences on the broken chromosome arm and provided evidence of de novo telomere formation. The stability of two types of altered chromosome 7 was investigated in C-banded metaphases from samples of the original callus that were collected during a period of 30-42 months after culture initiation. New alterations involving heterochromatic knobs of chromosomes 7 and 9 were observed. The aberrant chromosomes were stable in the subcultures, thus providing evidence of broken chromosome healing. The examination of anaphases showed the presence of bridges, which was consistent with the occurrence of BFB cycles. De novo telomere formation occurred in euchromatic and heterochromatic chromosome termini. The results point to events of chromosomal evolution that might occur in plants.
Collapse
Affiliation(s)
- Janay A Santos-Serejo
- Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil.,Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Margarida L R Aguiar-Perecin
- Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil.,Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
17
|
Fuhrmann G, Jönsson F, Weil PP, Postberg J, Lipps HJ. RNA-template dependent de novo telomere addition. RNA Biol 2016; 13:733-9. [PMID: 26786510 DOI: 10.1080/15476286.2015.1134414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
De novo addition of telomeric sequences can occur at broken chromosomes and must be well controlled, which is essential during programmed DNA reorganization processes. In ciliated protozoa an extreme form of DNA-reorganization is observed during macronuclear differentiation after sexual reproduction leading to the elimination of specific parts of the germline genome. Regulating these processes involves small noncoding RNAs, but in addition DNA-reordering, excision and amplification require RNA templates deriving from the parental macronucleus. We show that these putative RNA templates can carry telomeric repeats. Microinjection of RNA templates carrying modified telomeres into the developing macronucleus leads to modified telomeres in vegetative cells, providing strong evidence, that de novo addition of telomeres depends on a telomere-containing transcript from the parental macronucleus.
Collapse
Affiliation(s)
- Gloria Fuhrmann
- a Institute of Cell Biology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten , Germany
| | - Franziska Jönsson
- a Institute of Cell Biology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten , Germany
| | - Patrick Philipp Weil
- b Department of Pediatrics , HELIOS Medical Center Wuppertal, Center for Clinical & Translational Research (CCTR), Center for Biomedical Education & Research (ZBAF), Witten/Herdecke University , Wuppertal , Germany
| | - Jan Postberg
- b Department of Pediatrics , HELIOS Medical Center Wuppertal, Center for Clinical & Translational Research (CCTR), Center for Biomedical Education & Research (ZBAF), Witten/Herdecke University , Wuppertal , Germany
| | - Hans J Lipps
- a Institute of Cell Biology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten , Germany
| |
Collapse
|
18
|
Servant G, Deininger PL. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front Genet 2016; 6:358. [PMID: 26779254 PMCID: PMC4700185 DOI: 10.3389/fgene.2015.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
The telomerase complex is a specialized reverse transcriptase (RT) that inserts tandem DNA arrays at the linear chromosome ends and contributes to the protection of the genetic information in eukaryotic genomes. Telomerases are phylogenetically related to retrotransposons, encoding also the RT activity required for the amplification of their sequences throughout the genome. Intriguingly the telomerase gene is lost from the Drosophila genome and tandem retrotransposons replace telomeric sequences at the chromosome extremities. This observation suggests the versatility of RT activity in counteracting the chromosome shortening associated with genome replication and that retrotransposons can provide this activity in case of a dysfunctional telomerase. In this review paper, we describe the major classes of retroelements present in eukaryotic genomes in order to point out the differences and similarities with the telomerase complex. In a second part, we discuss the insertion of retroelements at the ends of chromosomes as an adaptive response for dysfunctional telomeres.
Collapse
Affiliation(s)
| | - Prescott L. Deininger
- Tulane Cancer Center, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LAUSA
| |
Collapse
|
19
|
Vogan JM, Collins K. Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle. J Biol Chem 2015; 290:21320-35. [PMID: 26170453 DOI: 10.1074/jbc.m115.659359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 01/04/2023] Open
Abstract
Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells.
Collapse
Affiliation(s)
- Jacob M Vogan
- From the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| | - Kathleen Collins
- From the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
20
|
A transposable element within the Non-canonical telomerase RNA of Arabidopsis thaliana modulates telomerase in response to DNA damage [corrected]. PLoS Genet 2015; 11:e1005281. [PMID: 26075395 PMCID: PMC4468102 DOI: 10.1371/journal.pgen.1005281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical factors in many biological processes, but little is known about how their regulatory functions evolved. One of the best-studied lncRNAs is TER, the essential RNA template for telomerase reverse transcriptase. We previously showed that Arabidopsis thaliana harbors three TER isoforms: TER1, TER2 and TER2S. TER1 serves as a canonical telomere template, while TER2 is a novel negative regulator of telomerase activity, induced in response to double-strand breaks (DSBs). TER2 contains a 529 nt intervening sequence that is removed along with 36 nt at the RNA 3’ terminus to generate TER2S, an RNA of unknown function. Here we investigate how A. thaliana TER2 acquired its regulatory function. Using data from the 1,001 Arabidopsis genomes project, we report that the intervening sequence within TER2 is derived from a transposable element termed DSB responsive element (DRE). DRE is found in the TER2 loci of most but not all A. thaliana accessions. By analyzing accessions with (TER2) and without DRE (TER2Δ) we demonstrate that this element is responsible for many of the unique properties of TER2, including its enhanced binding to TERT and telomerase inhibitory function. We show that DRE destabilizes TER2, and further that TER2 induction by DNA damage reflects increased RNA stability and not increased transcription. DRE-mediated changes in TER2 stability thus provide a rapid and sensitive switch to fine-tune telomerase enzyme activity. Altogether, our data shows that invasion of the TER2 locus by a small transposon converted this lncRNA into a DNA damage sensor that modulates telomerase enzyme activity in response to genome assault. Telomerase is a highly regulated enzyme whose activity is essential for long-term cellular proliferation. In the presence of DNA double-strand breaks (DSBs), telomerase activity must be curtailed to promote faithful DNA repair. We previously showed that the flowering plant Arabidopsis thaliana rapidly down-regulates telomerase in response to DSBs, and further that this mode of regulation is dependent on TER2, a non-canonical telomerase RNA subunit. Here we demonstrate that the unique regulatory properties of TER2 are conveyed by a transposable element (TE) embedded in the TER2 gene. A comparison of A. thaliana accessions with and without the TE revealed that the element increases the binding affinity of TER2 for the telomerase catalytic subunit TERT relative to the canonical telomerase RNA subunit. The TE also increases TER2 turnover. In response to DSBs, TER2 is induced and accumulates in TERT containing complexes in vivo. Thus, invasion of a TE endows TER2 with a DNA damage sensor to rapidly and reversibly modulate enzyme activity in response to genotoxic stress. These findings provide an example of how exaptation of a TE altered the function of a long noncoding RNA. In this case, a duplicated gene (TER2) was used as the platform, and the TE as the tool to engineer a novel mode of telomerase regulation.
Collapse
|
21
|
Arancio W, Pizzolanti G, Genovese SI, Baiamonte C, Giordano C. Competing Endogenous RNA and Interactome Bioinformatic Analyses on Human Telomerase. Rejuvenation Res 2014; 17:161-7. [DOI: 10.1089/rej.2013.1486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Walter Arancio
- Dipartimento Biomedico di Medicina Interna e Specialistica (Biomedical Department of Internal and Specialized Medicine), University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Dipartimento Biomedico di Medicina Interna e Specialistica (Biomedical Department of Internal and Specialized Medicine), University of Palermo, Palermo, Italy
| | | | - Concetta Baiamonte
- Dipartimento Biomedico di Medicina Interna e Specialistica (Biomedical Department of Internal and Specialized Medicine), University of Palermo, Palermo, Italy
| | - Carla Giordano
- Dipartimento Biomedico di Medicina Interna e Specialistica (Biomedical Department of Internal and Specialized Medicine), University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Budd ME, Campbell JL. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 2013; 288:29414-29. [PMID: 23963457 DOI: 10.1074/jbc.m113.472456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.
Collapse
Affiliation(s)
- Martin E Budd
- From Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
23
|
Abstract
Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1) account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary) breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s) is (are) most important for tumor suppression, nor is it clear why BRCA1-mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR), which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.
Collapse
Affiliation(s)
- Eliot M Rosen
- Department of Oncology, Georgetown University School of Medicine Washington, DC, USA ; Department of Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA ; Department of Radiation Medicine, Georgetown University School of Medicine Washington, DC, USA
| |
Collapse
|