1
|
Hou Z, Zhang P. In-cell chromatin structure by Cryo-FIB and Cryo-ET. Curr Opin Struct Biol 2025; 92:103060. [PMID: 40349511 DOI: 10.1016/j.sbi.2025.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Chromatin, the complex of DNA and proteins that organises genetic material in eukaryotic cells, has been a focal point of biological research for over a century. Its structure determines critical functions such as gene regulation, DNA replication and chromosome segregation. Early models of chromatin were limited by technological constraints, but advancements in imaging, particularly X-ray and electron microscopy (EM), gradually unveiled its hierarchical organisation. The recent emergence of cryo-electron tomography (cryo-ET) coupled with cryo-focused ion beam (cryo-FIB) milling has revolutionised our understanding of chromatin organisation by providing native, three-dimensional (3D) views of various macromolecules and architectures of chromatin at unprecedented resolution. This review traces the historical progression of chromatin structural studies, from early EM and fluorescence microscopy to the transformative insights offered by cryo-ET, culminating in a synthesis of current knowledge and future directions.
Collapse
Affiliation(s)
- Zhen Hou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Peijun Zhang
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
2
|
Chen JK, Liu T, Cai S, Ruan W, Ng CT, Shi J, Surana U, Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J 2025; 44:2658-2694. [PMID: 40097852 PMCID: PMC12048539 DOI: 10.1038/s44318-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The structure of chromatin at the nucleosome level inside cells is still incompletely understood. Here we present in situ electron cryotomography analyses of chromatin in both G1 and metaphase RPE-1 cells. G1 nucleosomes are concentrated in globular chromatin domains, and metaphase nucleosomes are concentrated in the chromatids. Classification analysis reveals that canonical mononucleosomes, and in some conditions ordered stacked dinucleosomes and mononucleosomes with a disordered gyre-proximal density, are abundant in both cell-cycle states. We do not detect class averages that have more than two stacked nucleosomes or side-by-side dinucleosomes, suggesting that groups of more than two nucleosomes are heterogeneous. Large multi-megadalton structures are abundant in G1 nucleoplasm, but not found in G1 chromatin domains and metaphase chromatin. The macromolecular phenotypes studied here represent a starting point for the comparative analysis of compaction in normal vs. unhealthy human cells, in other cell-cycle states, other organisms, and in vitro chromatin assemblies.
Collapse
Affiliation(s)
- Jon Ken Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Weimei Ruan
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Tan ZY, Cai 蔡舒君 S, Paithankar SA, Liu T, Nie X, Shi J, Gan 甘露 L. Macromolecular and cytological changes in fission yeast G0 nuclei. J Cell Sci 2025; 138:jcs263654. [PMID: 40013339 DOI: 10.1242/jcs.263654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
When starved of nitrogen, cells of the fission yeast Schizosaccharomyces pombe enter a quiescent 'G0' state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here, we use confocal microscopy, immunoblots and electron cryotomography to investigate the cytological, biochemical and ultrastructural differences between S. pombe proliferating, G1-arrested and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore chromatin that is less compact. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganization at the macromolecular level.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Shujun Cai 蔡舒君
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Saayli A Paithankar
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Xin Nie
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Lu Gan 甘露
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| |
Collapse
|
4
|
Hou Z, Nightingale F, Zhu Y, MacGregor-Chatwin C, Zhang P. Structure of native chromatin fibres revealed by Cryo-ET in situ. Nat Commun 2023; 14:6324. [PMID: 37816746 PMCID: PMC10564948 DOI: 10.1038/s41467-023-42072-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The structure of chromatin plays pivotal roles in regulating gene transcription, DNA replication and repair, and chromosome segregation. This structure, however, remains elusive. Here, using cryo-FIB and cryo-ET, we delineate the 3D architecture of native chromatin fibres in intact interphase human T-lymphoblasts and determine the in situ structures of nucleosomes in different conformations. These chromatin fibres are not structured as uniform 30 nm one-start or two-start filaments but are composed of relaxed, variable zigzag organizations of nucleosomes connected by straight linker DNA. Nucleosomes with little H1 and linker DNA density are distributed randomly without any spatial preference. This work will inspire future high-resolution investigations on native chromatin structures in situ at both a single-nucleosome level and a population level under many different cellular conditions in health and disease.
Collapse
Affiliation(s)
- Zhen Hou
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frank Nightingale
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Li Y, Zhang H, Li X, Wu W, Zhu P. Cryo-ET study from in vitro to in vivo revealed a general folding mode of chromatin with two-start helical architecture. Cell Rep 2023; 42:113134. [PMID: 37708029 DOI: 10.1016/j.celrep.2023.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
The organization and dynamics of chromatin fiber play crucial roles in regulating DNA accessibility for gene expression. Here we combine cryoelectron tomography (cryo-ET), sub-volume averaging, and 3D segmentation to visualize the in vitro and in vivo chromatin fibers folding by linker histone. We discover that an increased nucleosome repeat length and prolonged fiber length do not change the two-start helical architecture in reconstituted chromatin of homogeneous composition. Additionally, an isolated chromatin fiber with heterogeneous composition was observed, which includes short-range regions compatible with two-start helix. In vivo, sub-volume averaging reveals similar subunits of two-start helical architecture in transcriptionally inactive chromatin in frog erythrocyte nuclei. Strikingly, unambiguous DNA trajectories that displayed a zigzag pattern universally between alternate N/N+2 nucleosomes were further determined by cryo-ET with voltage phase plate. Therefore, these structural similarities suggest a general folding mode of chromatin induced by linker histone, and heterogeneous compositions mainly affect local conformation rather than changing the overall architecture.
Collapse
Affiliation(s)
- Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Haonan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Tan ZY, Cai S, Noble AJ, Chen JK, Shi J, Gan L. Heterogeneous non-canonical nucleosomes predominate in yeast cells in situ. eLife 2023; 12:RP87672. [PMID: 37503920 PMCID: PMC10382156 DOI: 10.7554/elife.87672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Nuclear processes depend on the organization of chromatin, whose basic units are cylinder-shaped complexes called nucleosomes. A subset of mammalian nucleosomes in situ (inside cells) resembles the canonical structure determined in vitro 25 years ago. Nucleosome structure in situ is otherwise poorly understood. Using cryo-electron tomography (cryo-ET) and 3D classification analysis of budding yeast cells, here we find that canonical nucleosomes account for less than 10% of total nucleosomes expected in situ. In a strain in which H2A-GFP is the sole source of histone H2A, class averages that resemble canonical nucleosomes both with and without GFP densities are found ex vivo (in nuclear lysates), but not in situ. These data suggest that the budding yeast intranuclear environment favors multiple non-canonical nucleosome conformations. Using the structural observations here and the results of previous genomics and biochemical studies, we propose a model in which the average budding yeast nucleosome's DNA is partially detached in situ.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Shujun Cai
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Alex J Noble
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Jon K Chen
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Jian Shi
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Lu Gan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| |
Collapse
|
7
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
8
|
Abstract
In eukaryotes, genomic DNA is packaged into chromatin in the nucleus. The accessibility of DNA is dependent on the chromatin structure and dynamics, which essentially control DNA-related processes, including transcription, DNA replication, and repair. All of the factors that affect the structure and dynamics of nucleosomes, the nucleosome-nucleosome interaction interfaces, and the binding of linker histones or other chromatin-binding proteins need to be considered to understand the organization and function of chromatin fibers. In this review, we provide a summary of recent progress on the structure of chromatin fibers in vitro and in the nucleus, highlight studies on the dynamic regulation of chromatin fibers, and discuss their related biological functions and abnormal organization in diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wei Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; .,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells 2021; 10:cells10030664. [PMID: 33802698 PMCID: PMC8002553 DOI: 10.3390/cells10030664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Frederic Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| | - Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| |
Collapse
|
10
|
Woods DC, Rodríguez-Ropero F, Wereszczynski J. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. J Mol Biol 2021; 433:166902. [PMID: 33667509 DOI: 10.1016/j.jmb.2021.166902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.
Collapse
Affiliation(s)
- Dustin C Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Francisco Rodríguez-Ropero
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States.
| |
Collapse
|
11
|
Yusuf M, Farooq S, Robinson I, Lalani EN. Cryo-nanoscale chromosome imaging-future prospects. Biophys Rev 2020; 12:1257-1263. [PMID: 33006727 PMCID: PMC7575669 DOI: 10.1007/s12551-020-00757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 01/30/2023] Open
Abstract
The high-order structure of mitotic chromosomes remains to be fully elucidated. How nucleosomes compact at various structural levels into a condensed mitotic chromosome is unclear. Cryogenic preservation and imaging have been applied for over three decades, keeping biological structures close to the native in vivo state. Despite being extensively utilized, this field is still wide open for mitotic chromosome research. In this review, we focus specifically on cryogenic efforts for determining the mitotic nanoscale chromatin structures. We describe vitrification methods, current status, and applications of advanced cryo-microscopy including future tools required for resolving the native architecture of these fascinating structures that hold the instructions to life.
Collapse
Affiliation(s)
- Mohammed Yusuf
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan.
| | - Safana Farooq
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Ian Robinson
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Brookhaven National Lab, Upton, NY, 11973, USA
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| |
Collapse
|
12
|
Adhireksan Z, Sharma D, Lee PL, Davey CA. Near-atomic resolution structures of interdigitated nucleosome fibres. Nat Commun 2020; 11:4747. [PMID: 32958761 PMCID: PMC7505979 DOI: 10.1038/s41467-020-18533-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023] Open
Abstract
Chromosome structure at the multi-nucleosomal level has remained ambiguous in spite of its central role in epigenetic regulation and genome dynamics. Recent investigations of chromatin architecture portray diverse modes of interaction within and between nucleosome chains, but how this is realized at the atomic level is unclear. Here we present near-atomic resolution crystal structures of nucleosome fibres that assemble from cohesive-ended dinucleosomes with and without linker histone. As opposed to adopting folded helical ‘30 nm’ structures, the fibres instead assume open zigzag conformations that are interdigitated with one another. Zigzag conformations obviate extreme bending of the linker DNA, while linker DNA size (nucleosome repeat length) dictates fibre configuration and thus fibre–fibre packing, which is supported by variable linker histone binding. This suggests that nucleosome chains have a predisposition to interdigitate with specific characteristics under condensing conditions, which rationalizes observations of local chromosome architecture and the general heterogeneity of chromatin structure. Crystal structures of nucleosome fibres assembled from cohesive-ended dinucleosomes with and without linker histone reveal open zigzag conformations that are interdigitated with one another, and suggest the role that linker DNA plays in observed variable fibre configurations and packing.
Collapse
Affiliation(s)
- Zenita Adhireksan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Deepti Sharma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Phoi Leng Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Curt A Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
13
|
Boopathi R, Dimitrov S, Hamiche A, Petosa C, Bednar J. Cryo-electron microscopy of the chromatin fiber. Curr Opin Struct Biol 2020; 64:97-103. [PMID: 32717688 DOI: 10.1016/j.sbi.2020.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
The three-dimensional (3D) organization of chromatin plays a crucial role in the regulation of gene expression. Chromatin conformation is strongly affected by the composition, structural features and dynamic properties of the nucleosome, which in turn determine the nature and geometry of interactions that can occur between neighboring nucleosomes. Understanding how chromatin is spatially organized above the nucleosome level is thus essential for understanding how gene regulation is achieved. Towards this end, great effort has been made to understand how an array of nucleosomes folds into a regular chromatin fiber. This review summarizes new insights into the 3D structure of the chromatin fiber that were made possible by recent advances in cryo-electron microscopy.
Collapse
Affiliation(s)
- Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Carlo Petosa
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Jan Bednar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Beseda T, Cápal P, Kubalová I, Schubert V, Doležel J, Šimková H. Mitotic chromosome organization: General rules meet species-specific variability. Comput Struct Biotechnol J 2020; 18:1311-1319. [PMID: 32612754 PMCID: PMC7305364 DOI: 10.1016/j.csbj.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 10/31/2022] Open
Abstract
Research on the formation of mitotic chromosomes from interphase chromatin domains, ongoing for several decades, made significant progress in recent years. It was stimulated by the development of advanced microscopic techniques and implementation of chromatin conformation capture methods that provide new insights into chromosome ultrastructure. This review aims to summarize and compare several models of chromatin fiber folding to form mitotic chromosomes and discusses them in the light of the novel findings. Functional genomics studies in several organisms confirmed condensins and cohesins as the major players in chromosome condensation. Here we compare available data on the role of these proteins across lower and higher eukaryotes and point to differences indicating evolutionary different pathways to shape mitotic chromosomes. Moreover, we discuss a controversial phenomenon of the mitotic chromosome ultrastructure - chromosome cavities - and using our super-resolution microscopy data, we contribute to its elucidation.
Collapse
Affiliation(s)
- Tomáš Beseda
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Ivona Kubalová
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Veit Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| |
Collapse
|
15
|
Ng CT, Gan L. Investigating eukaryotic cells with cryo-ET. Mol Biol Cell 2020; 31:87-100. [PMID: 31935172 PMCID: PMC6960407 DOI: 10.1091/mbc.e18-05-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 01/06/2023] Open
Abstract
The interior of eukaryotic cells is mysterious. How do the large communities of macromolecular machines interact with each other? How do the structures and positions of these nanoscopic entities respond to new stimuli? Questions like these can now be answered with the help of a method called electron cryotomography (cryo-ET). Cryo-ET will ultimately reveal the inner workings of a cell at the protein, secondary structure, and perhaps even side-chain levels. Combined with genetic or pharmacological perturbation, cryo-ET will allow us to answer previously unimaginable questions, such as how structure, biochemistry, and forces are related in situ. Because it bridges structural biology and cell biology, cryo-ET is indispensable for structural cell biology-the study of the 3-D macromolecular structure of cells. Here we discuss some of the key ideas, strategies, auxiliary techniques, and innovations that an aspiring structural cell biologist will consider when planning to ask bold questions.
Collapse
Affiliation(s)
- Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
16
|
Eltsov M, Grewe D, Lemercier N, Frangakis A, Livolant F, Leforestier A. Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. Nucleic Acids Res 2019; 46:9189-9200. [PMID: 30053160 PMCID: PMC6158616 DOI: 10.1093/nar/gky670] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
In Eukaryotes, DNA is wound around the histone octamer forming the basic chromatin unit, the nucleosome. Atomic structures have been obtained from crystallography and single particle cryo-electron microscopy (cryoEM) of identical engineered particles. But native nucleosomes are dynamical entities with diverse DNA sequence and histone content, and little is known about their conformational variability, especially in the cellular context. Using cryoEM and tomography of vitreous sections we analyse native nucleosomes, both in vitro, using purified particles solubilized at physiologically relevant concentrations (25–50%), and in situ, within interphase nuclei. We visualize individual nucleosomes at a level of detail that allows us to measure the distance between the DNA gyres wrapped around. In concentrated solutions, we demonstrate a salt-dependent transition, with a high salt compact conformation resembling the canonical nucleosome and an open low salt one, closer to nuclear nucleosomes. Although further particle characterization and cartography are needed to understand the relationship between this conformational variability and chromatin functional states, this work opens a route to chromatin exploration in situ.
Collapse
Affiliation(s)
- Mikhail Eltsov
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Diana Grewe
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Nicolas Lemercier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Françoise Livolant
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| |
Collapse
|
17
|
Dynamic chromatin organization in the cell. Essays Biochem 2019; 63:133-145. [PMID: 30967477 DOI: 10.1042/ebc20180054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
The organization and regulation of genomic DNA as nuclear chromatin is necessary for proper DNA function inside living eukaryotic cells. While this has been extensively explored, no true consensus is currently reached regarding the exact mechanism of chromatin organization. The traditional view has assumed that the DNA is packaged into a hierarchy of structures inside the nucleus based on the regular 30-nm chromatin fiber. This is currently being challenged by the fluid-like model of the chromatin which views the chromatin as a dynamic structure based on the irregular 10-nm fiber. In this review, we focus on the recent progress in chromatin structure elucidation highlighting the paradigm shift in chromatin folding mechanism from the classical textbook perspective of the regularly folded chromatin to the more dynamic fluid-like perspective.
Collapse
|
18
|
Chromatin fiber structural motifs as regulatory hubs of genome function? Essays Biochem 2019; 63:123-132. [PMID: 30967476 PMCID: PMC6484786 DOI: 10.1042/ebc20180065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Nucleosomes cover eukaryotic genomes like beads on a string and play a central role in regulating genome function. Isolated strings of nucleosomes have the potential to compact and form higher order chromatin structures, such as the well-characterized 30-nm fiber. However, despite tremendous advances in observing chromatin fibers in situ it has not been possible to confirm that regularly ordered fibers represent a prevalent structural level in the folding of chromosomes. Instead, it appears that folding at a larger scale than the nucleosome involves a variety of random structures with fractal characteristics. Nevertheless, recent progress provides evidence for the existence of structural motifs in chromatin fibers, potentially localized to strategic sites in the genome. Here we review the current understanding of chromatin fiber folding and the emerging roles that oligonucleosomal motifs play in the regulation of genome function.
Collapse
|
19
|
Garcia-Saez I, Menoni H, Boopathi R, Shukla MS, Soueidan L, Noirclerc-Savoye M, Le Roy A, Skoufias DA, Bednar J, Hamiche A, Angelov D, Petosa C, Dimitrov S. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation. Mol Cell 2018; 72:902-915.e7. [PMID: 30392928 DOI: 10.1016/j.molcel.2018.09.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
Chromatin adopts a diversity of regular and irregular fiber structures in vitro and in vivo. However, how an array of nucleosomes folds into and switches between different fiber conformations is poorly understood. We report the 9.7 Å resolution crystal structure of a 6-nucleosome array bound to linker histone H1 determined under ionic conditions that favor incomplete chromatin condensation. The structure reveals a flat two-start helix with uniform nucleosomal stacking interfaces and a nucleosome packing density that is only half that of a twisted 30-nm fiber. Hydroxyl radical footprinting indicates that H1 binds the array in an on-dyad configuration resembling that observed for mononucleosomes. Biophysical, cryo-EM, and crosslinking data validate the crystal structure and reveal that a minor change in ionic environment shifts the conformational landscape to a more compact, twisted form. These findings provide insights into the structural plasticity of chromatin and suggest a possible assembly pathway for a 30-nm fiber.
Collapse
Affiliation(s)
- Isabel Garcia-Saez
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Manu S Shukla
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Lama Soueidan
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | | | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dimitrios A Skoufias
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Jan Bednar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France.
| | - Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France.
| | - Carlo Petosa
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
20
|
Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci U S A 2018; 115:10977-10982. [PMID: 30297429 DOI: 10.1073/pnas.1720476115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomes condense during mitosis in most eukaryotes. This transformation involves rearrangements at the nucleosome level and has consequences for transcription. Here, we use cryo-electron tomography (cryo-ET) to determine the 3D arrangement of nuclear macromolecular complexes, including nucleosomes, in frozen-hydrated Schizosaccharomyces pombe cells. Using 3D classification analysis, we did not find evidence that nucleosomes resembling the crystal structure are abundant. This observation and those from other groups support the notion that a subset of fission yeast nucleosomes may be partially unwrapped in vivo. In both interphase and mitotic cells, there is also no evidence of monolithic structures the size of Hi-C domains. The chromatin is mingled with two features: pockets, which are positions free of macromolecular complexes; and "megacomplexes," which are multimegadalton globular complexes like preribosomes. Mitotic chromatin is more crowded than interphase chromatin in subtle ways. Nearest-neighbor distance analyses show that mitotic chromatin is more compacted at the oligonucleosome than the dinucleosome level. Like interphase, mitotic chromosomes contain megacomplexes and pockets. This uneven chromosome condensation helps explain a longstanding enigma of mitosis: a subset of genes is up-regulated.
Collapse
|
21
|
Maeshima K, Tamura S, Shimamoto Y. Chromatin as a nuclear spring. Biophys Physicobiol 2018; 15:189-195. [PMID: 30349803 PMCID: PMC6194950 DOI: 10.2142/biophysico.15.0_189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
The nucleus in eukaryotic cells is the site for genomic functions such as RNA transcription, DNA replication, and DNA repair/recombination. However, the nucleus is subjected to various mechanical forces associated with diverse cellular activities, including contraction, migration, and adhesion. Although it has long been assumed that the lamina structure, underlying filamentous mesh-work of the nuclear envelope, plays an important role in resisting mechanical forces, the involvement of compact chromatin in mechanical resistance has also recently been suggested. However, it is still unclear how chromatin functions to cope with the stresses. To address this issue, we studied the mechanical responses of human cell nuclei by combining a force measurement microscopy setup with controlled biochemical manipulation of chromatin. We found that nuclei with condensed chromatin possess significant elastic rigidity, whereas the nuclei with a decondensed chromatin are considerably soft. Further analyses revealed that the linker DNA and nucleosome-nucleosome interactions via histone tails in the chromatin act together to generate a spring-like restoring force that resists nuclear deformation. The elastic restoring force is likely to be generated by condensed chromatin domains, consisting of interdigitated or "melted" 10-nm nucleosome fibers. Together with other recent studies, it is suggested that chromatin functions not only as a "memory device" to store, replicate, and express the genetic information for various cellular functions but also as a "nuclear spring" to resist and respond to mechanical forces.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yuta Shimamoto
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.,Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
22
|
Arifulin EA, Musinova YR, Vassetzky YS, Sheval EV. Mobility of Nuclear Components and Genome Functioning. BIOCHEMISTRY (MOSCOW) 2018; 83:690-700. [PMID: 30195325 DOI: 10.1134/s0006297918060068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell nucleus is characterized by strong compartmentalization of structural components in its three-dimensional space. Certain genomic functions are accompanied by changes in the localization of chromatin loci and nuclear bodies. Here we review recent data on the mobility of nuclear components and the role of this mobility in genome functioning.
Collapse
Affiliation(s)
- E A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Y R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y S Vassetzky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,UMR8126, CNRS, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, 94805, France
| | - E V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France
| |
Collapse
|
23
|
Cai S, Böck D, Pilhofer M, Gan L. The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin. Mol Biol Cell 2018; 29:2450-2457. [PMID: 30091658 PMCID: PMC6233054 DOI: 10.1091/mbc.e18-05-0331] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The in situ three-dimensional organization of chromatin at the nucleosome and oligonucleosome levels is unknown. Here we use cryo-electron tomography to determine the in situ structures of HeLa nucleosomes, which have canonical core structures and asymmetric, flexible linker DNA. Subtomogram remapping suggests that sequential nucleosomes in heterochromatin follow irregular paths at the oligonucleosome level. This basic principle of higher-order repressive chromatin folding is compatible with the conformational variability of the two linker DNAs at the single-nucleosome level.
Collapse
Affiliation(s)
- Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Désirée Böck
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
24
|
Cai S, Song Y, Chen C, Shi J, Gan L. Natural chromatin is heterogeneous and self-associates in vitro. Mol Biol Cell 2018; 29:1652-1663. [PMID: 29742050 PMCID: PMC6080658 DOI: 10.1091/mbc.e17-07-0449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022] Open
Abstract
The 30-nm fiber is commonly formed by oligonucleosome arrays in vitro but rarely found inside cells. To determine how chromatin higher-order structure is controlled, we used electron cryotomography (cryo-ET) to study the undigested natural chromatin released from two single-celled organisms in which 30-nm fibers have not been observed in vivo: picoplankton and yeast. In the presence of divalent cations, most of the chromatin from both organisms is condensed into a large mass in vitro. Rare irregular 30-nm fibers, some of which include face-to-face nucleosome interactions, do form at the periphery of this mass. In the absence of divalent cations, picoplankton chromatin decondenses into open zigzags. By contrast, yeast chromatin mostly remains condensed, with very few open motifs. Yeast chromatin packing is largely unchanged in the absence of linker histone and mildly decondensed when histones are more acetylated. Natural chromatin is therefore generally nonpermissive of regular motifs, even at the level of oligonucleosomes.
Collapse
Affiliation(s)
- Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Yajiao Song
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
25
|
Bilokapic S, Strauss M, Halic M. Cryo-EM of nucleosome core particle interactions in trans. Sci Rep 2018; 8:7046. [PMID: 29728587 PMCID: PMC5935684 DOI: 10.1038/s41598-018-25429-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022] Open
Abstract
Nucleosomes, the basic unit of chromatin, are repetitively spaced along DNA and regulate genome expression and maintenance. The long linear chromatin molecule is extensively condensed to fit DNA inside the nucleus. How distant nucleosomes interact to build tertiary chromatin structure remains elusive. In this study, we used cryo-EM to structurally characterize different states of long range nucleosome core particle (NCP) interactions. Our structures show that NCP pairs can adopt multiple conformations, but, commonly, two NCPs are oriented with the histone octamers facing each other. In this conformation, the dyad of both nucleosome core particles is facing the same direction, however, the NCPs are laterally shifted and tilted. The histone octamer surface and histone tails in trans NCP pairs remain accessible to regulatory proteins. The overall conformational flexibility of the NCP pair suggests that chromatin tertiary structure is dynamic and allows access of various chromatin modifying machineries to nucleosomes.
Collapse
Affiliation(s)
- Silvija Bilokapic
- Department of Biochemistry, Gene Center, University of Munich LMU, 81377, Munich, Germany
| | - Mike Strauss
- Cryo-EM facility, Max Planck for Biochemistry, 82152, Martiensried, Germany
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich LMU, 81377, Munich, Germany.
| |
Collapse
|
26
|
Razin SV, Gavrilov AA. Structural–Functional Domains of the Eukaryotic Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:302-312. [DOI: 10.1134/s0006297918040028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/27/2017] [Indexed: 08/30/2023]
|
27
|
The 10-nm chromatin fiber and its relationship to interphase chromosome organization. Biochem Soc Trans 2017; 46:67-76. [PMID: 29263138 PMCID: PMC5818668 DOI: 10.1042/bst20170101] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/09/2023]
Abstract
A chromosome is a single long DNA molecule assembled along its length with nucleosomes and proteins. During interphase, a mammalian chromosome exists as a highly organized supramolecular globule in the nucleus. Here, we discuss new insights into how genomic DNA is packaged and organized within interphase chromosomes. Our emphasis is on the structural principles that underlie chromosome organization, with a particular focus on the intrinsic contributions of the 10-nm chromatin fiber, but not the regular 30-nm fiber. We hypothesize that the hierarchical globular organization of an interphase chromosome is fundamentally established by the self-interacting properties of a 10-nm zig-zag array of nucleosomes, while histone post-translational modifications, histone variants, and chromatin-associated proteins serve to mold generic chromatin domains into specific structural and functional entities.
Collapse
|
28
|
Chen P, Li G. Structure and Epigenetic Regulation of Chromatin Fibers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:25-35. [PMID: 29167282 DOI: 10.1101/sqb.2017.82.033795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In eukaryotes, genomic DNA is hierarchically packaged by histones into chromatin on several levels to fit inside the nucleus. As a central-level structure between nucleosomal arrays and higher-order chromatin organizations, the 30-nm chromatin fiber and its dynamics play a crucial role in gene regulation. However, despite considerable efforts over the past three decades, the fundamental structure and its dynamic regulation of chromatin fibers still remain as a big challenge in molecular biology. Here, we mainly summarize the most recent progress in elucidating the structure of the 30-nm chromatin fiber in vitro and epigenetic regulation of chromatin fibers by chromatin factors, particularly histone variants. In addition, we also discuss recent studies in unraveling the three-dimensional organization of chromatin fibers in situ by genomic approaches and electron microscopy.
Collapse
Affiliation(s)
- Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
29
|
Razin SV, Ulianov SV. Gene functioning and storage within a folded genome. Cell Mol Biol Lett 2017; 22:18. [PMID: 28861108 PMCID: PMC5575855 DOI: 10.1186/s11658-017-0050-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/24/2017] [Indexed: 01/28/2023] Open
Abstract
In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome. This article was specially invited by the editors and represents work by leading researchers.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russia.,Lomonosov Moscow State University, Biological Faculty, Leninskie Gory 1, building 12, 119192 Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russia.,Lomonosov Moscow State University, Biological Faculty, Leninskie Gory 1, building 12, 119192 Moscow, Russia
| |
Collapse
|
30
|
Shimamoto Y, Tamura S, Masumoto H, Maeshima K. Nucleosome-nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity. Mol Biol Cell 2017; 28:1580-1589. [PMID: 28428255 PMCID: PMC5449155 DOI: 10.1091/mbc.e16-11-0783] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
A force-calibrated microneedle setup and controlled biochemical perturbation reveal that chromatin acts as a spring-like mechanical module that controls the rigidity of cell nuclei. The underlying molecular mechanism involves linker DNA and internucleosomal interaction via histone tails. Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers.
Collapse
Affiliation(s)
- Yuta Shimamoto
- Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan .,Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima 411-8540, Japan.,PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Sachiko Tamura
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University School of Medicine; Nagasaki 852-8523, Japan
| | - Kazuhiro Maeshima
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima 411-8540, Japan .,PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
31
|
Kuznetsova MA, Sheval EV. Chromatin fibers: from classical descriptions to modern interpretation. Cell Biol Int 2016; 40:1140-1151. [PMID: 27569720 DOI: 10.1002/cbin.10672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022]
Abstract
The first description of intrachromosomal fibers was made by Baranetzky in 1880. Since that time, a plethora of fibrillar substructures have been described inside the mitotic chromosomes, and published data indicate that chromosomes may be formed as a result of the hierarchical folding of chromatin fibers. In this review, we examine the evolution and the current state of research on the morphological organization of mitotic chromosomes.
Collapse
Affiliation(s)
- Maria A Kuznetsova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia. .,LIA1066 French-Russian Joint Cancer Research Laboratory, 119334, Moscow, Russia.
| |
Collapse
|
32
|
Chen C, Lim HH, Shi J, Tamura S, Maeshima K, Surana U, Gan L. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell 2016; 27:3357-3368. [PMID: 27605704 PMCID: PMC5170867 DOI: 10.1091/mbc.e16-07-0506] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/01/2016] [Indexed: 11/11/2022] Open
Abstract
Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin-nucleosomes-are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an "open" configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome-nucleosome associations.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sachiko Tamura
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore.,Department of Pharmacology, National University of Singapore, Singapore 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
33
|
Maeshima K, Rogge R, Tamura S, Joti Y, Hikima T, Szerlong H, Krause C, Herman J, Seidel E, DeLuca J, Ishikawa T, Hansen JC. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J 2016; 35:1115-32. [PMID: 27072995 PMCID: PMC4868957 DOI: 10.15252/embj.201592660] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 03/08/2016] [Indexed: 11/10/2022] Open
Abstract
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Japan
| | - Ryan Rogge
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Sachiko Tamura
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Japan XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Japan
| | | | - Heather Szerlong
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Christine Krause
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jake Herman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Erik Seidel
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
34
|
Liquid-like behavior of chromatin. Curr Opin Genet Dev 2016; 37:36-45. [DOI: 10.1016/j.gde.2015.11.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022]
|
35
|
Li G, Zhu P. Structure and organization of chromatin fiber in the nucleus. FEBS Lett 2015; 589:2893-904. [PMID: 25913782 DOI: 10.1016/j.febslet.2015.04.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
Abstract
Eukaryotic genomes are organized hierarchically into chromatin structures by histones. Despite extensive research for over 30 years, not only the fundamental structure of the 30-nm chromatin fiber is being debated, but the actual existence of such fiber remains hotly contested. In this review, we focus on the most recent progress in elucidating the structure of the 30-nm fiber upon in vitro reconstitution, and its possible organization inside the nucleus. In addition, we discuss the roles of linker histone H1 as well as the importance of specific nucleosome-nucleosome interactions in the formation of the 30-nm fiber. Finally, we discuss the involvement of structural variations and epigenetic mechanisms available for the regulation of this chromatin form.
Collapse
Affiliation(s)
- Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Maeshima K, Kaizu K, Tamura S, Nozaki T, Kokubo T, Takahashi K. The physical size of transcription factors is key to transcriptional regulation in chromatin domains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064116. [PMID: 25563431 DOI: 10.1088/0953-8984/27/6/064116] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Huiskonen JT, Parsy ML, Li S, Bitto D, Renner M, Bowden TA. Averaging of viral envelope glycoprotein spikes from electron cryotomography reconstructions using Jsubtomo. J Vis Exp 2014:e51714. [PMID: 25350719 PMCID: PMC4353292 DOI: 10.3791/51714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enveloped viruses utilize membrane glycoproteins on their surface to mediate entry into host cells. Three-dimensional structural analysis of these glycoprotein ‘spikes’ is often technically challenging but important for understanding viral pathogenesis and in drug design. Here, a protocol is presented for viral spike structure determination through computational averaging of electron cryo-tomography data. Electron cryo-tomography is a technique in electron microscopy used to derive three-dimensional tomographic volume reconstructions, or tomograms, of pleomorphic biological specimens such as membrane viruses in a near-native, frozen-hydrated state. These tomograms reveal structures of interest in three dimensions, albeit at low resolution. Computational averaging of sub-volumes, or sub-tomograms, is necessary to obtain higher resolution detail of repeating structural motifs, such as viral glycoprotein spikes. A detailed computational approach for aligning and averaging sub-tomograms using the Jsubtomo software package is outlined. This approach enables visualization of the structure of viral glycoprotein spikes to a resolution in the range of 20-40 Å and study of the study of higher order spike-to-spike interactions on the virion membrane. Typical results are presented for Bunyamwera virus, an enveloped virus from the family Bunyaviridae. This family is a structurally diverse group of pathogens posing a threat to human and animal health.
Collapse
Affiliation(s)
- Juha T Huiskonen
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford;
| | - Marie-Laure Parsy
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford
| | - Sai Li
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford
| | - David Bitto
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford
| | - Max Renner
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford
| | - Thomas A Bowden
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford
| |
Collapse
|
39
|
Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma 2014; 124:81-94. [DOI: 10.1007/s00412-014-0486-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
|
40
|
Maeshima K, Imai R, Hikima T, Joti Y. Chromatin structure revealed by X-ray scattering analysis and computational modeling. Methods 2014; 70:154-61. [PMID: 25168089 DOI: 10.1016/j.ymeth.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/23/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
It remains unclear how the 2m of human genomic DNA is organized in each cell. The textbook model has long assumed that the 11-nm-diameter nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, is folded into a 30-nm chromatin fiber. One of the classical models assumes that the 30-nm chromatin fiber is further folded helically to form a larger fiber. Small-angle X-ray scattering (SAXS) is a powerful method for investigating the bulk structure of interphase chromatin and mitotic chromosomes. SAXS can detect periodic structures in biological materials in solution. In our SAXS results, no structural feature larger than 11 nm was detected. Combining this with a computational analysis of "in silico condensed chromatin" made it possible to understand more about the X-ray scattering profiles and suggested that the chromatin in interphase nuclei and mitotic chromosomes essentially consists of irregularly folded nucleosome fibers lacking the 30-nm chromatin structure. In this article, we describe the experimental details of our SAXS and modeling systems. We also discuss other methods for investigating the chromatin structure in cells.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| | - Ryosuke Imai
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
41
|
Maeshima K, Imai R, Tamura S, Nozaki T. Chromatin as dynamic 10-nm fibers. Chromosoma 2014; 123:225-37. [PMID: 24737122 PMCID: PMC4031381 DOI: 10.1007/s00412-014-0460-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/01/2023]
Abstract
Since Flemming described a nuclear substance in the nineteenth century and named it “chromatin,” this substance has fascinated biologists. What is the structure of chromatin? DNA is wrapped around core histones, forming a nucleosome fiber (10-nm fiber). This fiber has long been assumed to fold into a 30-nm chromatin fiber and subsequently into helically folded larger fibers or radial loops. However, several recent studies, including our cryo-EM and X-ray scattering analyses, demonstrated that chromatin is composed of irregularly folded 10-nm fibers, without 30-nm chromatin fibers, in interphase chromatin and mitotic chromosomes. This irregular folding implies a chromatin state that is physically less constrained, which could be more dynamic compared with classical regular helical folding structures. Consistent with this, recently, we uncovered by single nucleosome imaging large nucleosome fluctuations in living mammalian cells (∼50 nm/30 ms). Subsequent computational modeling suggested that nucleosome fluctuation increases chromatin accessibility, which is advantageous for many “target searching” biological processes such as transcriptional regulation. Therefore, this review provides a novel view on chromatin structure in which chromatin consists of dynamic and disordered 10-nm fibers.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,
| | | | | | | |
Collapse
|
42
|
Razin SV, Gavrilov AA. Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding. Epigenetics 2014; 9:653-7. [PMID: 24561903 PMCID: PMC4063823 DOI: 10.4161/epi.28297] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several hierarchical levels of DNA packaging are believed to exist in chromatin, starting from a 10-nm chromatin fiber that is further packed into a 30-nm fiber. Transitions between the 30-nm and 10-nm fibers are thought to be essential for the control of chromatin transcriptional status. However, recent studies demonstrate that in the nuclei, DNA is packed in tightly associated 10-nm fibers that are not compacted into 30-nm fibers. Additionally, the accessibility of DNA in chromatin depends on the local mobility of nucleosomes rather than on decompaction of chromosome regions. These findings argue for reconsidering the hierarchical model of chromatin packaging and some of the basic definitions of chromatin. In particular, chromatin domains should be considered as three-dimensional objects, which may include genomic regions that do not necessarily constitute a continuous domain on the DNA chain.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia
| |
Collapse
|
43
|
Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K. Chromatin compaction protects genomic DNA from radiation damage. PLoS One 2013; 8:e75622. [PMID: 24130727 PMCID: PMC3794047 DOI: 10.1371/journal.pone.0075622] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/20/2013] [Indexed: 12/02/2022] Open
Abstract
Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5–50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.
Collapse
Affiliation(s)
- Hideaki Takata
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering Osaka University, Suita, Osaka, Japan
- * E-mail: (HT); (KM)
| | - Tomo Hanafusa
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Toshiaki Mori
- Radiation Research Center, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mari Shimura
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yutaka Iida
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Kenichi Ishikawa
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage, Chiba, Japan
| | - Kenichi Yoshikawa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yuko Yoshikawa
- Research Organization of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka, Japan
- * E-mail: (HT); (KM)
| |
Collapse
|
44
|
Nozaki T, Kaizu K, Pack CG, Tamura S, Tani T, Hihara S, Nagai T, Takahashi K, Maeshima K. Flexible and dynamic nucleosome fiber in living mammalian cells. Nucleus 2013; 4:349-56. [PMID: 23945462 PMCID: PMC3899123 DOI: 10.4161/nucl.26053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded nucleosome fibers without a 30-nm chromatin fiber (i.e., a polymer melt-like structure). This melt-like structure implies a less physically constrained and locally more dynamic state, which may be crucial for protein factors to scan genomic DNA. Using a combined approach of fluorescence correlation spectroscopy, Monte Carlo computer simulations, and single nucleosome imaging, we demonstrated the flexible and dynamic nature of the nucleosome fiber in living mammalian cells. We observed local nucleosome fluctuation (~50 nm movement per 30 ms) caused by Brownian motion. Our in vivo-in silico results suggest that local nucleosome dynamics facilitate chromatin accessibility and play a critical role in the scanning of genome information.
Collapse
Affiliation(s)
- Tadasu Nozaki
- Biological Macromolecules Laboratory; Structural Biology Center; National Institute of Genetics; Mishima, Japan; Institute for Advanced Biosciences; Keio University; Fujisawa, Japan; Laboratory for Biochemical Simulation; RIKEN Quantitative Biology Center; Suita, Japan; Cellular Informatics Laboratory; RIKEN; Wako, Japan; Cellular Dynamics Program; Marine Biological Laboratory; Woods Hole, MA USA; Department of Genetics; School of Life Science; Graduate University for Advanced Studies (Sokendai); Mishima, Japan; The Institute of Scientific and Industrial Research; Osaka University; Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|