1
|
Dias S, Souza RC, Vasconcelos EV, Vasconcelos S, da Silva Oliveira AR, do Vale Martins L, de Oliveira Bustamante F, da Costa VA, Souza G, da Costa AF, Benko-Iseppon AM, Knytl M, Brasileiro-Vidal AC. Cytomolecular diversity among Vigna Savi (Leguminosae) subgenera. PROTOPLASMA 2024; 261:859-875. [PMID: 38467939 DOI: 10.1007/s00709-024-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The genus Vigna (Leguminosae) comprises about 150 species grouped into five subgenera. The present study aimed to improve the understanding of karyotype diversity and evolution in Vigna, using new and previously published data through different cytogenetic and DNA content approaches. In the Vigna subgenera, we observed a random distribution of rDNA patterns. The 35S rDNA varied in position, from terminal to proximal, and in number, ranging from one (V. aconitifolia, V. subg. Ceratotropis) to seven pairs (V. unguiculata subsp. unguiculata, V. subg. Vigna). On the other hand, the number of 5S rDNA was conserved (one or two pairs), except for V. radiata (V. subg. Ceratotropis), which had three pairs. Genome size was relatively conserved within the genus, ranging from 1C = 0.43 to 0.70 pg in V. oblongifolia and V. unguiculata subsp. unguiculata, respectively, both belonging to V. subg. Vigna. However, we observed a positive correlation between DNA content and the number of 35S rDNA sites. In addition, data from chromosome-specific BAC-FISH suggest that the ancestral 35S rDNA locus is conserved on chromosome 6 within Vigna. Considering the rapid diversification in the number and position of rDNA sites, such conservation is surprising and suggests that additional sites may have spread out from this ancestral locus.
Collapse
Affiliation(s)
- Sibelle Dias
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rosilda Cintra Souza
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Lívia do Vale Martins
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Campus Amilcar Ferreira Sobral, Universidade Federal Do Piauí, Floriano, PI, Brazil
| | - Fernanda de Oliveira Bustamante
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade Do Estado de Minas Gerais - Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Victor Alves da Costa
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gustavo Souza
- Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4K1, Canada
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
| | | |
Collapse
|
2
|
Ferraz ME, Ribeiro T, Sader M, Nascimento T, Pedrosa-Harand A. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans. Chromosome Res 2023; 31:30. [PMID: 37812264 DOI: 10.1007/s10577-023-09739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.
Collapse
Affiliation(s)
- Maria Eduarda Ferraz
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Tiago Ribeiro
- Integrative Plant Research Lab, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Mariela Sader
- Multidisciplinary Institute of Plant Biology, National Council for Scientific and Technical Research, National University of Córdoba, Córdoba, Argentina
| | - Thiago Nascimento
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
3
|
Nascimento T, Pedrosa-Harand A. High rates of structural rearrangements have shaped the chromosome evolution in dysploid Phaseolus beans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:215. [PMID: 37751069 DOI: 10.1007/s00122-023-04462-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
KEY MESSAGE Karyotypes evolve through numerical and structural chromosome rearrangements. We show that Phaseolus leptostachyus, a wild bean, underwent a rapid genome reshuffling associated with the reduction from 11 to 10 chromosome pairs, but without whole genome duplication, the highest chromosome evolution rate known for plants. Plant karyotypes evolve through structural rearrangements often associated with polyploidy or dysploidy. The genus Phaseolus comprises ~ 90 species, five of them domesticated due to their nutritional relevance. Most of the species have 2n = 22 karyotypes and are highly syntenic, except for three dysploid karyotypes of species from the Leptostachyus group (2n = 20) that have accumulated several rearrangements. Here, we investigated the degrees of structural rearrangements among Leptostachyus and other Phaseolus groups by estimating their chromosomal evolution rates (CER). For this, we combined our oligo-FISH barcode system for beans and chromosome-specific painting probes for chromosomes 2 and 3, with rDNA and a centromeric probe to establish chromosome orthologies and identify structural rearrangements across nine Phaseolus species. We also integrated the detected rearrangements with a phylogenomic approach to estimate the CERs for each Phaseolus lineage. Our data allowed us to identify translocations, inversions, duplications and deletions, mostly in species belonging to the Leptostachyus group. Phaseolus leptostachyus showed the highest CER (12.31 rearrangements/My), a tenfold increase in contrast to the 2n = 22 species analysed. This is the highest rate known yet for plants, making it a model species for investigating the mechanisms behind rapid genome reshuffling in early species diversification.
Collapse
Affiliation(s)
- Thiago Nascimento
- Laboratory of Plants Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plants Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
4
|
Windham MD, Picard KT, Pryer KM. An in-depth investigation of cryptic taxonomic diversity in the rare endemic mustard Draba maguirei. AMERICAN JOURNAL OF BOTANY 2023; 110:1-22. [PMID: 36779544 DOI: 10.1002/ajb2.16138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Previously published evidence suggests that Draba maguirei, a mustard endemic to a few localities in the Bear River, Wellsville, and Wasatch Mountains of northern Utah, may represent a cryptic species complex rather than a single species. Conservation concerns prompted an in-depth systematic study of this taxon and its putative relatives. METHODS Sampling most known populations of D. maguirei s.l. (D. maguirei var. maguirei and D. maguirei var. burkei), we integrate data from geography, ecology, morphology, cytogenetics and pollen, enzyme electrophoresis, and the phylogenetic analysis of nuclear internal transcribed spacer sequences to explore potential taxonomic diversity in the species complex. RESULTS Draba maguirei var. burkei is shown here to be a distinct species (D. burkei) most closely related to D. globosa, rather than to D. maguirei. Within D. maguirei s.s., the northern (high elevation) and southern (low elevation) population clusters are genetically isolated and morphologically distinguishable, leading to the recognition here of the southern taxon as D. maguirei subsp. stonei. CONCLUSIONS Our study reveals that plants traditionally assigned to D. maguirei comprise three genetically divergent lineages (D. burkei and two newly recognized subspecies of D. maguirei), each exhibiting a different chromosome number and occupying a discrete portion of the geographic range. Although previously overlooked and underappreciated taxonomically, the three taxa are morphologically recognizable based on the distribution and types of trichomes present on the leaves, stems, and fruit. Our clarification of the diversity and distribution of these taxa provides an improved framework for conservation efforts.
Collapse
Affiliation(s)
- Michael D Windham
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Kathryn T Picard
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560, USA
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
5
|
Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae. Chromosome Res 2022; 30:477-492. [PMID: 35715657 DOI: 10.1007/s10577-022-09702-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023]
Abstract
The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae (P. lunatus) and Glycininae (Amphicarpaea edgeworthii) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus. We also reconstructed the chromosome number reduction in S. suberectus. The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.
Collapse
|
6
|
Mehravi S, Karimzadeh G, Kordenaeej A, Hanifei M. Mixed-Ploidy and Dysploidy in Hypericum perforatum: A Karyomorphological and Genome Size Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223068. [PMID: 36432797 PMCID: PMC9695836 DOI: 10.3390/plants11223068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/13/2023]
Abstract
Karyomorphology and genome size of 15 St John's wort (Hypericum perforatum L.) populations are reported for the first time. Root tips and fresh young leaves were used for karyological studies and flow cytometric (FCM) measurements, respectively. The chromosome length varied from 0.81 µm to 1.16 µm, and chromosome types were determined as "m". Eight different somatic chromosome numbers were found (2n = 16, 22, 24, 26, 28, 30, 32, 38). Based on the observed basic (x) chromosome numbers of x = 8, 11, 13, 14, 15, 19, this may correspond to diploid (2x), triploid (3x), tetraploid (4x), respectively. Interestingly, we found mixoploidy (3x - 4x) in the root tips of one of the populations. Hybridization, polyploidy and dysploid variation may be the main factors associated with the chromosome number evolution of this species. FCM showed that 2C DNA contents vary from 0.87 to 2.02 pg, showing more than a 2-fold variation. The mean amount of 2C DNA/chromosome and the mean of monoploid genome size were not proportional to ploidy.
Collapse
Affiliation(s)
- Shaghayegh Mehravi
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ghasem Karimzadeh
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Alaeddin Kordenaeej
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Shahed, Tehran 33191-18651, Iran
| | - Mehrdad Hanifei
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
| |
Collapse
|
7
|
Yucel G, Betekhtin A, Cabi E, Tuna M, Hasterok R, Kolano B. The Chromosome Number and rDNA Loci Evolution in Onobrychis (Fabaceae). Int J Mol Sci 2022; 23:ijms231911033. [PMID: 36232345 PMCID: PMC9570107 DOI: 10.3390/ijms231911033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023] Open
Abstract
The evolution of chromosome number and ribosomal DNA (rDNA) loci number and localisation were studied in Onobrychis Mill. Diploid and tetraploid species, as well as two basic chromosome numbers, x = 7 and x = 8, were observed among analysed taxa. The chromosomal distribution of rDNA loci was presented here for the first time using fluorescence in situ hybridisation (FISH) with 5S and 35S rDNA probes. Onobrychis species showed a high polymorphism in the number and localisation of rDNA loci among diploids, whereas the rDNA loci pattern was very similar in polyploids. Phylogenetic relationships among the species, inferred from nrITS sequences, were used as a framework to reconstruct the patterns of basic chromosome number and rDNA loci evolution. Analysis of the evolution of the basic chromosome numbers allowed the inference of x = 8 as the ancestral number and the descending dysploidy and polyploidisation as the major mechanisms of the chromosome number evolution. Analyses of chromosomal patterns of rRNA gene loci in a phylogenetic context resulted in the reconstruction of one locus of 5S rDNA and one locus of 35S rDNA in the interstitial chromosomal position as the ancestral state in this genus.
Collapse
Affiliation(s)
- Gulru Yucel
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55200, Turkey
- Department of Biology, Institute of Natural and Applied Sciences, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Alexander Betekhtin
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Metin Tuna
- Department of Field Crops, Faculty of Agriculture, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Bozena Kolano
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
8
|
Xia Z, Dai X, Fan W, Liu C, Zhang M, Bian P, Zhou Y, Li L, Zhu B, Liu S, Li Z, Wang X, Yu M, Xiang Z, Jiang Y, Zhao A. Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1119-1137. [PMID: 36055564 DOI: 10.1016/j.gpb.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Multiple plant lineages have independently evolved sex chromosomes and variable karyotypes to maintain their sessile lifestyles through constant biological innovation. Morus notabilis, a dioecious mulberry species, has the fewest chromosomes among Morus spp., but the genetic basis of sex determination and karyotype evolution in this species has not been identified. In this study, three high-quality genome assemblies were generated for Morus spp. [including dioecious M. notabilis (male and female) and Morus yunnanensis (female)] with genome sizes of 301-329 Mb and were grouped into six pseudochromosomes. Using a combination of genomic approaches, we found that the putative ancestral karyotype of Morus species was close to 14 protochromosomes, and that several chromosome fusion events resulted in descending dysploidy (2n = 2x = 12). We also characterized a ∼ 6.2-Mb sex-determining region on chromosome 3. Four potential male-specific genes, a partially duplicatedDNA helicase gene (named MSDH) and three Ty3_Gypsy long terminal repeat retrotransposons (named MSTG1/2/3), were identified in the Y-linked area and considered to be strong candidate genes for sex determination or differentiation. Population genomic analysis showed that Guangdong accessions in China were genetically similar to Japanese accessions of mulberry. In addition, genomic areas containing selective sweeps that distinguish domesticated mulberry from wild populations in terms of flowering and disease resistance were identified. Our findings provide an important genetic resource for sex identification research and molecular breeding in mulberry.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Meirong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuping Zhou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Baozhong Zhu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuman Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661100, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Maode Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
9
|
Lysak MA. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions. THE PLANT CELL 2022; 34:2475-2491. [PMID: 35441689 PMCID: PMC9252491 DOI: 10.1093/plcell/koac116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
10
|
Maravilla AJ, Rosato M, Álvarez I, Nieto Feliner G, Rosselló JA. Interstitial Arabidopsis-Type Telomeric Repeats in Asteraceae. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122794. [PMID: 34961265 PMCID: PMC8705333 DOI: 10.3390/plants10122794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Tandem repeats of telomeric-like motifs at intra-chromosomal regions, known as interstitial telomeric repeats (ITR), have drawn attention as potential markers of structural changes, which might convey information about evolutionary relationships if preserved through time. Building on our previous work that reported outstanding ITR polymorphisms in the genus Anacyclus, we undertook a survey across 132 Asteraceae species, focusing on the six most speciose subfamilies and considering all the ITR data published to date. The goal was to assess whether the presence, site number, and chromosomal location of ITRs convey any phylogenetic signal. We conducted fluorescent in situ hybridization (FISH) using an Arabidopsis-type telomeric sequence as a probe on karyotypes obtained from mitotic chromosomes. FISH signals of ITR sites were detected in species of subfamilies Asteroideae, Carduoideae, Cichorioideae, Gymnarhenoideae, and Mutisioideae, but not in Barnadesioideae. Although six small subfamilies have not yet been sampled, altogether, our results suggest that the dynamics of ITR formation in Asteraceae cannot accurately trace the complex karyological evolution that occurred since the early diversification of this family. Thus, ITRs do not convey a reliable signal at deep or shallow phylogenetic levels and cannot help to delimitate taxonomic categories, a conclusion that might also hold for other important families such as Fabaceae.
Collapse
Affiliation(s)
- Alexis J. Maravilla
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Marcela Rosato
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Inés Álvarez
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Gonzalo Nieto Feliner
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Josep A. Rosselló
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
- Correspondence: ; Tel.: +34-963-156-800
| |
Collapse
|
11
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
12
|
de Oliveira Bustamante F, do Nascimento TH, Montenegro C, Dias S, do Vale Martins L, Braz GT, Benko-Iseppon AM, Jiang J, Pedrosa-Harand A, Brasileiro-Vidal AC. Oligo-FISH barcode in beans: a new chromosome identification system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3675-3686. [PMID: 34368889 DOI: 10.1007/s00122-021-03921-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.
Collapse
Affiliation(s)
- Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Biologia, Universidade Federal do Piauí, Teresina, PI, Brazil
| | | | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
13
|
do Vale Martins L, de Oliveira Bustamante F, da Silva Oliveira AR, da Costa AF, de Lima Feitoza L, Liang Q, Zhao H, Benko-Iseppon AM, Muñoz-Amatriaín M, Pedrosa-Harand A, Jiang J, Brasileiro-Vidal AC. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma 2021; 130:133-147. [PMID: 33909141 DOI: 10.1007/s00412-021-00758-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/17/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.
Collapse
Affiliation(s)
| | | | | | | | | | - Qihua Liang
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
14
|
Ferraz ME, Fonsêca A, Pedrosa-Harand A. Multiple and independent rearrangements revealed by comparative cytogenetic mapping in the dysploid Leptostachyus group (Phaseolus L., Leguminosae). Chromosome Res 2020; 28:395-405. [PMID: 33191473 DOI: 10.1007/s10577-020-09644-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Polyploidy and dysploidy have been reported as the main events in karyotype evolution of plants. In the genus Phaseolus L. (2n = 22), a small monophyletic group of three species, the Leptostachyus group, presents a dysploid karyotype with 2n = 20. It was shown in Phaseolus leptostachyus that the dysploidy was caused by a nested chromosome fusion (NCF) accompanied by several translocations, suggesting a high rate of karyotype evolution in the group. To verify if this karyotype restructuring was a single event or occurred progressively during the evolution of this group, we analysed P. macvaughii, sister to Phaseolus micranthus + P. leptostachyus. Twenty-four genomic clones of P. vulgaris previously mapped on P. leptostachyus, in addition to the 5S and 35S rDNA probes, were used for fluorescence in situ hybridization. Only a single rearrangement was common to the two species: the nested chromosome fusion (NCF) involving chromosomes 10 and 11. The translocation of chromosome 2 is not the same found in P. leptostachyus, and pericentric inversions in chromosomed 3 and 4 were exclusive of P. macvaughii. The other rearrangements observed in P. leptostachyus were not shared with this species, suggesting that they occurred after the separation of these lineages. The presence of private rearrangements indicates a progressive accumulation of karyotype changes in the Leptostachyus group instead of an instant genome-wide repatterning.
Collapse
Affiliation(s)
- Maria Eduarda Ferraz
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil
| | - Artur Fonsêca
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, R. Prof. Moraes Rego, s/n, CDU, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
15
|
Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V. unguiculata), and common bean (Phaseolus vulgaris). Chromosome Res 2020; 28:293-306. [PMID: 32654079 DOI: 10.1007/s10577-020-09635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Comparative cytogenetic mapping is a powerful approach to gain insights into genome organization of orphan crops, lacking a whole sequenced genome. To investigate the cytogenomic evolution of important Vigna and Phaseolus beans, we built a BAC-FISH (fluorescent in situ hybridization of bacterial artificial chromosome) map of Vigna aconitifolia (Vac, subgenus Ceratotropis), species with no sequenced genome, and compared with V. unguiculata (Vu, subgenus Vigna) and Phaseolus vulgaris (Pv) maps. Seventeen Pv BACs, eight Vu BACs, and 5S and 35S rDNA probes were hybridized in situ on the 11 Vac chromosome pairs. Five Vac chromosomes (Vac6, Vac7, Vac9, Vac10, and Vac11) showed conserved macrosynteny and collinearity between V. unguiculata and P. vulgaris. On the other hand, we observed collinearity breaks, identified by pericentric inversions involving Vac2 (Vu2), Vac4 (Vu4), and Vac3 (Pv3). We also detected macrosynteny breaks of translocation type involving chromosomes 1 and 8 of V. aconitifolia and P. vulgaris; 2 and 3 of V. aconitifolia and P. vulgaris; and 1 and 5 of V. aconitifolia and V. unguiculata. Considering our data and previous BAC-FISH studies, six chromosomes (1, 2, 3, 4, 5, and 8) are involved in major karyotype divergences between genera and five (1, 2, 3, 4, and 5) between Vigna subgenera, including mechanisms such as duplications, inversions, and translocations. Macrosynteny breaks between Vigna and Phaseolus suggest that the major chromosomal rearrangements have occurred within the Vigna clade. Our cytogenomic comparisons bring new light on the degree of shared macrosynteny and mechanisms of karyotype diversification during Vigna and Phaseolus evolution.
Collapse
|
16
|
Comparatively Barcoded Chromosomes of Brachypodium Perennials Tell the Story of Their Karyotype Structure and Evolution. Int J Mol Sci 2019; 20:ijms20225557. [PMID: 31703351 PMCID: PMC6888173 DOI: 10.3390/ijms20225557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022] Open
Abstract
The Brachypodium genus is an informative model system for studying grass karyotype organization. Previous studies of a limited number of species and reference chromosomes have not provided a comprehensive picture of the enigmatic phylogenetic relationships in the genus. Comparative chromosome barcoding, which enables the reconstruction of the evolutionary history of individual chromosomes and their segments, allowed us to infer the relationships between putative ancestral karyotypes of extinct species and extant karyotypes of current species. We used over 80 chromosome-specific BAC (bacterial artificial chromosome) clones derived from five reference chromosomes of B. distachyon as probes against the karyotypes of twelve accessions representing five diploid and polyploid Brachypodium perennials. The results showed that descending dysploidy is common in Brachypodium and occurs primarily via nested chromosome fusions. Brachypodiumdistachyon was rejected as a putative ancestor for allotetraploid perennials and B. stacei for B. mexicanum. We propose two alternative models of perennial polyploid evolution involving either the incorporation of a putative x = 5 ancestral karyotype with different descending dysploidy patterns compared to B. distachyon chromosomes or hybridization of two x = 9 ancestors followed by genome doubling and descending dysploidy. Details of the karyotype structure and evolution in several Brachypodium perennials are revealed for the first time.
Collapse
|
17
|
Susek K, Bielski W, Czyż KB, Hasterok R, Jackson SA, Wolko B, Naganowska B. Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes (Basel) 2019; 10:genes10040259. [PMID: 30939837 PMCID: PMC6523792 DOI: 10.3390/genes10040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| |
Collapse
|
18
|
Udall JA, Long E, Ramaraj T, Conover JL, Yuan D, Grover CE, Gong L, Arick MA, Masonbrink RE, Peterson DG, Wendel JF. The Genome Sequence of Gossypioides kirkii Illustrates a Descending Dysploidy in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1541. [PMID: 31827481 PMCID: PMC6890844 DOI: 10.3389/fpls.2019.01541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/05/2019] [Indexed: 05/20/2023]
Abstract
One of the extraordinary aspects of plant genome evolution is variation in chromosome number, particularly that among closely related species. This is exemplified by the cotton genus (Gossypium) and its relatives, where most species and genera have a base chromosome number of 13. The two exceptions are sister genera that have n = 12 (the Hawaiian Kokia and the East African and Madagascan Gossypioides). We generated a high-quality genome sequence of Gossypioides kirkii (n = 12) using PacBio, Bionano, and Hi-C technologies, and compared this assembly to genome sequences of Kokia (n = 12) and Gossypium diploids (n = 13). Previous analysis demonstrated that the directionality of their reduced chromosome number was through large structural rearrangements. A series of structural rearrangements were identified comparing the de novo G. kirkii genome sequence to genome sequences of Gossypium, including chromosome fusions and inversions. Genome comparison between G. kirkii and Gossypium suggests that multiple steps are required to generate the extant structural differences.
Collapse
Affiliation(s)
- Joshua A. Udall
- Crop Germplasm Research, USDA, College Station, TX, United States
- *Correspondence: Joshua A. Udall, ; Jonathan F. Wendel,
| | - Evan Long
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Thiruvarangan Ramaraj
- National Center of Genome Resources, Santa Fe, NM, United States
- School of Computing, DePaul University, Chicago, IL, United States
| | | | - Daojun Yuan
- EEOB Department, Iowa State University, Ames, IA, United States
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Mark A. Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Rick E. Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA, United States
| | - Daniel G. Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Jonathan F. Wendel
- EEOB Department, Iowa State University, Ames, IA, United States
- *Correspondence: Joshua A. Udall, ; Jonathan F. Wendel,
| |
Collapse
|
19
|
Karyotype heterogeneity in Philodendron s.l. (Araceae) revealed by chromosome mapping of rDNA loci. PLoS One 2018; 13:e0207318. [PMID: 30440003 PMCID: PMC6237374 DOI: 10.1371/journal.pone.0207318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Philodendron s.l. (Araceae) has been recently focus of taxonomic and phylogenetic studies, but karyotypic data are limited to chromosome numbers and a few published genome sizes. In this work, karyotypes of 34 species of Philodendron s.l. (29 species of Philodendron and five of Thaumatophyllum), ranging from 2n = 28 to 36 chromosomes, were analyzed by fluorescence in situ hybridization (FISH) with rDNA and telomeric probes, aiming to understand the evolution of the karyotype diversity of the group. Philodendron presented a high number variation of 35S rDNA, ranging from two to 16 sites, which were mostly in the terminal region of the short arms, with nine species presenting heteromorphisms. In the case of Thaumatophyllum species, we observed a considerably lower variation, which ranged from two to four terminal sites. The distribution of the 5S rDNA clusters was more conserved, with two sites for most species, being preferably located interstitially in the long chromosome arms. For the telomeric probe, while exclusively terminal sites were observed for P. giganteum (2n = 30) chromosomes, P. callosum (2n = 28) presented an interstitial distribution associated with satellite DNA. rDNA sites of the analyzed species of Philodendron s.l. species were randomly distributed considering the phylogenetic context, probably due to rapid evolution and great diversity of these genomes. The observed heteromorphisms suggest the accumulation of repetitive DNA in the genomes of some species and the occurrence of chromosomal rearrangements along the karyotype evolution of the group.
Collapse
|
20
|
Mandáková T, Guo X, Özüdoğru B, Mummenhoff K, Lysak MA. Hybridization-facilitated genome merger and repeated chromosome fusion after 8 million years. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:748-760. [PMID: 30101476 DOI: 10.1111/tpj.14065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 05/22/2023]
Abstract
The small genus Ricotia (nine species, Brassicaceae) is confined to the eastern Mediterranean. By comparative chromosome painting and a dated multi-gene chloroplast phylogeny, we reconstructed the origin and subsequent evolution of Ricotia. The ancestral Ricotia genome originated through hybridization between two older genomes with n = 7 and n = 8 chromosomes, respectively, on the Turkish mainland during the Early Miocene (c. 17.8 million years ago, Ma). Since then, the allotetraploid (n = 15) genome has been altered by two independent descending dysploidies (DD) to n = 14 in Ricotia aucheri and the Tenuifolia clade (2 spp.). By the Late Miocene (c. 10 Ma), the latter clade started to evolve in the most diverse Ricotia core clade (6 spp.), the process preceded by a DD event to n = 13. It is noteworthy that this dysploidy was mediated by a unique chromosomal rearrangement, merging together the same two chromosomes as were merged during the origin of a fusion chromosome within the paternal n = 7 genome c. 20 Ma. This shows that within a time period of c. 8 Myr genome evolution can repeat itself and that structurally very similar chromosomes may originate repeatedly from the same ancestral chromosomes by different pathways (end-to-end translocation versus nested chromosome insertion).
Collapse
Affiliation(s)
- Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Xinyi Guo
- CEITEC - Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Barış Özüdoğru
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| |
Collapse
|
21
|
Lusinska J, Majka J, Betekhtin A, Susek K, Wolny E, Hasterok R. Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon, B. stacei and B. hybridum. ANNALS OF BOTANY 2018; 122:445-459. [PMID: 29893795 PMCID: PMC6110338 DOI: 10.1093/aob/mcy086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The Brachypodium genus represents a useful model system to study grass genome organization. Palaeogenomic analyses (e.g. Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics49: 490-496) have identified polyploidization and dysploidy as the prime mechanisms driving the diversity of plant karyotypes and nested chromosome fusions (NCFs) crucial for shaping grass chromosomes. This study compares the karyotype structure and evolution in B. distachyon (genome Bd), B. stacei (genome Bs) and in their putative allotetraploid B. hybridum (genomes BdBs). METHODS Brachypodium chromosomes were measured and identified using multicolour fluorescence in situ hybridization (mcFISH). For higher resolution, comparative chromosome barcoding was developed using sets of low-repeat, physically mapped B. distachyon-derived bacterial artificial chromosome (BAC) clones. KEY RESULTS All species had rather small chromosomes, and essentially all in the Bs genome were morphometrically indistinguishable. Seven BACs combined with two rDNA-based probes provided unambiguous and reproducible chromosome discrimination. Comparative chromosome barcoding revealed NCFs that contributed to the reduction in the x = 12 chromosome number that has been suggested for the intermediate ancestral grass karyotype. Chromosome Bd3 derives from two NCFs of three ancestral chromosomes (Os2, Os8, Os10). Chromosome Bs6 shows an ancient Os8/Os10 NCF, whilst Bs4 represents Os2 only. Chromosome Bd4 originated from a descending dysploidy that involves two NCFs of Os12, Os9 and Os11. The specific distribution of BACs along Bs9 and Bs5, in both B. stacei and B. hybridum, suggests a Bs genome-specific Robertsonian rearrangement. CONCLUSIONS mcFISH-based karyotyping identifies all chromosomes in Brachypodium annuals. Comparative chromosome barcoding reveals rearrangements responsible for the diverse organization of Bd and Bs genomes and provides new data regarding karyotype evolution since the split of the two diploids. The fact that no chromosome rearrangements were observed in B. hybridum compared with the karyotypes of its phylogenetic ancestors suggests prolonged genome stasis after the formation of the allotetraploid.
Collapse
Affiliation(s)
- Joanna Lusinska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Majka
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karolina Susek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- For correspondence. E-mail
| |
Collapse
|
22
|
Mandáková T, Lysak MA. Post-polyploid diploidization and diversification through dysploid changes. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:55-65. [PMID: 29567623 DOI: 10.1016/j.pbi.2018.03.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 05/06/2023]
Abstract
Whole-genome duplications are widespread across land plant phylogenies and particularly frequent in ferns and angiosperms. Genome duplications spurred the evolution of key innovations associated with diversification in many angiosperm clades and lineages. Such diversifications are not initiated by genome doubling per se. Rather, differentiation of the primary polyploid populations through a range of processes results in post-polyploid genome diploidization. Structural diploidization gradually reverts the polyploid genome to one functionally diploid-like through chromosomal rearrangements which frequently result in dysploid changes. Dysploidies may lead to reproductive isolation among post-polyploid offspring and significantly contribute to speciation and cladogenetic events.
Collapse
Affiliation(s)
- Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
23
|
FISH-based mitotic and meiotic diakinesis karyotypes of Morus notabilis reveal a chromosomal fusion-fission cycle between mitotic and meiotic phases. Sci Rep 2017; 7:9573. [PMID: 28852033 PMCID: PMC5575264 DOI: 10.1038/s41598-017-10079-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/04/2017] [Indexed: 01/31/2023] Open
Abstract
Mulberry (Morus spp.), in family Moraceae, is a plant with important economic value. Many polyploid levels of mulberry have been determined. In the present study, the fluorescence in situ hybridization (FISH) technique was applied in Morus notabilis, using four single-copy sequences, telomere repeats, and 5S and 25S rDNAs as probes. All the mitotic chromosomes were clearly identified and grouped into seven pairs of homologous chromosomes. Three dot chromosome pairs were distinguished by the FISH patterns of the 25S rDNA probe and a simple sequence repeat (SSR2524). According to the FISH signals, chromosome length and morphology, detailed meiotic diakinesis karyotype was constructed. Interestingly, only six bivalent chromosomes were observed in diakinesis cells. The 25S rDNA probe was used to illustrate chromosome alterations. The results indicated that mitotic chromosomes 5 and 7 fused into diakinesis chromosome 5 during the meiotic phase. In mitotic cells, the fused chromosome 5 broke into chromosomes 5 and 7. A chromosomal fusion-fission cycle between the meiotic and mitotic phases in the same individual is reported here for the first time. This finding will contribute to the understanding of karyotype evolution in plants.
Collapse
|
24
|
Ribeiro T, Dos Santos KGB, Richard MMS, Sévignac M, Thareau V, Geffroy V, Pedrosa-Harand A. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. PROTOPLASMA 2017; 254:791-801. [PMID: 27335007 DOI: 10.1007/s00709-016-0993-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Common bean (Phaseolus vulgaris) subtelomeres are highly enriched for khipu, the main satellite DNA identified so far in this genome. Here, we comparatively investigate khipu genomic organization in Phaseolus species from different clades. Additionally, we identified and characterized another satellite repeat, named jumper, associated to khipu. A mixture of P. vulgaris khipu clones hybridized in situ confirmed the presence of khipu-like sequences on subterminal chromosome regions in all Phaseolus species, with differences in the number and intensity of signals between species and when species-specific clones were used. Khipu is present as multimers of ∼500 bp and sequence analyses of cloned fragments revealed close relationship among khipu repeats. The new repeat, named jumper, is a 170-bp satellite sequence present in all Phaseolus species and inserted into the nontranscribed spacer (NTS) of the 5S rDNA in the P. vulgaris genome. Nevertheless, jumper was found as a high-copy repeat at subtelomeres and/or pericentromeres in the Phaseolus microcarpus lineage only. Our data argue for khipu as an important subtelomeric satellite DNA in the genus and for a complex satellite repeat composition of P. microcarpus subtelomeres, which also contain jumper. Furthermore, the differential amplification of these repeats in subtelomeres or pericentromeres reinforces the presence of a dynamic satellite DNA library in Phaseolus.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Mireille Sévignac
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
25
|
Susek K, Bielski WK, Hasterok R, Naganowska B, Wolko B. A First Glimpse of Wild Lupin Karyotype Variation As Revealed by Comparative Cytogenetic Mapping. FRONTIERS IN PLANT SCIENCE 2016; 7:1152. [PMID: 27516770 PMCID: PMC4964750 DOI: 10.3389/fpls.2016.01152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Insight into plant genomes at the cytomolecular level provides useful information about their karyotype structure, enabling inferences about taxonomic relationships and evolutionary origins. The Old World lupins (OWL) demonstrate a high level of genomic diversification involving variation in chromosome numbers (2n = 32-52), basic chromosome numbers (x = 5-7, 9, 13) and in nuclear genome size (2C DNA = 0.97-2.68 pg). Lupins comprise both crop and wild species and provide an intriguing system to study karyotype evolution. In order to investigate lupin chromosome structure, heterologous FISH was used. Sixteen BACs that had been generated as chromosome markers for the reference species, Lupinus angustifolius, were used to identify chromosomes in the wild species and explore karyotype variation. While all "single-locus" in L. angustifolius, in the wild lupins these clones proved to be "single-locus," "single-locus" with additional signals, "repetitive" or had no detectable BAC-FISH signal. The diverse distribution of the clones in the targeted genomes suggests a complex evolution history, which possibly involved multiple chromosomal changes such as fusions/fissions and repetitive sequence amplification. Twelve BACs were sequenced and we found numerous transposable elements including DNA transposons as well as LTR and non-LTR retrotransposons with varying quantity and composition among the different lupin species. However, at this preliminary stage, no correlation was observed between the pattern of BAC-FISH signals and the repeat content in particular BACs. Here, we describe the first BAC-based chromosome-specific markers for the wild species: L. cosentinii, L. cryptanthus, L. pilosus, L. micranthus and one New World lupin, L. multiflorus. These BACs could constitute the basis for an assignment of the chromosomal and genetic maps of other lupins, e.g., L. albus and L. luteus. Moreover, we identified karyotype variation that helps illustrate the relationships between the lupins and the extensive cytological diversity within this group. In this study we premise that lupin genomes underwent at least two rounds of fusion and fission events resulting in the reduction in chromosome number from 2n = 52 through 2n = 40 to 2n = 32, followed by chromosome number increment to 2n = 42.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Karolina Susek
| | - Wojciech K. Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in KatowiceKatowice, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|