1
|
Gholamalamdari O, van Schaik T, Wang Y, Kumar P, Zhang L, Zhang Y, Gonzalez GAH, Vouzas AE, Zhao PA, Gilbert DM, Ma J, van Steensel B, Belmont AS. Major nuclear locales define nuclear genome organization and function beyond A and B compartments. eLife 2025; 13:RP99116. [PMID: 40279158 PMCID: PMC12029212 DOI: 10.7554/elife.99116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.
Collapse
Affiliation(s)
- Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Tom van Schaik
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer InstituteAmsterdamNetherlands
| | - Yuchuan Wang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
| | - Pradeep Kumar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
| | | | | | - Peiyao A Zhao
- San Diego Biomedical Research InstituteSan DiegoUnited States
| | - David M Gilbert
- San Diego Biomedical Research InstituteSan DiegoUnited States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer InstituteAmsterdamNetherlands
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
2
|
Teo JMN, Chen W, Ling GS. Neutrophil plasticity in liver diseases. J Leukoc Biol 2025; 117:qiae222. [PMID: 39383213 DOI: 10.1093/jleuko/qiae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024] Open
Abstract
The liver has critical digestive, metabolic, and immunosurveillance roles, which get disrupted during liver diseases such as viral hepatitis, fatty liver disease, and hepatocellular carcinoma. While previous research on the pathological development of these diseases has focused on liver-resident immune populations, such as Kupffer cells, infiltrating immune cells responding to pathogens and disease also play crucial roles. Neutrophils are one such key population contributing to hepatic inflammation and disease progression. Belonging to the initial waves of immune response to threats, neutrophils suppress bacterial and viral spread during acute infections and have homeostasis-restoring functions, whereas during chronic insults, they display their plastic nature by responding to the inflammatory environment and develop new phenotypes alongside longer life spans. This review summarizes the diversity in neutrophil function and subpopulations present at steady state, during liver disease, and during liver cancer.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Faculty Administration Wing, 21 Sassoon Road, Pokfulam, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, HK Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
3
|
Liu S, Wang CY, Zheng P, Jia BB, Zemke NR, Ren P, Park HL, Ren B, Zhuang X. Cell type-specific 3D-genome organization and transcription regulation in the brain. SCIENCE ADVANCES 2025; 11:eadv2067. [PMID: 40009678 PMCID: PMC11864200 DOI: 10.1126/sciadv.adv2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
3D organization of the genome plays a critical role in regulating gene expression. How 3D-genome organization differs among different cell types and relates to cell type-dependent transcriptional regulation remains unclear. Here, we used genome-scale DNA and RNA imaging to investigate 3D-genome organization in transcriptionally distinct cell types in the mouse cerebral cortex. We uncovered a wide spectrum of differences in the nuclear architecture and 3D-genome organization among different cell types, ranging from the size of the cell nucleus to higher-order chromosome structures and radial positioning of chromatin loci within the nucleus. These cell type-dependent variations in nuclear architecture and chromatin organization exhibit strong correlations with both the total transcriptional activity of the cell and transcriptional regulation of cell type-specific marker genes. Moreover, we found that the methylated DNA binding protein MeCP2 promotes active-inactive chromatin segregation and regulates transcription in a nuclear radial position-dependent manner that is highly correlated with its function in modulating active-inactive chromatin compartmentalization.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Cosmos Yuqi Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Pu Zheng
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Bojing Blair Jia
- Bioinformatics and Systems Biology Graduate Program, Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Peter Ren
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Hannah L. Park
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Van De Looverbosch T, De Beuckeleer S, De Smet F, Sijbers J, De Vos WH. Proximity adjusted centroid mapping for accurate detection of nuclei in dense 3D cell systems. Comput Biol Med 2025; 185:109561. [PMID: 39693688 DOI: 10.1016/j.compbiomed.2024.109561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
In the past decade, deep learning algorithms have surpassed the performance of many conventional image segmentation pipelines. Powerful models are now available for segmenting cells and nuclei in diverse 2D image types, but segmentation in 3D cell systems remains challenging due to the high cell density, the heterogenous resolution and contrast across the image volume, and the difficulty in generating reliable and sufficient ground truth data for model training. Reasoning that most image processing applications rely on nuclear segmentation but do not necessarily require an accurate delineation of their shapes, we implemented Proximity Adjusted Centroid MAPping (PAC-MAP), a 3D U-net based method that predicts the position of nuclear centroids and their proximity to other nuclei. We show that our model outperforms existing methods, predominantly by boosting recall, especially in conditions of high cell density. When trained from scratch with limited expert annotations (30 images), PAC-MAP attained an average F1 score of 0.793 for nuclei centroid prediction in dense spheroids. When pretraining using weakly supervised bulk data (>2300 images) followed by finetuning with the available expert annotations, the average F1 score could be significantly improved to 0.816. We demonstrate the utility of our method for quantifying the absolute cell content of spheroids and comprehensively mapping the infiltration pattern of patient-derived glioblastoma cells in cerebral organoids.
Collapse
Affiliation(s)
- Tim Van De Looverbosch
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610, Antwerpen, Belgium
| | - Sarah De Beuckeleer
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610, Antwerpen, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, University of Antwerp, 2610, Antwerpen, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610, Antwerpen, Belgium; IMARK, University of Antwerp, Belgium; Antwerp Centre for Advanced Microscopy, University of Antwerp, 2610, Antwerpen, Belgium; μNeuro Research Centre of Excellence, University of Antwerp, 2610, Antwerpen, Belgium.
| |
Collapse
|
5
|
Sengupta S, Sami AB, Gatlin JC, Levy DL. Proteasome inhibition induces microtubule-dependent changes in nuclear morphology. iScience 2025; 28:111550. [PMID: 39811669 PMCID: PMC11729685 DOI: 10.1016/j.isci.2024.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers and neurodegenerative disorders are associated with both disrupted proteostasis and altered nuclear morphology. Determining if changes in nuclear morphology contribute to pathology requires an understanding of the underlying mechanisms, which are difficult to elucidate in cells where pleiotropic effects of altering proteostasis might indirectly influence nuclear morphology. To investigate direct effects, we studied nuclei assembled in Xenopus egg extract where potentially confounding effects of transcription, translation, cell cycle progression, and actin dynamics are absent. We report that proteasome inhibition causes acute microtubule-dependent changes in nuclear morphology and stability and altered microtubule dynamics and organization. Proteomic analysis of proteasome-inhibited extracts identified an increased abundance of microtubule nucleator TubGCP6, and TubGCP6 depletion partially rescued nuclear morphology. Key results were confirmed in HeLa cells. We propose that accumulation of TubGCP6 leads to altered microtubule dynamics proximal to the nucleus, producing forces that deform the nucleus and impact nuclear morphology and integrity.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
6
|
Schreier S, Budchart P, Borwornpinyo S, Adireklarpwong L, Chirappapha P, Triampo W, Lertsithichai P. Rare Cell Population Analysis in Early-Stage Breast Cancer Patients. Breast Cancer (Auckl) 2025; 19:11782234241310596. [PMID: 39803593 PMCID: PMC11724413 DOI: 10.1177/11782234241310596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy. Objectives We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology. In addition, we sought to determine the dependency of these markers on the presence of tumors. Design We evaluated the validity of a multi-rare-cell detection platform and demonstrated the utility of a specific rare cell subset as a novel approach to characterize the breast cancer system. Sampling was conducted both before and after tumor resection. Methods Linearity of the Rarmax platform was established using a spike-in approach. The platform includes red blood cell lysis, leukocyte depletion and high-resolution fluorescence image recording. Rare cell analysis was conducted on 28 samples (before and after surgery) from 14 patients with breast cancer, 20 healthy volunteers and 9 noncancer control volunteers. In-depth identification of rare cells, including circulating tumor cells, endothelial-like cells, erythroblasts, and inflammation-associated cells, was performed using a phenotype and morphology-based classification system. Results The platform performed linearly over a range of 5 to 950 spiked cells, with an average recovery of 84.6%. Circulating epithelial and endothelial-like cell subsets have been demonstrated to be associated with or independent of cancer with tumor presence. Furthermore, certain cell profile patterns may be associated with treatment-related adverse effects. The sensitivity in detecting tumor-presence and cancer-associated abnormality before surgery was 43% and 85.7%, respectively, and the specificity was 100% and 96.6%, respectively. Conclusion This study supports the idea of a cancer-associated rare cell abnormality to represent tumor entities as well as systemic cancer. The latter is independent of the apparent clinical cancer.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Premise Biosystems Co., Ltd. Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Premise Biosystems Co., Ltd. Bangkok, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lakkana Adireklarpwong
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wannapong Triampo
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Biophysics Lab, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panuwat Lertsithichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
8
|
Mahbod A, Dorffner G, Ellinger I, Woitek R, Hatamikia S. Improving generalization capability of deep learning-based nuclei instance segmentation by non-deterministic train time and deterministic test time stain normalization. Comput Struct Biotechnol J 2024; 23:669-678. [PMID: 38292472 PMCID: PMC10825317 DOI: 10.1016/j.csbj.2023.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
With the advent of digital pathology and microscopic systems that can scan and save whole slide histological images automatically, there is a growing trend to use computerized methods to analyze acquired images. Among different histopathological image analysis tasks, nuclei instance segmentation plays a fundamental role in a wide range of clinical and research applications. While many semi- and fully-automatic computerized methods have been proposed for nuclei instance segmentation, deep learning (DL)-based approaches have been shown to deliver the best performances. However, the performance of such approaches usually degrades when tested on unseen datasets. In this work, we propose a novel method to improve the generalization capability of a DL-based automatic segmentation approach. Besides utilizing one of the state-of-the-art DL-based models as a baseline, our method incorporates non-deterministic train time and deterministic test time stain normalization, and ensembling to boost the segmentation performance. We trained the model with one single training set and evaluated its segmentation performance on seven test datasets. Our results show that the proposed method provides up to 4.9%, 5.4%, and 5.9% better average performance in segmenting nuclei based on Dice score, aggregated Jaccard index, and panoptic quality score, respectively, compared to the baseline segmentation model.
Collapse
Affiliation(s)
- Amirreza Mahbod
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, Austria
| | - Georg Dorffner
- Institute of Artificial Intelligence, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Ramona Woitek
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, Austria
| | - Sepideh Hatamikia
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, Austria
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| |
Collapse
|
9
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
10
|
Murre C, Patta I, Mishra S, Hu M. Constructing polymorphonuclear cells: chromatin folding shapes nuclear morphology. Trends Immunol 2024; 45:851-860. [PMID: 39438171 DOI: 10.1016/j.it.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.
Collapse
Affiliation(s)
- Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| | - Indumathi Patta
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
11
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
13
|
Kramer EM, Enelamah J, Fang H, Tayjasanant PA. Karyotype depends on sperm head morphology in some amniote groups. Front Genet 2024; 15:1396530. [PMID: 38903758 PMCID: PMC11186999 DOI: 10.3389/fgene.2024.1396530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
The karyotype of an organism is the set of gross features that characterize the way the genome is packaged into separate chromosomes. It has been known for decades that different taxonomic groups often have distinct karyotypic features, but whether selective forces act to maintain these differences over evolutionary timescales is an open question. In this paper we analyze a database of karyotype features and sperm head morphology in 103 mammal species with spatulate sperm heads and 90 sauropsid species (birds and non-avian reptiles) with vermiform heads. We find that mammal species with a larger head area have more chromosomes, while sauropsid species with longer heads have a wider range of chromosome lengths. These results remain significant after controlling for genome size, so sperm head morphology is the relevant variable. This suggest that post-copulatory sexual selection, by acting on sperm head shape, can influence genome architecture.
Collapse
Affiliation(s)
- Eric M. Kramer
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
- Department of Biology, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - Joshua Enelamah
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - Hao Fang
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - P. A. Tayjasanant
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| |
Collapse
|
14
|
Paing YMM, Eom Y, Song GB, Kim B, Choi MG, Hong S, Lee SH. Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171681. [PMID: 38490422 DOI: 10.1016/j.scitotenv.2024.171681] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 μg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gyeong Bae Song
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bokyung Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Gil Choi
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
15
|
Dupouy G, Dong Y, Herzog E, Chabouté ME, Berr A. Nuclear envelope dynamics in connection to chromatin remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:963-981. [PMID: 37067011 DOI: 10.1111/tpj.16246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.
Collapse
Affiliation(s)
- Gilles Dupouy
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| |
Collapse
|
16
|
Su M, Fleischer T, Grosheva I, Horev MB, Olszewska M, Mattioli CC, Barr H, Plotnikov A, Carvalho S, Moskovich Y, Minden MD, Chapal-Ilani N, Wainstein A, Papapetrou EP, Dezorella N, Cheng T, Kaushansky N, Geiger B, Shlush LI. Targeting SRSF2 mutations in leukemia with RKI-1447: A strategy to impair cellular division and nuclear structure. iScience 2024; 27:109443. [PMID: 38558935 PMCID: PMC10981050 DOI: 10.1016/j.isci.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Spliceosome machinery mutations are common early mutations in myeloid malignancies; however, effective targeted therapies against them are still lacking. In the current study, we used an in vitro high-throughput drug screen among four different isogenic cell lines and identified RKI-1447, a Rho-associated protein kinase inhibitor, as selective cytotoxic effector of SRSF2 mutant cells. RKI-1447 targeted SRSF2 mutated primary human samples in xenografts models. RKI-1447 induced mitotic catastrophe and induced major reorganization of the microtubule system and severe nuclear deformation. Transmission electron microscopy and 3D light microscopy revealed that SRSF2 mutations induce deep nuclear indentation and segmentation that are apparently driven by microtubule-rich cytoplasmic intrusions, which are exacerbated by RKI-1447. The severe nuclear deformation in RKI-1447-treated SRSF2 mutant cells prevents cells from completing mitosis. These findings shed new light on the interplay between microtubules and the nucleus and offers new ways for targeting pre-leukemic SRSF2 mutant cells.
Collapse
Affiliation(s)
- Minhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Fleischer
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Grosheva
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Melanie Bokstad Horev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Carvalho
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yoni Moskovich
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON Canada
| | - Noa Chapal-Ilani
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Wainstein
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Nathali Kaushansky
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I. Shlush
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
- Molecular Hematology Clinic, Maccabi Healthcare, Tel Aviv, Israel
- Division of Hematology, Rambam Healthcare Campus, Haifa, Israel
| |
Collapse
|
17
|
Vandepas LE, Stefani C, Domeier PP, Traylor-Knowles N, Goetz FW, Browne WE, Lacy-Hulbert A. Extracellular DNA traps in a ctenophore demonstrate immune cell behaviors in a non-bilaterian. Nat Commun 2024; 15:2990. [PMID: 38582801 PMCID: PMC10998917 DOI: 10.1038/s41467-024-46807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/08/2024] [Indexed: 04/08/2024] Open
Abstract
The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.
Collapse
Affiliation(s)
- Lauren E Vandepas
- NRC Research Associateship Program, Seattle, WA, USA.
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA.
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Phillip P Domeier
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, 33149, USA
| | - Frederick W Goetz
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Adam Lacy-Hulbert
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| |
Collapse
|
18
|
Mahbod A, Polak C, Feldmann K, Khan R, Gelles K, Dorffner G, Woitek R, Hatamikia S, Ellinger I. NuInsSeg: A fully annotated dataset for nuclei instance segmentation in H&E-stained histological images. Sci Data 2024; 11:295. [PMID: 38486039 PMCID: PMC10940572 DOI: 10.1038/s41597-024-03117-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
In computational pathology, automatic nuclei instance segmentation plays an essential role in whole slide image analysis. While many computerized approaches have been proposed for this task, supervised deep learning (DL) methods have shown superior segmentation performances compared to classical machine learning and image processing techniques. However, these models need fully annotated datasets for training which is challenging to acquire, especially in the medical domain. In this work, we release one of the biggest fully manually annotated datasets of nuclei in Hematoxylin and Eosin (H&E)-stained histological images, called NuInsSeg. This dataset contains 665 image patches with more than 30,000 manually segmented nuclei from 31 human and mouse organs. Moreover, for the first time, we provide additional ambiguous area masks for the entire dataset. These vague areas represent the parts of the images where precise and deterministic manual annotations are impossible, even for human experts. The dataset and detailed step-by-step instructions to generate related segmentation masks are publicly available on the respective repositories.
Collapse
Affiliation(s)
- Amirreza Mahbod
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, 3500, Austria.
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria.
| | - Christine Polak
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Katharina Feldmann
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Rumsha Khan
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Katharina Gelles
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Georg Dorffner
- Institute of Artificial Intelligence, Medical University of Vienna, Vienna, 1090, Austria
| | - Ramona Woitek
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, 3500, Austria
| | - Sepideh Hatamikia
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, 3500, Austria
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, 2700, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
19
|
Bueno C, García-Bernal D, Martínez S, Blanquer M, Moraleda JM. The nuclei of human adult stem cells can move within the cell and generate cellular protrusions to contact other cells. Stem Cell Res Ther 2024; 15:32. [PMID: 38321563 PMCID: PMC10848534 DOI: 10.1186/s13287-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.
Collapse
Affiliation(s)
- Carlos Bueno
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain.
| | - David García-Bernal
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550, San Juan, Alicante, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, 28029, Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - Miguel Blanquer
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| | - José M Moraleda
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
20
|
Marr EE, Isenberg BC, Wong JY. Effects of polydimethylsiloxane membrane surface treatments on human uterine smooth muscle cell strain response. Bioact Mater 2024; 32:415-426. [PMID: 37954466 PMCID: PMC10632608 DOI: 10.1016/j.bioactmat.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
In the United States, 1 in 10 infants are born preterm. The majority of neonatal deaths and nearly a third of infant deaths are linked to preterm birth. Preterm birth is initiated when the quiescent state of the uterus ends prematurely, leading to contractions and parturition beginning as early as 32 weeks, though the origins are not well understood. To enable research and discovery of therapeutics with potential to better address preterm birth, the capability to study isolated cell processes of pregnant uterine tissue in vitro is needed. Our development of an in vitro model of the myometrium utilizing human uterine smooth muscle cells (uSMCs) responsible for contractions provides a methodology to examine cellular mechanisms of late-stage pregnancy potentially involved in preterm birth. We discuss culture of uSMCs on a flexible polydimethylsiloxane (PDMS) substrate functionalized with cationic poly-l-lysine (PLL), followed by extracellular matrix (ECM) protein coating. Previous work exploring uSMC behavior on PDMS substrates have utilized collagen-I coatings, however, we demonstrated the first exploration of human uSMC response to strain on fibronectin-coated flexible membranes, importantly reflecting the significant increase of fibronectin content found in the myometrial ECM during late-stage pregnancy. Using the model we developed, we conducted proof-of-concept studies to investigate the impact of substrate strain on uSMC cell morphology and gene expression. It was found that PLL and varied ECM protein coatings (collagen I, collagen III, and fibronectin) altered cell nuclei morphology and density on PDMS substrates. Additionally, varied strain rates applied to uSMC substrates significantly impacted uSMC gene expression of IL-6, a cytokine associated with instances of preterm labor. These results suggest that both surface and mechanical properties of in vitro systems impact primary human uSMC phenotype and offer uSMC culture methodologies that can be utilized to further the understanding of cellular pathways involved in the uterus under mechanical load.
Collapse
Affiliation(s)
- Elizabeth E. Marr
- Boston University, Division of Materials Science and Engineering, United States
- Charles Stark Draper Laboratory, Bioengineering Division, United States
| | - Brett C. Isenberg
- Charles Stark Draper Laboratory, Bioengineering Division, United States
| | - Joyce Y. Wong
- Boston University, Division of Materials Science and Engineering, United States
- Boston University, Department of Biomedical Engineering, United States
| |
Collapse
|
21
|
Fernandes AS, de Melo Bisneto AV, Silva LS, Bailão EFLC, Cardoso CG, Carneiro CC, da Costa Santos S, Chen-Chen L. Pedunculagin and tellimagrandin-I stimulate inflammation and angiogenesis and upregulate vascular endothelial growth factor and tumor necrosis factor-alpha in vivo. Microvasc Res 2024; 151:104615. [PMID: 37797833 DOI: 10.1016/j.mvr.2023.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Pedunculagin (PD) and tellimagrandin-I (TL), isolated from Myrciaria cauliflora seeds and Eucaliptus microcorys leaves, respectively, have attracted great attention owing to their relevant biological activities, such as antitumor, antioxidant, and hepatoprotective activities. This study investigated the angiogenic potential of PD and TL using a chick embryo chorioallantoic membrane (CAM) assay. Using the CAM assay, our results showed that both PD and TL promoted a significant increase in the number and caliber of blood vessels, the thickness of the CAM, and the presence of fibroblasts and inflammatory cells. Moreover, an increase of tumor necrosis factor-α and vascular endothelial growth factor was observed in the CAM treated with PD and TL, indicating the induction of angiogenic factors. Thus, the remarkable profile of PD and TL in inducing angiogenesis opens up new perspectives for their potential utilization in different therapeutic approaches involving neovascularization.
Collapse
Affiliation(s)
- Amanda Silva Fernandes
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Abel Vieira de Melo Bisneto
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luana Santos Silva
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Clever Gomes Cardoso
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Cristiene Costa Carneiro
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
22
|
Liu S, Zheng P, Wang CY, Jia BB, Zemke NR, Ren B, Zhuang X. Cell-type-specific 3D-genome organization and transcription regulation in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.570024. [PMID: 38105994 PMCID: PMC10723369 DOI: 10.1101/2023.12.04.570024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
3D organization of the genome plays a critical role in regulating gene expression. However, it remains unclear how chromatin organization differs among different cell types in the brain. Here we used genome-scale DNA and RNA imaging to investigate 3D-genome organization in transcriptionally distinct cell types in the primary motor cortex of the mouse brain. We uncovered a wide spectrum of differences in the nuclear architecture and 3D-genome organization among different cell types, ranging from the physical size of the cell nucleus to the active-inactive chromatin compartmentalization and radial positioning of chromatin loci within the nucleus. These cell-type-dependent variations in nuclear architecture and chromatin organization exhibited strong correlation with both total transcriptional activity of the cell and transcriptional regulation of cell-type-specific marker genes. Moreover, we found that the methylated-DNA-binding protein MeCP2 regulates transcription in a divergent manner, depending on the nuclear radial positions of chromatin loci, through modulating active-inactive chromatin compartmentalization.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Pu Zheng
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Cosmos Yuqi Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Bojing Blair Jia
- Bioinformatics and Systems Biology Graduate Program, Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
23
|
Salafranca J, Ko JK, Mukherjee AK, Fritzsche M, van Grinsven E, Udalova IA. Neutrophil nucleus: shaping the past and the future. J Leukoc Biol 2023; 114:585-594. [PMID: 37480361 PMCID: PMC10673716 DOI: 10.1093/jleuko/qiad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Neutrophils are innate immune cells that are key to protecting the host against infection and maintaining body homeostasis. However, if dysregulated, they can contribute to disease, such as in cancer or chronic autoinflammatory disorders. Recent studies have highlighted the heterogeneity in the neutrophil compartment and identified the presence of immature neutrophils and their precursors in these pathologies. Therefore, understanding neutrophil maturity and the mechanisms through which they contribute to disease is critical. Neutrophils were first characterized morphologically by Ehrlich in 1879 using microscopy, and since then, different technologies have been used to assess neutrophil maturity. The advances in the imaging field, including state-of-the-art microscopy and machine learning algorithms for image analysis, reinforce the use of neutrophil nuclear morphology as a fundamental marker of maturity, applicable for objective classification in clinical diagnostics. New emerging approaches, such as the capture of changes in chromatin topology, will provide mechanistic links between the nuclear shape, chromatin organization, and transcriptional regulation during neutrophil maturation.
Collapse
Affiliation(s)
- Julia Salafranca
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jacky Ka Ko
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ananda K Mukherjee
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Erinke van Grinsven
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
24
|
Kumar HS, Yi Z, Tong S, Annamalai RT. Magnetic nanocomplexes coupled with an external magnetic field modulate macrophage phenotype - a non-invasive strategy for bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.556050. [PMID: 37732259 PMCID: PMC10508738 DOI: 10.1101/2023.09.02.556050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chronic inflammation is a major cause for the pathogenesis of musculoskeletal diseases such as fragility fracture, and nonunion. Studies have shown that modulating the immune phenotype of macrophages from proinflammatory to prohealing mode can heal recalcitrant bone defects. Current therapeutic strategies predominantly apply biochemical cues, which often lack target specificity and controlling their release kinetics in vivo is challenging spatially and temporally. We show a magnetic iron-oxide nanocomplexes (MNC)-based strategy to resolve chronic inflammation in the context of promoting fracture healing. MNC internalized pro-inflammatory macrophages, when coupled with an external magnetic field, exert an intracellular magnetic force on the cytoskeleton, which promotes a prohealing phenotype switch. Mechanistically, the intracellular magnetic force perturbs actin polymerization, thereby significantly reducing nuclear to cytoplasm redistribution of MRTF-A and HDAC3, major drivers of inflammatory and osteogenic gene expressions. This significantly reduces Nos2 gene expression and subsequently downregulates the inflammatory response, as confirmed by quantitative PCR analysis. These findings are a proof of concept to develop MNC-based resolution-centric therapeutic intervention to direct macrophage phenotype and function towards healing and can be translated either to supplement or replace the currently used anti-inflammatory therapies for fracture healing.
Collapse
|
25
|
Chan NR, Hwang B, Waworuntu RL, Tran AJ, Ratner BD, Bryers JD. Novel HALO® image analysis to determine cell phenotype in porous precision-templated scaffolds. J Biomed Mater Res A 2023; 111:1459-1467. [PMID: 37029696 PMCID: PMC10524297 DOI: 10.1002/jbm.a.37547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Image analysis platforms have gained increasing popularity in the last decade for the ability to automate and conduct high-throughput, multiplex, and quantitative analyses of a broad range of pathological tissues. However, imaging tissues with unique morphology or tissues containing implanted biomaterial scaffolds remain a challenge. Using HALO®, an image analysis platform specialized in quantitative tissue analysis, we have developed a novel method to determine multiple cell phenotypes in porous precision-templated scaffolds (PTS). PTS with uniform spherical pores between 30 and 40 μm in diameter have previously exhibited a specific immunomodulation of macrophages toward a pro-healing phenotype and an overall diminished foreign body response (FBR) compared to PTS with larger or smaller pore sizes. However, signaling pathways orchestrating this pro-healing in 40 μm PTS remain unclear. Here, we use HALO® to phenotype PTS resident cells and found a decrease in pro-inflammatory CD86 and an increase in pro-healing CD206 expression in 40 μm PTS compared to 100 μm PTS. To understand the mechanisms that drive these outcomes, we investigated the role of myeloid-differentiation-primary-response gene 88 (MyD88) in regulating the pro-healing phenomenon observed only in 40 μm PTS. When subcutaneously implanted in MyD88KO mice, 40 μm PTS reduced the expression of CD206, and the scaffold resident cells displayed an average larger nuclear size compared to 40 μm PTS implanted in mice expressing MyD88. Overall, this study demonstrates a novel image analysis method for phenotyping cells within PTS and identifies MyD88 as a critical mediator in the pore-size-dependent regenerative healing and host immune response to PTS.
Collapse
Affiliation(s)
- Nathan R. Chan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Billanna Hwang
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | | | - An J. Tran
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | - Buddy D. Ratner
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - James D. Bryers
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Cagle LA, Stacy NI, Harvey JW, de Wit M, Adler L, Walsh M, Bonde R, Stokol T. Cytochemical staining of leukocytes and platelets in the Florida manatee ( Trichechus manatus latirostris): identification of a bilobed monocyte similar to other members of the Paenungulata. Front Vet Sci 2023; 10:1149000. [PMID: 37426076 PMCID: PMC10326046 DOI: 10.3389/fvets.2023.1149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Manatees (Antillean-, Amazonian, and African-) and dugongs belong to the Order Sirenia, and when combined with elephants and rock hyraxes, form the Paenungulata. A bilobed mononuclear cell has previously been identified in elephants and rock hyraxes, but not in manatees and dugongs, with cytochemical staining identifying these cells as bilobed monocytes in elephants. The objective of this study was to characterize leukocytes (white blood cells, WBC) and platelets in blood films of Florida manatees (Trichechus manatus latirostris; n = 8) using one routine hematological (Wright-Giemsa) and eight cytochemical stains: alkaline phosphatase (ALP), α-naphthyl butyrate esterase (ANBE), chloroacetate esterase (CAE), Luna, myeloperoxidase (MPx), periodic acid-Schiff (PAS), Sudan black B (SBB), and toluidine blue (TB). Heterophils and lymphocytes comprised most of the WBC, with low numbers of eosinophils, basophils, and monocytes. Additionally, 1-3% of the WBC were bilobed mononuclear cells. Bilobed mononuclear cell proportions were similar to rock hyraxes, but lower than elephants (approximate range 20-60%). Heterophils and eosinophils were positive for MPx, ALP, SBB, and PAS, with heterophils also being positive for CAE. Most of the lymphocytes were positive for ANBE and they were variably positive for CAE. Monocytes and bilobed mononuclear cells had similar cytochemical staining reactions (variably positive for all stains, except Luna and TB), supporting a monocytic origin, like elephants. Platelets were ANBE- and PAS-positive. Luna stain was useful for identifying eosinophils and TB was uninformative. This study provides new information on the morphological features and cytochemical staining characteristics of WBC and platelets and will aid in obtaining accurate hematological data of Florida manatees.
Collapse
Affiliation(s)
- Laura A. Cagle
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Nicole I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John W. Harvey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Martine de Wit
- Florida Fish and Wildlife Conservation Commission, The Marine Mammal Pathobiology Laboratory, St. Petersburg, FL, United States
| | - Laurie Adler
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Michael Walsh
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Robert Bonde
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| |
Collapse
|
27
|
Schibler AC, Jevtic P, Pegoraro G, Levy DL, Misteli T. Identification of epigenetic modulators as determinants of nuclear size and shape. eLife 2023; 12:e80653. [PMID: 37219077 PMCID: PMC10259489 DOI: 10.7554/elife.80653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
The shape and size of the human cell nucleus is highly variable among cell types and tissues. Changes in nuclear morphology are associated with disease, including cancer, as well as with premature and normal aging. Despite the very fundamental nature of nuclear morphology, the cellular factors that determine nuclear shape and size are not well understood. To identify regulators of nuclear architecture in a systematic and unbiased fashion, we performed a high-throughput imaging-based siRNA screen targeting 867 nuclear proteins including chromatin-associated proteins, epigenetic regulators, and nuclear envelope components. Using multiple morphometric parameters, and eliminating cell cycle effectors, we identified a set of novel determinants of nuclear size and shape. Interestingly, most identified factors altered nuclear morphology without affecting the levels of lamin proteins, which are known prominent regulators of nuclear shape. In contrast, a major group of nuclear shape regulators were modifiers of repressive heterochromatin. Biochemical and molecular analysis uncovered a direct physical interaction of histone H3 with lamin A mediated via combinatorial histone modifications. Furthermore, disease-causing lamin A mutations that result in disruption of nuclear shape inhibited lamin A-histone H3 interactions. Oncogenic histone H3.3 mutants defective for H3K27 methylation resulted in nuclear morphology abnormalities. Altogether, our results represent a systematic exploration of cellular factors involved in determining nuclear morphology and they identify the interaction of lamin A with histone H3 as an important contributor to nuclear morphology in human cells.
Collapse
Affiliation(s)
| | - Predrag Jevtic
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIHBethesdaUnited States
| | - Daniel L Levy
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Tom Misteli
- National Cancer InstituteBethesdaUnited States
| |
Collapse
|
28
|
Dror E, Fagnocchi L, Wegert V, Apostle S, Grimaldi B, Gruber T, Panzeri I, Heyne S, Höffler KD, Kreiner V, Ching R, Tsai-Hsiu Lu T, Semwal A, Johnson B, Senapati P, Lempradl A, Schones D, Imhof A, Shen H, Pospisilik JA. Epigenetic dosage identifies two major and functionally distinct β cell subtypes. Cell Metab 2023; 35:821-836.e7. [PMID: 36948185 PMCID: PMC10160009 DOI: 10.1016/j.cmet.2023.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic β cells based on histone mark heterogeneity (βHI and βLO). βHI cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern. βHI and βLO cells also differ in size, morphology, cytosolic and nuclear ultrastructure, epigenomes, cell surface marker expression, and function, and can be FACS separated into CD24+ and CD24- fractions. Functionally, βHI cells have increased mitochondrial mass, activity, and insulin secretion in vivo and ex vivo. Partial loss of function indicates that H3K27me3 dosage regulates βHI/βLO ratio in vivo, suggesting that control of β cell subtype identity and ratio is at least partially uncoupled. Both subtypes are conserved in humans, with βHI cells enriched in humans with type 2 diabetes. Thus, epigenetic dosage is a novel regulator of cell subtype specification and identifies two functionally distinct β cell subtypes.
Collapse
Affiliation(s)
- Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Vanessa Wegert
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Brooke Grimaldi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tim Gruber
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ilaria Panzeri
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Steffen Heyne
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Kira Daniela Höffler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Victor Kreiner
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Reagan Ching
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tess Tsai-Hsiu Lu
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ayush Semwal
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ben Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Parijat Senapati
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Adelheid Lempradl
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dustin Schones
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Axel Imhof
- Biomedical Center Munich, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
29
|
Armstead BE, Lee CS, Chen Y, Zhao R, Chung CS, Fredericks AM, Monaghan SF, Ayala A. Application of single cell multiomics points to changes in chromatin accessibility near calcitonin receptor like receptor and a possible role for adrenomedullin in the post-shock lung. Front Med (Lausanne) 2023; 10:1003121. [PMID: 37113606 PMCID: PMC10126233 DOI: 10.3389/fmed.2023.1003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a commonly occurring sequelae of traumatic injury resulting from indirect insults like hypovolemic shock and/or extrapulmonary sepsis. The high lethality rate associated with these pathologies outlines the importance of clarifying the "priming" effects seen in the post-shock lung microenvironment, which are understood to bring about a dysregulated or overt immune response when triggered by a secondary systemic infectious/septic challenge culminating in ALI. In this pilot project, we test the hypothesis that application of a single cell multiomics approach can elucidate novel phenotype specific pathways potentially contributing to shock-induced ALI/ARDS. Methods Hypovolemic shock was induced in C57BL/6 (wild-type), PD-1, PD-L1, or VISTA gene deficient male mice, 8-12 weeks old. Wild-type sham surgeries function as negative controls. A total of 24-h post-shock rodents were sacrificed, their lungs harvested and sectioned, with pools prepared from 2 mice per background, and flash frozen on liquid nitrogen. N = 2 biological replicates (representing 4 mice total) were achieved for all treatment groups across genetic backgrounds. Samples were received by the Boas Center for Genomics and Human Genetics, where single cell multiomics libraries were prepared for RNA/ATAC sequencing. The analysis pipeline Cell Ranger ARC was implemented to attain feature linkage assessments across genes of interest. Results Sham (pre-shock) results suggest high chromatin accessibility around calcitonin receptor like receptor (CALCRL) across cellular phenotypes with 17 and 18 feature links, exhibiting positive correlation with gene expression between biological replicates. Similarity between both sample chromatin profiles/linkage arcs is evident. Post-shock wild-type accessibility is starkly reduced across replicates where the number of feature links drops to 1 and 3, again presenting similar replicate profiles. Samples from shocked gene deficient backgrounds displayed high accessibility and similar profiles to the pre-shock lung microenvironment. Conclusion High pre-shock availability of DNA segments and their positive correlation with CALCRL gene expression suggests an apparent regulatory capacity on transcription. Post-shock gene deficient chromatin profiles presented similar results to that of pre-shock wild-type samples, suggesting an influence on CALCRL accessibility. Key changes illustrated in the pre-ALI context of shock may allow for additional resolution of "priming" and "cellular pre-activation/pre-disposition" processes within the lung microenvironment.
Collapse
Affiliation(s)
- Brandon E. Armstead
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
| | - Chung Sunny Lee
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Yaping Chen
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Runping Zhao
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Alger M. Fredericks
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
- The Miriam Hospital, Providence, RI, United States
- The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Sean F. Monaghan
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
- The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Alfred Ayala
- Lifespan-Rhode Island Hospital, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
- The Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
30
|
D'Imprima E, Garcia Montero M, Gawrzak S, Ronchi P, Zagoriy I, Schwab Y, Jechlinger M, Mahamid J. Light and electron microscopy continuum-resolution imaging of 3D cell cultures. Dev Cell 2023; 58:616-632.e6. [PMID: 36990090 PMCID: PMC10114294 DOI: 10.1016/j.devcel.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.
Collapse
Affiliation(s)
- Edoardo D'Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marta Garcia Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sylwia Gawrzak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
31
|
Zou Y, Kamada N, Seong SY, Seo SU. CD115 - monocytic myeloid-derived suppressor cells are precursors of OLFM4 high polymorphonuclear myeloid-derived suppressor cells. Commun Biol 2023; 6:272. [PMID: 36922564 PMCID: PMC10017706 DOI: 10.1038/s42003-023-04650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) consist of monocytic (M-) MDSCs and polymorphonuclear (PMN-) MDSCs that contribute to an immunosuppressive environment in tumor-bearing hosts. However, research on the phenotypic and functional heterogeneity of MDSCs in tumor-bearing hosts and across different disease stage is limited. Here we subdivide M-MDSCs based on CD115 expression and report that CD115- M-MDSCs are functionally distinct from CD115+ M-MDSCs. CD115- M-MDSCs increased in bone marrow and blood as tumors progressed. Transcriptome analysis revealed that CD115- M-MDSCs expressed higher levels of neutrophil-related genes. Moreover, isolated CD115- M-MDSCs had higher potential to be differentiated into PMN-MDSCs compared with CD115+ M-MDSCs. Of note, CD115- M-MDSCs were able to differentiate into both olfactomedin 4 (OLFM4)hi and OLFM4lo PMN-MDSCs, whereas CD115+ M-MDSCs differentiated into a smaller proportion of OLFM4lo PMN-MDSCs. In vivo, M-MDSC to PMN-MDSC differentiation occurred most frequently in bone marrow while M-MDSCs preferentially differentiated into tumor-associated macrophages in the tumor mass. Our study reveals the presence of previously unrecognized subtypes of CD115- M-MDSCs in tumor-bearing hosts and demonstrates their cellular plasticity during tumorigenesis.
Collapse
Affiliation(s)
- Yunyun Zou
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea.
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Tuning between Nuclear Organization and Functionality in Health and Disease. Cells 2023; 12:cells12050706. [PMID: 36899842 PMCID: PMC10000962 DOI: 10.3390/cells12050706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The organization of eukaryotic genome in the nucleus, a double-membraned organelle separated from the cytoplasm, is highly complex and dynamic. The functional architecture of the nucleus is confined by the layers of internal and cytoplasmic elements, including chromatin organization, nuclear envelope associated proteome and transport, nuclear-cytoskeletal contacts, and the mechano-regulatory signaling cascades. The size and morphology of the nucleus could impose a significant impact on nuclear mechanics, chromatin organization, gene expression, cell functionality and disease development. The maintenance of nuclear organization during genetic or physical perturbation is crucial for the viability and lifespan of the cell. Abnormal nuclear envelope morphologies, such as invagination and blebbing, have functional implications in several human disorders, including cancer, accelerated aging, thyroid disorders, and different types of neuro-muscular diseases. Despite the evident interplay between nuclear structure and nuclear function, our knowledge about the underlying molecular mechanisms for regulation of nuclear morphology and cell functionality during health and illness is rather poor. This review highlights the essential nuclear, cellular, and extracellular components that govern the organization of nuclei and functional consequences associated with nuclear morphometric aberrations. Finally, we discuss the recent developments with diagnostic and therapeutic implications targeting nuclear morphology in health and disease.
Collapse
|
33
|
Das S, Ramanan N. Region-specific heterogeneity in neuronal nuclear morphology in young, aged and in Alzheimer's disease mouse brains. Front Cell Dev Biol 2023; 11:1032504. [PMID: 36819109 PMCID: PMC9929567 DOI: 10.3389/fcell.2023.1032504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Neurons in the mammalian brain exhibit enormous structural and functional diversity across different brain regions. Compared to our understanding of the morphological diversity of neurons, very little is known about the heterogeneity of neuronal nuclear morphology and how nuclear size changes in aging and diseased brains. Here, we report that the neuronal cell nucleus displays differences in area, perimeter, and circularity across different anatomical regions in the mouse brain. The pyramidal neurons of the hippocampal CA3 region exhibited the largest area whereas the striatal neuronal nuclei were the smallest. These nuclear size parameters also exhibited dichotomous changes with age across brain regions-while the neocortical and striatal neurons showed a decrease in nuclear area and perimeter, the CA3 neurons showed an increase with age. The nucleus of parvalbumin- and calbindin-positive interneurons had comparable morphological features but exhibited differences between brain regions. In the context of activity-dependent transcription in response to a novel environment, there was a decrease in nuclear size and circularity in c-Fos expressing neurons in the somatosensory cortex and hippocampal CA1 and CA3. In an APP/PS1 mutant mouse model of Alzheimer's disease (AD), the neuronal nuclear morphology varies with plaque size and with increasing distance from the plaque. The neuronal nuclear morphology in the immediate vicinity of the plaque was independent of the plaque size and the morphology tends to change away from the plaque. These changes in the neuronal nuclear size and shape at different ages and in AD may be attributed to changes in transcriptional activity. This study provides a detailed report on the differences that exist between neurons in nuclear morphology and can serve as a basis for future studies.
Collapse
|
34
|
P-glycoprotein, FK-binding Protein-12, and the Intracellular Tacrolimus Concentration in T-lymphocytes and Monocytes of Kidney Transplant Recipients. Transplantation 2023; 107:382-391. [PMID: 36070572 DOI: 10.1097/tp.0000000000004287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND . Transplant recipients may develop rejection despite having adequate tacrolimus whole blood predose concentrations (C 0 ). The intra-immune cellular concentration is potentially a better target than C 0 . However, little is known regarding intracellular tacrolimus concentration in T-lymphocytes and monocytes. We investigated the tacrolimus concentrations in both cell types and their relation with the expression and activity of FK-binding protein (FKBP)-12 and P-glycoprotein (P-gp). METHODS . T-lymphocytes and monocytes were isolated from kidney transplant recipients followed by intracellular tacrolimus concentration measurement. FKBP-12 and P-gp were quantified with Western blot, flow cytometry, and the Rhodamine-123 assay. Interleukin-2 and interferon-γ in T-lymphocytes were measured to quantify the effect of tacrolimus. RESULTS . Tacrolimus concentration in T-lymphocytes was lower than in monocytes (15.3 [8.5-33.4] versus 131.0 [73.5-225.1] pg/million cells; P < 0.001). The activity of P-gp (measured by Rhodamine-123 assay) was higher in T-lymphocytes than in monocytes. Flow cytometry demonstrated a higher expression of P-gp (normalized mean fluorescence intensity 1.5 [1.2-1.7] versus 1.2 [1.1-1.4]; P = 0.012) and a lower expression of FKBP-12 (normalized mean fluorescence intensity 1.3 [1.2-1.7] versus 1.5 [1.4-2.0]; P = 0.011) in T-lymphocytes than monocytes. Western blot confirmed these observations. The addition of verapamil, a P-gp inhibitor, resulted in a 2-fold higher intra-T-cell tacrolimus concentration. This was accompanied by a significantly fewer cytokine-producing cells. CONCLUSIONS . T-lymphocytes have a higher activity of P-gp and lower concentration of the FKBP-12 compared with monocytes. This explains the relatively lower tacrolimus concentration in T-lymphocytes. The addition of verapamil prevents loss of intracellular tacrolimus during the cell isolation process and is required to ensure adequate intracellular concentration measurement.
Collapse
|
35
|
Temporal Analysis Reveals the Transient Differential Expression of Transcription Factors That Underlie the Trans-Differentiation of Human Monocytes to Macrophages. Int J Mol Sci 2022; 23:ijms232415830. [PMID: 36555471 PMCID: PMC9781183 DOI: 10.3390/ijms232415830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
The activation of monocytes and their trans-differentiation into macrophages are critical processes of the immune response. Prior work has characterized the differences in the expression between monocytes and macrophages, but the transitional process between these cells is poorly detailed. Here, we analyzed the temporal changes of the transcriptome during trans-differentiation of primary human monocytes into M0 macrophages. We find changes with many transcription factors throughout the process, the vast majority of which exhibit a maximally different expression at the intermediate stages. A few factors, including AP-1, were previously known to play a role in immunological transitions, but most were not. Thus, these findings indicate that this trans-differentiation requires the dynamic expression of many transcription factors not previously discussed in immunology, and provide a foundation for the delineation of the molecular mechanisms associated with healthy or pathological responses that involve this transition.
Collapse
|
36
|
Molenberghs F, Verschuuren M, Barbier M, Bogers JJ, Cools N, Delputte P, Schelhaas M, De Vos WH. Cells infected with human papilloma pseudovirus display nuclear reorganization and heterogenous infection kinetics. Cytometry A 2022; 101:1035-1048. [PMID: 35668549 DOI: 10.1002/cyto.a.24663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Human papillomaviruses (HPV) are small, non-enveloped DNA viruses, which upon chronic infection can provoke cervical and head-and-neck cancers. Although the infectious life cycle of HPV has been studied and a vaccine is available for the most prevalent cancer-causing HPV types, there are no antiviral agents to treat infected patients. Hence, there is a need for novel therapeutic entry points and a means to identify them. In this work, we have used high-content microscopy to quantitatively investigate the early phase of HPV infection. Human cervical cancer cells and immortalized keratinocytes were exposed to pseudoviruses (PsV) of the widespread HPV type 16, in which the viral genome was replaced by a pseudogenome encoding a fluorescent reporter protein. Using the fluorescent signal as readout, we measured differences in infection between cell lines, which directly correlated with host cell proliferation rate. Parallel multiparametric analysis of nuclear organization revealed that HPV PsV infection alters nuclear organization and inflates promyelocytic leukemia protein body content, positioning these events at the early stage of HPV infection, upstream of viral replication. Time-resolved analysis revealed a marked heterogeneity in infection kinetics even between two daughter cells, which we attribute to differences in viral load. Consistent with the requirement for mitotic nuclear envelope breakdown, pharmacological inhibition of the cell cycle dramatically blunted infection efficiency. Thus, by systematic image-based single cell analysis, we revealed phenotypic alterations that accompany HPV PsV infection in individual cells, and which may be relevant for therapeutic drug screens.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Michaël Barbier
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Simply Complex Lab, UNAM, Bilkent University, Ankara, Turkey
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium.,μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
37
|
Bueno C, Blanquer M, García-Bernal D, Martínez S, Moraleda JM. Binucleated human bone marrow-derived mesenchymal cells can be formed during neural-like differentiation with independence of any cell fusion events. Sci Rep 2022; 12:20615. [PMID: 36450873 PMCID: PMC9712539 DOI: 10.1038/s41598-022-24996-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
Although it has been reported that bone marrow-derived cells (BMDCs) can transdifferentiate into neural cells, the findings are considered unlikely. It has been argued that the rapid neural transdifferentiation of BMDCs reported in culture studies is actually due to cytotoxic changes induced by the media. While transplantation studies indicated that BMDCs can form new neurons, it remains unclear whether the underlying mechanism is transdifferentiation or BMDCs-derived cell fusion with the existing neuronal cells. Cell fusion has been put forward to explain the presence of gene-marked binucleated neurons after gene-marked BMDCs transplantation. In the present study, we demostrated that human BMDCs can rapidly adopt a neural-like morphology through active neurite extension and binucleated human BMDCs can form with independence of any cell fusion events. We also showed that BMDCs neural-like differentiation involves the formation of intermediate cells which can then redifferentiate into neural-like cells, redifferentiate back to the mesenchymal fate or even repeatedly switch lineages without cell division. Furthermore, we have discovered that nuclei from intermediate cells rapidly move within the cell, adopting different morphologies and even forming binucleated cells. Therefore, our results provide a stronger basis for rejecting the idea that BMDCs neural transdifferentiation is merely an artefact.
Collapse
Affiliation(s)
- Carlos Bueno
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Miguel Blanquer
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain ,grid.10586.3a0000 0001 2287 8496Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Salvador Martínez
- grid.26811.3c0000 0001 0586 4893Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550 San Juan, Alicante, Spain
| | - José M. Moraleda
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
38
|
Yapp C, Novikov E, Jang WD, Vallius T, Chen YA, Cicconet M, Maliga Z, Jacobson CA, Wei D, Santagata S, Pfister H, Sorger PK. UnMICST: Deep learning with real augmentation for robust segmentation of highly multiplexed images of human tissues. Commun Biol 2022; 5:1263. [PMID: 36400937 PMCID: PMC9674686 DOI: 10.1038/s42003-022-04076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Upcoming technologies enable routine collection of highly multiplexed (20-60 channel), subcellular resolution images of mammalian tissues for research and diagnosis. Extracting single cell data from such images requires accurate image segmentation, a challenging problem commonly tackled with deep learning. In this paper, we report two findings that substantially improve image segmentation of tissues using a range of machine learning architectures. First, we unexpectedly find that the inclusion of intentionally defocused and saturated images in training data substantially improves subsequent image segmentation. Such real augmentation outperforms computational augmentation (Gaussian blurring). In addition, we find that it is practical to image the nuclear envelope in multiple tissues using an antibody cocktail thereby better identifying nuclear outlines and improving segmentation. The two approaches cumulatively and substantially improve segmentation on a wide range of tissue types. We speculate that the use of real augmentations will have applications in image processing outside of microscopy.
Collapse
Affiliation(s)
- Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, 02115, USA
| | - Edward Novikov
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Won-Dong Jang
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marcelo Cicconet
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, 02115, USA
| | - Zoltan Maliga
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Connor A Jacobson
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Donglai Wei
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Mahbod A, Schaefer G, Dorffner G, Hatamikia S, Ecker R, Ellinger I. A dual decoder U-Net-based model for nuclei instance segmentation in hematoxylin and eosin-stained histological images. Front Med (Lausanne) 2022; 9:978146. [PMID: 36438040 PMCID: PMC9691672 DOI: 10.3389/fmed.2022.978146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2023] Open
Abstract
Even in the era of precision medicine, with various molecular tests based on omics technologies available to improve the diagnosis process, microscopic analysis of images derived from stained tissue sections remains crucial for diagnostic and treatment decisions. Among other cellular features, both nuclei number and shape provide essential diagnostic information. With the advent of digital pathology and emerging computerized methods to analyze the digitized images, nuclei detection, their instance segmentation and classification can be performed automatically. These computerized methods support human experts and allow for faster and more objective image analysis. While methods ranging from conventional image processing techniques to machine learning-based algorithms have been proposed, supervised convolutional neural network (CNN)-based techniques have delivered the best results. In this paper, we propose a CNN-based dual decoder U-Net-based model to perform nuclei instance segmentation in hematoxylin and eosin (H&E)-stained histological images. While the encoder path of the model is developed to perform standard feature extraction, the two decoder heads are designed to predict the foreground and distance maps of all nuclei. The outputs of the two decoder branches are then merged through a watershed algorithm, followed by post-processing refinements to generate the final instance segmentation results. Moreover, to additionally perform nuclei classification, we develop an independent U-Net-based model to classify the nuclei predicted by the dual decoder model. When applied to three publicly available datasets, our method achieves excellent segmentation performance, leading to average panoptic quality values of 50.8%, 51.3%, and 62.1% for the CryoNuSeg, NuInsSeg, and MoNuSAC datasets, respectively. Moreover, our model is the top-ranked method in the MoNuSAC post-challenge leaderboard.
Collapse
Affiliation(s)
- Amirreza Mahbod
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, Austria
| | - Gerald Schaefer
- Department of Computer Science, Loughborough University, Loughborough, United Kingdom
| | - Georg Dorffner
- Institute of Artificial Intelligence, Medical University of Vienna, Vienna, Austria
| | - Sepideh Hatamikia
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, Austria
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Rupert Ecker
- Department of Research and Development, TissueGnostics GmbH, Vienna, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Lin D, Xu W, Hong P, Wu C, Zhang Z, Zhang S, Xing L, Yang B, Zhou W, Xiao Q, Wang J, Wang C, He Y, Chen X, Cao X, Man J, Reheman A, Wu X, Hao X, Hu Z, Chen C, Cao Z, Yin R, Fu ZF, Zhou R, Teng Z, Li G, Cao G. Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation. Nat Commun 2022; 13:5857. [PMID: 36195603 PMCID: PMC9532393 DOI: 10.1038/s41467-022-33558-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Immunocytes dynamically reprogram their gene expression profiles during differentiation and immunoresponse. However, the underlying mechanism remains elusive. Here, we develop a single-cell Hi-C method and systematically delineate the 3D genome and dynamic epigenetic atlas of macrophages during these processes. We propose "degree of disorder" to measure genome organizational patterns inside topologically-associated domains, which is correlated with the chromatin epigenetic states, gene expression, and chromatin structure variability in individual cells. Furthermore, we identify that NF-κB initiates systematic chromatin conformation reorganization upon Mycobacterium tuberculosis infection. The integrated Hi-C, eQTL, and GWAS analysis depicts the atlas of the long-range target genes of mycobacterial disease susceptible loci. Among these, the SNP rs1873613 is located in the anchor of a dynamic chromatin loop with LRRK2, whose inhibitor AdoCbl could be an anti-tuberculosis drug candidate. Our study provides comprehensive resources for the 3D genome structure of immunocytes and sheds insights into the order of genome organization and the coordinated gene transcription during immunoresponse.
Collapse
Affiliation(s)
- Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Chengchao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siheng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingyu Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qin Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jinyue Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Cong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yu He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiangwei Man
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Aikebaier Reheman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Xiaofeng Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xingjie Hao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Zimeng Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
- College of Animal Sciences, Yangtze River University, Jingzhou, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Rong Zhou
- Dapartment of Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Teng
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China.
- College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
41
|
Sulaiman R, De P, Aske JC, Lin X, Dale A, Vaselaar E, Ageton C, Gaster K, Espaillat LR, Starks D, Dey N. Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers. Cancers (Basel) 2022; 14:cancers14194577. [PMID: 36230499 PMCID: PMC9558552 DOI: 10.3390/cancers14194577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
The blood of patients with solid tumors contains circulating tumor-associated cells, including epithelial cells originating from the tumor mass, such as circulating tumor cells (CTCs), or phagocytic myeloid cells (differentiated monocytes), such as circulating cancer-associated macrophage-like cells (CAMLs). We report for the first time the identification and in-depth morphologic characterization of CAMLs in patients with endometrial cancers. We isolated CAMLs by size-based filtration on lithographically fabricated membranes followed by immunofluorescence, using a CD45+/CK 8,18,19+/EpCAM+/CD31+/macrophage-like nuclear morphology, from > 70 patients. Irrespective of the histological and pathological parameters, 98% of patients were positive for CAMLs. Two size-based subtypes of CAMLs, <20 µm (tiny) and >20 µm (giant) CAMLs, of distinctive polymorphic morphologies with mononuclear or fused polynuclear structures in several morphological states were observed, including apoptotic CAMLs, CAML−WBC doublets, conjoined CAMLs, CAML−WBC clusters, and CTC−CAML−WBC clusters. In contrast, CAMLs were absent in patients with non-neoplastic/benign tumors, healthy donors, and leucopaks. Enumerating CTCs simultaneously from the same patient, we observed that CTC-positive patients are positive for CAMLs, while 55% out of all CAML-positive patients were found positive for CTCs. Our study demonstrated for the first time the distinctive morphological characteristics of endometrial CAMLs in the context of the presence of CTCs in patients.
Collapse
Affiliation(s)
- Raed Sulaiman
- Department of Pathology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Pradip De
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, Sioux Falls, SD 57069, USA
| | - Jennifer C. Aske
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Adam Dale
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Ethan Vaselaar
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Cheryl Ageton
- Department of Research Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Kris Gaster
- Outpatient Cancer Clinics, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - David Starks
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, Sioux Falls, SD 57069, USA
- Correspondence:
| |
Collapse
|
42
|
Jana A, Tran A, Gill A, Kiepas A, Kapania RK, Konstantopoulos K, Nain AS. Sculpting Rupture-Free Nuclear Shapes in Fibrous Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203011. [PMID: 35863910 PMCID: PMC9443471 DOI: 10.1002/advs.202203011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 05/07/2023]
Abstract
Cytoskeleton-mediated force transmission regulates nucleus morphology. How nuclei shaping occurs in fibrous in vivo environments remains poorly understood. Here suspended nanofiber networks of precisely tunable (nm-µm) diameters are used to quantify nucleus plasticity in fibrous environments mimicking the natural extracellular matrix. Contrary to the apical cap over the nucleus in cells on 2-dimensional surfaces, the cytoskeleton of cells on fibers displays a uniform actin network caging the nucleus. The role of contractility-driven caging in sculpting nuclear shapes is investigated as cells spread on aligned single fibers, doublets, and multiple fibers of varying diameters. Cell contractility increases with fiber diameter due to increased focal adhesion clustering and density of actin stress fibers, which correlates with increased mechanosensitive transcription factor Yes-associated protein (YAP) translocation to the nucleus. Unexpectedly, large- and small-diameter fiber combinations lead to teardrop-shaped nuclei due to stress fiber anisotropy across the cell. As cells spread on fibers, diameter-dependent nuclear envelope invaginations that run the nucleus's length are formed at fiber contact sites. The sharpest invaginations enriched with heterochromatin clustering and sites of DNA repair are insufficient to trigger nucleus rupture. Overall, the authors quantitate the previously unknown sculpting and adaptability of nuclei to fibrous environments with pathophysiological implications.
Collapse
Affiliation(s)
- Aniket Jana
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Avery Tran
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Amritpal Gill
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Rakesh K. Kapania
- Kevin T. Crofton Department of Aerospace EngineeringVirginia TechBlacksburgVA24061USA
| | | | - Amrinder S. Nain
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| |
Collapse
|
43
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
44
|
Li Y, Chen M, Chang W. Roles of the nucleus in leukocyte migration. J Leukoc Biol 2022; 112:771-783. [PMID: 35916042 DOI: 10.1002/jlb.1mr0622-473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocytes patrol our bodies in search of pathogens and migrate to sites of injury in response to various stimuli. Rapid and directed leukocyte motility is therefore crucial to our immunity. The nucleus is the largest and stiffest cellular organelle and a mechanical obstacle for migration through constrictions. However, the nucleus is also essential for 3D cell migration. Here, we review the roles of the nucleus in leukocyte migration, focusing on how cells deform their nuclei to aid cell motility and the contributions of the nucleus to cell migration. We discuss the regulation of the nuclear biomechanics by the nuclear lamina and how it, together with the cytoskeleton, modulates the shapes of leukocyte nuclei. We then summarize the functions of nesprins and SUN proteins in leukocytes and discuss how forces are exerted on the nucleus. Finally, we examine the mechanical roles of the nucleus in cell migration, including its roles in regulating the direction of migration and path selection.
Collapse
Affiliation(s)
- Yutao Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
45
|
Hsu CC, Serio A, Gopal S, Gelmi A, Chiappini C, Desai RA, Stevens MM. Biophysical Regulations of Epigenetic State and Notch Signaling in Neural Development Using Microgroove Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32773-32787. [PMID: 35830496 PMCID: PMC9335410 DOI: 10.1021/acsami.2c01996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A number of studies have recently shown how surface topography can alter the behavior and differentiation patterns of different types of stem cells. Although the exact mechanisms and molecular pathways involved remain unclear, a consistent portion of the literature points to epigenetic changes induced by nuclear remodeling. In this study, we investigate the behavior of clinically relevant neural populations derived from human pluripotent stem cells when cultured on polydimethylsiloxane microgrooves (3 and 10 μm depth grooves) to investigate what mechanisms are responsible for their differentiation capacity and functional behavior. Our results show that microgrooves enhance cell alignment, modify nuclear geometry, and significantly increase cellular stiffness, which we were able to measure at high resolution with a combination of light and electron microscopy, scanning ion conductance microscopy (SICM), and atomic force microscopy (AFM) coupled with quantitative image analysis. The microgrooves promoted significant changes in the epigenetic landscape, as revealed by the expression of key histone modification markers. The main behavioral change of neural stem cells on microgrooves was an increase of neuronal differentiation under basal conditions on the microgrooves. Through measurements of cleaved Notch1 levels, we found that microgrooves downregulate Notch signaling. We in fact propose that microgroove topography affects the differentiation potential of neural stem cells by indirectly altering Notch signaling through geometric segregation and that this mechanism in parallel with topography-dependent epigenetic modulations acts in concert to enhance stem cell neuronal differentiation.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Andrea Serio
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Sahana Gopal
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Amy Gelmi
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Ciro Chiappini
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Ravi A. Desai
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| |
Collapse
|
46
|
Paron F, Barattucci S, Cappelli S, Romano M, Berlingieri C, Stuani C, Laurents D, Mompeán M, Buratti E. Unravelling the toxic effects mediated by the neurodegenerative disease-associated S375G mutation of TDP-43 and its S375E phosphomimetic variant. J Biol Chem 2022; 298:102252. [PMID: 35835219 PMCID: PMC9364110 DOI: 10.1016/j.jbc.2022.102252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/05/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a nucleic acid–binding protein found in the nucleus that accumulates in the cytoplasm under pathological conditions, leading to proteinopathies, such as frontotemporal dementia and ALS. An emerging area of TDP-43 research is represented by the study of its post-translational modifications, the way they are connected to disease-associated mutations, and what this means for pathological processes. Recently, we described a novel mutation in TDP-43 in an early onset ALS case that was affecting a potential phosphorylation site in position 375 (S375G). A preliminary characterization showed that both the S375G mutation and its phosphomimetic variant, S375E, displayed altered nuclear–cytoplasmic distribution and cellular toxicity. To better investigate these effects, here we established cell lines expressing inducible WT, S375G, and S375E TDP-43 variants. Interestingly, we found that these mutants do not seem to affect well-studied aspects of TDP-43, such as RNA splicing or autoregulation, or protein conformation, dynamics, or aggregation, although they do display dysmorphic nuclear shape and cell cycle alterations. In addition, RNA-Seq analysis of these cell lines showed that although the disease-associated S375G mutation and its phosphomimetic S375E variant regulate distinct sets of genes, they have a common target in mitochondrial apoptotic genes. Taken together, our data strongly support the growing evidence that alterations in TDP-43 post-translational modifications can play a potentially important role in disease pathogenesis and provide a further link between TDP-43 pathology and mitochondrial health.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Simone Barattucci
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Sara Cappelli
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Christian Berlingieri
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Cristiana Stuani
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Douglas Laurents
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Miguel Mompeán
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
47
|
Mishra S, Levy DL. Nuclear F-actin and Lamin A antagonistically modulate nuclear shape. J Cell Sci 2022; 135:275607. [PMID: 35665815 PMCID: PMC9377710 DOI: 10.1242/jcs.259692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nuclear shape influences cell migration, gene expression and cell cycle progression, and is altered in disease states like laminopathies and cancer. What factors and forces determine nuclear shape? We find that nuclei assembled in Xenopus egg extracts in the presence of dynamic F-actin exhibit a striking bilobed nuclear morphology with distinct membrane compositions in the two lobes and accumulation of F-actin at the inner nuclear envelope. The addition of Lamin A (encoded by lmna), which is absent from Xenopus eggs, results in rounder nuclei, suggesting that opposing nuclear F-actin and Lamin A forces contribute to the regulation of nuclear shape. Nuclear F-actin also promotes altered nuclear shape in Lamin A-knockdown HeLa cells and, in both systems, abnormal nuclear shape is driven by formins and not Arp2/3 or myosin. Although the underlying mechanisms might differ in Xenopus and HeLa cells, we propose that nuclear F-actin filaments nucleated by formins impart outward forces that lead to altered nuclear morphology unless Lamin A is present. Targeting nuclear actin dynamics might represent a novel approach to rescuing disease-associated defects in nuclear shape.
Collapse
Affiliation(s)
- Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA,Author for correspondence ()
| |
Collapse
|
48
|
Allais A, FitzHarris G. Absence of a robust mitotic timer mechanism in early preimplantation mouse embryos leads to chromosome instability. Development 2022; 149:275859. [DOI: 10.1242/dev.200391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/12/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT
Preimplantation embryos often consist of a combination of euploid and aneuploid cells, suggesting that safeguards preventing the generation and propagation of aneuploid cells in somatic cells might be deficient in embryos. In somatic cells, a mitotic timer mechanism has been described, in which even a small increase in the duration of M phase can cause a cell cycle arrest in the subsequent interphase, preventing further propagation of cells that have undergone a potentially hazardously long M phase. Here, we report that cell divisions in the mouse embryo and embryonic development continue even after a mitotic prolongation of several hours. However, similar M-phase extensions caused cohesion fatigue, resulting in prematurely separated sister chromatids and the production of micronuclei. Only extreme prolongation of M phase caused a subsequent interphase arrest, through a mechanism involving DNA damage. Our data suggest that the simultaneous absence of a robust mitotic timer and susceptibility of the embryo to cohesion fatigue could contribute to chromosome instability in mammalian embryos.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Adélaïde Allais
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) 1 , H2X 0A9 Montréal, Québec , Canada
| | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) 1 , H2X 0A9 Montréal, Québec , Canada
- Université de Montréal 2 Department of OBGYN, and Department of Pathology and Cell Biology , , H3T 1C5 Montréal, Québec , Canada
| |
Collapse
|
49
|
Ilyas T, Mannan ZI, Khan A, Azam S, Kim H, De Boer F. TSFD-Net: Tissue specific feature distillation network for nuclei segmentation and classification. Neural Netw 2022; 151:1-15. [DOI: 10.1016/j.neunet.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/26/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
|
50
|
Peng M, Rayana NP, Dai J, Sugali CK, Baidouri H, Suresh A, Raghunathan VK, Mao W. Cross-linked actin networks (CLANs) affect stiffness and/or actin dynamics in transgenic transformed and primary human trabecular meshwork cells. Exp Eye Res 2022; 220:109097. [PMID: 35569518 PMCID: PMC11029344 DOI: 10.1016/j.exer.2022.109097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
Cross-linked actin networks (CLANs) in trabecular meshwork (TM) cells may contribute to increased IOP by altering TM cell function and stiffness. However, there is a lack of direct evidence. Here, we developed transformed TM cells that form spontaneous fluorescently labelled CLANs. The stable cells were constructed by transducing transformed glaucomatous TM (GTM3) cells with the pLenti-LifeAct-EGFP-BlastR lentiviral vector and selection with blasticidin. The stiffness of the GTM3-LifeAct-GFP cells were studied using atomic force microscopy. Elastic moduli of CLANs in primary human TM cells treated with/without dexamethasone/TGFβ2 were also measured to validate findings in GTM3-LifeAct-GFP cells. Live-cell imaging was performed on GTM3-LifeAct-GFP cells treated with 1 μM latrunculin B or pHrodo bioparticles to determine actin stability and phagocytosis, respectively. The GTM3-LifeAct-GFP cells formed spontaneous CLANs without the induction of TGFβ2 or dexamethasone. The CLAN containing cells showed elevated cell stiffness, resistance to latrunculin B-induced actin depolymerization, as well as compromised phagocytosis, compared to the cells without CLANs. Primary human TM cells with dexamethasone or TGFβ2-induced CLANs were also stiffer and less phagocytic. The GTM3-LifeAct-GFP cells are a novel tool for studying the mechanobiology and pathology of CLANs in the TM. Initial characterization of these cells showed that CLANs contribute to at least some glaucomatous phenotypes of TM cells.
Collapse
Affiliation(s)
- Michael Peng
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naga Pradeep Rayana
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiannong Dai
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Ayush Suresh
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA; St. John's School, Houston, TX, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Weiming Mao
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|