1
|
Zhang J, Qi Y, Hua X, Wang Y, Wang B, Qi Y, Huang Y, Yu Z, Gao R, Zhang Y, Wang T, Wang Y, Mei J, Zhang Q, Wang G, Pan H, Li Z, Li S, Liu J, Qi N, Feng X, Wu M, Chen S, Du C, Li Y, Xu Y, Fang Y, Ma P, Li Q, Sun Y, Feng X, Yao W, Zhang M, Chen B, Liu X, Ming R, Wang J, Deng Z, Tang H. The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum. Nat Genet 2025; 57:242-253. [PMID: 39753769 DOI: 10.1038/s41588-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Modern sugarcane, a highly allo-autopolyploid organism, has a very complex genome. In the present study, the karyotype and genome architecture of modern sugarcane were investigated, resulting in a genome assembly of 97 chromosomes (8.84 Gb). The allopolyploid genome was divided into subgenomes from Saccharum officinarum (Soh) and S. spontaneum (Ssh), with Soh dominance in the Saccharum hybrid (S. hybrid). Genome shock affected transcriptome dynamics during allopolyploidization. Analysis of an inbreeding population with 192 individuals revealed the underlying genetic basis of transgressive segregation. Population genomics of 310 Saccharum accessions clarified the breeding history of modern sugarcane. Using the haplotype-resolved S. hybrid genome as a reference, genome-wide association studies identified a potential candidate gene for sugar content from S. spontaneum. These findings illuminate the complex genome evolution of allopolyploids, offering opportunities for genomic enhancements and innovative breeding strategies for sugarcane.
Collapse
Affiliation(s)
- Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China.
| | - Yiying Qi
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuting Hua
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yongjun Wang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yumin Huang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zehuai Yu
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ruiting Gao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yixing Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyou Wang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yuhao Wang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Mei
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China
| | - Haoran Pan
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Shuangyu Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia Liu
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nameng Qi
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxi Feng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingxing Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Chen
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuicui Du
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihan Li
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yi Xu
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yaxue Fang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Panpan Ma
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingyun Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yuanchang Sun
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Xinlong Liu
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianping Wang
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Zuhu Deng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibao Tang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Harun A, Song S, You X, Liu H, Wen X, Fang Z, Cheng Z, Chen C. Comprehensive mapping of molecular cytogenetic markers in pitaya ( Hylocereus undatus) and related species. FRONTIERS IN PLANT SCIENCE 2024; 15:1493776. [PMID: 39711595 PMCID: PMC11662977 DOI: 10.3389/fpls.2024.1493776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
Pitaya (Hylocereus undatus; 2n=22) is an important fruit crop from the Cactaceae family, originally domesticated in Mexico and the USA, and is now widely cultivated for its nutritional benefits. It is characterized by its distinctive triangular-shaped stems and large, showy flowers, thriving in arid and semi-arid environments, particularly in hot, dry climates. However, systematic chromosomal studies, including chromosomal mapping of cytogenetic markers in pitaya, are limited, presenting challenges for its cytogenetic improvement. To address this issue, we designed oligo-barcodes specific to thirty-three chromosome regions based on the pitaya reference genome and applied them to both pitaya and cactus (Selenicerus grandifloras; 2n=22) for oligo-barcodes mapping, karyotyping, and chromosome identification. We utilized FISH technology, employing oligo, rDNA, and tandem repeat probes for chromosomal mapping, identification, and karyotyping of pitaya and related species. We successfully localized oligo-barcodes on eleven pairs of chromosomes in both pitaya and cactus, demonstrating the effectiveness of the synthesized oligo-barcodes. We used two ribosomal DNA (rDNA) probes (45S and 5S) and two tandem repeat probes (GTR11 and STR3) in pitaya (both diploid and tetraploid) and two other Cactaceae species (S. grandifloras and Opuntia humifusa; 2n=40) for chromosomal mapping. The analysis of rDNA distribution and CMA (Chromomycin A3) banding across different chromosomes in pitaya and cacti highlights the concept of conserved rDNA. This study provides fundamental insights into cytogenetic markers and their localization across different chromosomes in pitaya and other Cactaceae species.
Collapse
Affiliation(s)
- Arrashid Harun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xixi You
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Zhihao Cheng
- Sanya Research Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Chunli Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Zhang J, Chen Q, Yang F, Wang Y, Xiao J, Ding H, Ma Q, Deng Q, Jiang Y. Utilization of the Dasypyrum genus for genetic improvement of wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:82. [PMID: 39687346 PMCID: PMC11646256 DOI: 10.1007/s11032-024-01512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 12/18/2024]
Abstract
The Dasypyrum genus species are found predominantly in the Mediterranean region. They possess an array of agronomically essential traits, such as resistance to biotic and abiotic stresses, high protein content, and better grain quality, and are thus a valuable genetic resources for wheat improvement. In recent decades, there has been significant progress in the development of wheat-Dasypyrum genetic stocks, leading to the successful transfer of beneficial genes from Dasypyrum into cultivated wheat. Notably, the chromosome-scale genome assembly of Dasypyrum villosum was preliminarily completed in 2023, laying the groundwork for functional genomics research and wheat-Dasypyrum introgression breeding. This article aims to provide a concise overview of the relationships between different species belonging to the Dasypyrum genus, the development of wheat-Dasypyrum genetic stocks, the desirable genes derived from Dasypyrum, and the molecular and cytogenetic markers that could be used to identify Dasypyrum chromatins. These insights can assist wheat breeders in utilizing the Dasypyrum genus in future wheat breeding endeavors.
Collapse
Affiliation(s)
- Jie Zhang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Qian Chen
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Fan Yang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Ying Wang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Jun Xiao
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Hongxia Ding
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Qiang Ma
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Qian Deng
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Yun Jiang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China
| |
Collapse
|
4
|
Xin H, Wang Y, Zhang W, Bao Y, Neumann P, Ning Y, Zhang T, Wu Y, Jiang N, Jiang J, Xi M. Celine, a long interspersed nuclear element retrotransposon, colonizes in the centromeres of poplar chromosomes. PLANT PHYSIOLOGY 2024; 195:2787-2798. [PMID: 38652695 PMCID: PMC11288735 DOI: 10.1093/plphys/kiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.
Collapse
Affiliation(s)
- Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiduo Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 37005, Czech Republic
| | - Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Jia H, Lin J, Lin Z, Wang Y, Xu L, Ding W, Ming R. Haplotype-resolved genome of Mimosa bimucronata revealed insights into leaf movement and nitrogen fixation. BMC Genomics 2024; 25:334. [PMID: 38570736 PMCID: PMC10993578 DOI: 10.1186/s12864-024-10264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Mimosa bimucronata originates from tropical America and exhibits distinctive leaf movement characterized by a relative slow speed. Additionally, this species possesses the ability to fix nitrogen. Despite these intriguing traits, comprehensive studies have been hindered by the lack of genomic resources for M. bimucronata. RESULTS To unravel the intricacies of leaf movement and nitrogen fixation, we successfully assembled a high-quality, haplotype-resolved, reference genome at the chromosome level, spanning 648 Mb and anchored in 13 pseudochromosomes. A total of 32,146 protein-coding genes were annotated. In particular, haplotype A was annotated with 31,035 protein-coding genes, and haplotype B with 31,440 protein-coding genes. Structural variations (SVs) and allele specific expression (ASE) analyses uncovered the potential role of structural variants in leaf movement and nitrogen fixation in M. bimucronata. Two whole-genome duplication (WGD) events were detected, that occurred ~ 2.9 and ~ 73.5 million years ago. Transcriptome and co-expression network analyses revealed the involvement of aquaporins (AQPs) and Ca2+-related ion channel genes in leaf movement. Moreover, we also identified nodulation-related genes and analyzed the structure and evolution of the key gene NIN in the process of symbiotic nitrogen fixation (SNF). CONCLUSION The detailed comparative genomic and transcriptomic analyses provided insights into the mechanisms governing leaf movement and nitrogen fixation in M. bimucronata. This research yielded genomic resources and provided an important reference for functional genomic studies of M. bimucronata and other legume species.
Collapse
Affiliation(s)
- Haifeng Jia
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jishan Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570100, China
| | - Zhicong Lin
- College of Environment and Biological Engineering, Putian University, Putian, 351100, China
| | - Yibin Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liangwei Xu
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjie Ding
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Chen C, Han Y, Xiao H, Zou B, Wu D, Sha L, Yang C, Liu S, Cheng Y, Wang Y, Kang H, Fan X, Zhou Y, Zhang T, Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:177. [PMID: 37540294 DOI: 10.1007/s00122-023-04423-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - He Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bingcan Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Cairong Yang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Harun A, Liu H, Song S, Asghar S, Wen X, Fang Z, Chen C. Oligonucleotide Fluorescence In Situ Hybridization: An Efficient Chromosome Painting Method in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2816. [PMID: 37570972 PMCID: PMC10420648 DOI: 10.3390/plants12152816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an indispensable technique for studying chromosomes in plants. However, traditional FISH methods, such as BAC, rDNA, tandem repeats, and distributed repetitive sequence probe-based FISH, have certain limitations, including difficulties in probe synthesis, low sensitivity, cross-hybridization, and limited resolution. In contrast, oligo-based FISH represents a more efficient method for chromosomal studies in plants. Oligo probes are computationally designed and synthesized for any plant species with a sequenced genome and are suitable for single and repetitive DNA sequences, entire chromosomes, or chromosomal segments. Furthermore, oligo probes used in the FISH experiment provide high specificity, resolution, and multiplexing. Moreover, oligo probes made from one species are applicable for studying other genetically and taxonomically related species whose genome has not been sequenced yet, facilitating molecular cytogenetic studies of non-model plants. However, there are some limitations of oligo probes that should be considered, such as requiring prior knowledge of the probe design process and FISH signal issues with shorter probes of background noises during oligo-FISH experiments. This review comprehensively discusses de novo oligo probe synthesis with more focus on single-copy DNA sequences, preparation, improvement, and factors that affect oligo-FISH efficiency. Furthermore, this review highlights recent applications of oligo-FISH in a wide range of plant chromosomal studies.
Collapse
Affiliation(s)
- Arrashid Harun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Sumeera Asghar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
| | - Chunli Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| |
Collapse
|
8
|
Zhao Y, Liu G, Wang Z, Ning Y, Ni R, Xi M. Oligo-FISH of Populus simonii Pachytene Chromosomes Improves Karyotyping and Genome Assembly. Int J Mol Sci 2023; 24:9950. [PMID: 37373099 DOI: 10.3390/ijms24129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Poplar was one of the first woody species whose individual chromosomes could be identified using chromosome specific painting probes. Nevertheless, high-resolution karyotype construction remains a challenge. Here, we developed a karyotype based on the meiotic pachytene chromosome of Populus simonii which is a Chinese native species with many excellent traits. This karyotype was anchored by oligonucleotide (oligo)-based chromosome specific painting probes, a centromere-specific repeat (Ps34), ribosomal DNA, and telomeric DNA. We updated the known karyotype formula for P. simonii to 2n = 2x = 38 = 26m + 8st + 4t and the karyotype was 2C. The fluorescence in situ hybridization (FISH) results revealed some errors in the current P. simonii genome assembly. The 45S rDNA loci were located at the end of the short arm of chromosomes 8 and 14 by FISH. However, they were assembled on pseudochromosomes 8 and 15. In addition, the Ps34 loci were distributed in every centromere of the P. simonii chromosome in the FISH results, but they were only found to be present in pseudochromosomes 1, 3, 6, 10, 16, 17, 18, and 19. Our results reveal that pachytene chromosomes oligo-FISH is a powerful tool for constructing high-resolution karyotypes and improving the quality of genome assembly.
Collapse
Affiliation(s)
- Yilian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Guangxin Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyue Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Runxin Ni
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Shi P, Sun H, Liu G, Zhang X, Zhou J, Song R, Xiao J, Yuan C, Sun L, Wang Z, Lou Q, Jiang J, Wang X, Wang H. Chromosome painting reveals inter-chromosomal rearrangements and evolution of subgenome D of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:55-67. [PMID: 35998122 DOI: 10.1111/tpj.15926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aegilops species represent the most important gene pool for breeding bread wheat (Triticum aestivum). Thus, understanding the genome evolution, including chromosomal structural rearrangements and syntenic relationships among Aegilops species or between Aegilops and wheat, is important for both basic genome research and practical breeding applications. In the present study, we attempted to develop subgenome D-specific fluorescence in situ hybridization (FISH) probes by selecting D-specific oligonucleotides based on the reference genome of Chinese Spring. The oligo-based chromosome painting probes consisted of approximately 26 000 oligos per chromosome and their specificity was confirmed in both diploid and polyploid species containing the D subgenome. Two previously reported translocations involving two D chromosomes have been confirmed in wheat varieties and their derived lines. We demonstrate that the oligo painting probes can be used not only to identify the translocations involving D subgenome chromosomes, but also to determine the precise positions of chromosomal breakpoints. Chromosome painting of 56 accessions of Ae. tauschii from different origins led us to identify two novel translocations: a reciprocal 3D-7D translocation in two accessions and a complex 4D-5D-7D translocation in one accession. Painting probes were also used to analyze chromosomes from more diverse Aegilops species. These probes produced FISH signals in four different genomes. Chromosome rearrangements were identified in Aegilops umbellulata, Aegilops markgrafii, and Aegilops uniaristata, thus providing syntenic information that will be valuable for the application of these wild species in wheat breeding.
Collapse
Affiliation(s)
- Peiyao Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jiawen Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Rongrong Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, MSU AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
10
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
11
|
de Oliveira Bustamante F, do Nascimento TH, Montenegro C, Dias S, do Vale Martins L, Braz GT, Benko-Iseppon AM, Jiang J, Pedrosa-Harand A, Brasileiro-Vidal AC. Oligo-FISH barcode in beans: a new chromosome identification system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3675-3686. [PMID: 34368889 DOI: 10.1007/s00122-021-03921-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.
Collapse
Affiliation(s)
- Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Biologia, Universidade Federal do Piauí, Teresina, PI, Brazil
| | | | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
12
|
Geng X, Xia Y, Chen H, Du K, Yang J, Kang X. High-Frequency Homologous Recombination Occurred Preferentially in Populus. Front Genet 2021; 12:703077. [PMID: 34490036 PMCID: PMC8417060 DOI: 10.3389/fgene.2021.703077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR), the most significant event in meiosis, has important implications for genetic diversity and evolution in organisms. Heteroduplex DNA (hDNA), the product of HR, can be captured by artificially induced chromosome doubling during the development of the embryo sac to inhibit postmeiotic segregation, subsequently, and hDNAs are directly detected using codominant simple sequence repeat (SSR) markers. In the present study, two hybrid triploid populations derived from doubling the chromosomes of the embryo sac induced by high temperature in Populus tomentosa served as starting materials. Eighty-seven, 62, and 79 SSR markers on chromosomes 01, 04, and 19, respectively, that were heterozygous in the maternal parent and different from the paternal parent were screened to detect and characterize the hDNA in P. tomentosa. The results showed that the hDNA frequency patterns on chromosomes changed slightly when the number of SSR primers increased. The highest hDNA frequency occurred at the adjacent terminal on chromosomes, which was slightly higher than those at the terminals in the two genotypic individuals, and the hDNA frequency gradually decreased as the locus-centromere distance decreased. With the increase in the number of SSR markers employed for detection, the number of recombination events (REs) detected significantly increased. In regions with high methylation or long terminal repeat (LTR) retrotransposon enrichment, the frequency of hDNA was low, and high frequencies were observed in regions with low sequence complexity and high gene density. High-frequency recombination occurring at high gene density regions strongly affected the association between molecular markers and quantitative trait loci (QTLs), which was an important factor contributing to the difficulty encountered by MAS in achieving the expected breeding results.
Collapse
Affiliation(s)
- Xining Geng
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Yufei Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Hao Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Jun Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Meng Z, Wang Q, Khurshid H, Raza G, Han J, Wang B, Wang K. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:731664. [PMID: 34512706 PMCID: PMC8429501 DOI: 10.3389/fpls.2021.731664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.
Collapse
Affiliation(s)
- Zhuang Meng
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinnan Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Liu G, Zhang T. Single Copy Oligonucleotide Fluorescence In Situ Hybridization Probe Design Platforms: Development, Application and Evaluation. Int J Mol Sci 2021; 22:ijms22137124. [PMID: 34281175 PMCID: PMC8268824 DOI: 10.3390/ijms22137124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Oligonucleotides fluorescence in situ hybridization (Oligo-FISH) is an emerging technology and is an important tool in research areas such as detection of chromosome variation, identification of allopolyploid, and deciphering of three-dimensional (3D) genome structures. Based on the demand for highly efficient oligo probes for oligo-FISH experiments, increasing numbers of tools have been developed for probe design in recent years. Obsolete oligonucleotide design tools have been adapted for oligo-FISH probe design because of their similar considerations. With the development of DNA sequencing and large-scale synthesis, novel tools have been designed to increase the specificity of designed oligo probes and enable genome-scale oligo probe design, which has greatly improved the application of single copy oligo-FISH. Despite this, few studies have introduced the development of the oligo-FISH probe design tools and their application in FISH experiments systematically. Besides, a comprehensive comparison and evaluation is lacking for the available tools. In this review, we provide an overview of the oligo-FISH probe design process, summarize the development and application of the available tools, evaluate several state-of-art tools, and eventually provide guidance for single copy oligo-FISH probe design.
Collapse
Affiliation(s)
- Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
15
|
do Vale Martins L, de Oliveira Bustamante F, da Silva Oliveira AR, da Costa AF, de Lima Feitoza L, Liang Q, Zhao H, Benko-Iseppon AM, Muñoz-Amatriaín M, Pedrosa-Harand A, Jiang J, Brasileiro-Vidal AC. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma 2021; 130:133-147. [PMID: 33909141 DOI: 10.1007/s00412-021-00758-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/17/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.
Collapse
Affiliation(s)
| | | | | | | | | | - Qihua Liang
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
16
|
Wu C, Xu B, Li Z, Song P, Chao Z. Gender discrimination of Populus tomentosa barks by HPLC fingerprint combined with multivariate statistics. PLANT DIRECT 2021; 5:e00311. [PMID: 33748656 PMCID: PMC7963124 DOI: 10.1002/pld3.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 05/08/2023]
Abstract
A high-performance liquid chromatography (HPLC) fingerprint method with multivariate statistical analyses was applied to discriminate the male and female barks of Populus tomentosa for the first time. The samples of 11 male and 13 female barks of mature P. tomentosa were collected in Beijing. The chemical fingerprint of methanol extract was established by HPLC method with diode array detector (DAD). The principal component analysis (PCA), hierarchical clustering analysis (HCA), and supervised orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to discriminate male and female barks based on the area of common peaks identified in HPLC fingerprints. A clear grouping trend (R 2 X, 0.83; Q 2, 0.595) among the male and female samples was exhibited by PCA score plot. Two groups were clearly divided into male and female samples by HCA. Both male and female samples were well discriminated with OPLS-DA (R 2 X, 0.775; Q 2, 0.795). Seven potential chemical markers were screened by variable importance in projection (VIP values >1.0) of OPLS-DA model and four of them were identified as micranthoside, siebolside B, sakuranin, and isosakuranin. The HPLC fingerprint combined with multivariate statistical analyses could be used to discriminate the gender of barks of P. tomentosa and revealed the differences in chemical components, which enriched the basic studies on dioecious plant.
Collapse
Affiliation(s)
- Cui Wu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Bo Xu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Zhuojun Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Pingping Song
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Zhimao Chao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| |
Collapse
|
17
|
Doležalová A, Sládeková L, Šimoníková D, Holušová K, Karafiátová M, Varshney RK, Doležel J, Hřibová E. Karyotype Differentiation in Cultivated Chickpea Revealed by Oligopainting Fluorescence in situ Hybridization. FRONTIERS IN PLANT SCIENCE 2021; 12:791303. [PMID: 35145533 PMCID: PMC8822127 DOI: 10.3389/fpls.2021.791303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/29/2021] [Indexed: 05/22/2023]
Abstract
Chickpea (Cicer arietinum L.) is one of the main sources of plant proteins in the Indian subcontinent and West Asia, where two different morphotypes, desi and kabuli, are grown. Despite the progress in genome mapping and sequencing, the knowledge of the chickpea genome at the chromosomal level, including the long-range molecular chromosome organization, is limited. Earlier cytogenetic studies in chickpea suffered from a limited number of cytogenetic landmarks and did not permit to identify individual chromosomes in the metaphase spreads or to anchor pseudomolecules to chromosomes in situ. In this study, we developed a system for fast molecular karyotyping for both morphotypes of cultivated chickpea. We demonstrate that even draft genome sequences are adequate to develop oligo-fluorescence in situ hybridization (FISH) barcodes for the identification of chromosomes and comparative analysis among closely related chickpea genotypes. Our results show the potential of oligo-FISH barcoding for the identification of structural changes in chromosomes, which accompanied genome diversification among chickpea cultivars. Moreover, oligo-FISH barcoding in chickpea pointed out some problematic, most probably wrongly assembled regions of the pseudomolecules of both kabuli and desi reference genomes. Thus, oligo-FISH appears as a powerful tool not only for comparative karyotyping but also for the validation of genome assemblies.
Collapse
Affiliation(s)
- Alžběta Doležalová
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Lucia Sládeková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Denisa Šimoníková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Kateřina Holušová
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Miroslava Karafiátová
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eva Hřibová
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- *Correspondence: Eva Hřibová,
| |
Collapse
|
18
|
Agrawal N, Gupta M, Banga SS, Heslop-Harrison JS(P. Identification of Chromosomes and Chromosome Rearrangements in Crop Brassicas and Raphanus sativus: A Cytogenetic Toolkit Using Synthesized Massive Oligonucleotide Libraries. FRONTIERS IN PLANT SCIENCE 2020; 11:598039. [PMID: 33414797 PMCID: PMC7783396 DOI: 10.3389/fpls.2020.598039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/30/2020] [Indexed: 05/10/2023]
Abstract
Crop brassicas include three diploid [Brassica rapa (AA; 2n = 2x = 16), B. nigra (BB; 2n = 2x = 18), and B. oleracea (CC; 2n = 2x = 20)] and three derived allotetraploid species. It is difficult to distinguish Brassica chromosomes as they are small and morphologically similar. We aimed to develop a genome-sequence based cytogenetic toolkit for reproducible identification of Brassica chromosomes and their structural variations. A bioinformatic pipeline was used to extract repeat-free sequences from the whole genome assembly of B. rapa. Identified sequences were subsequently used to develop four c. 47-mer oligonucleotide libraries comprising 27,100, 11,084, 9,291, and 16,312 oligonucleotides. We selected these oligonucleotides after removing repeats from 18 identified sites (500-1,000 kb) with 1,997-5,420 oligonucleotides localized at each site in B. rapa. For one set of probes, a new method for amplification or immortalization of the library is described. oligonucleotide probes produced specific and reproducible in situ hybridization patterns for all chromosomes belonging to A, B, C, and R (Raphanus sativus) genomes. The probes were able to identify structural changes between the genomes, including translocations, fusions, and deletions. Furthermore, the probes were able to identify a structural translocation between a pak choi and turnip cultivar of B. rapa. Overall, the comparative chromosomal mapping helps understand the role of chromosome structural changes during genome evolution and speciation in the family Brassicaceae. The probes can also be used to identify chromosomes in aneuploids such as addition lines used for gene mapping, and to track transfer of chromosomes in hybridization and breeding programs.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder S. Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - JS (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
He L, Zhao H, He J, Yang Z, Guan B, Chen K, Hong Q, Wang J, Liu J, Jiang J. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2225-2235. [PMID: 32578280 DOI: 10.1111/tpj.14894] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 05/20/2023]
Abstract
Reliable identification of individual chromosomes in eukaryotic species is the foundation for comparative chromosome synteny and evolutionary studies. Unfortunately, chromosome identification has been a major challenge for plants with small chromosomes, such as the Citrus species. We developed oligonucleotide-based chromosome painting probes for all nine chromosomes in Citrus maxima (Pummelo). We were able to identify all C. maxima chromosomes in the same metaphase cells using multiple rounds of sequential fluorescence in situ hybridization with the painting probes. We conducted comparative chromosome painting analysis in six different Citrus and related species. We found that each painting probe hybridized to only a single chromosome in all other five species, suggesting that the six species have maintained a complete chromosomal synteny after more than 9 million years of divergence. No interchromosomal rearrangement was identified in any species. These results support the hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period to fix chromosome structural variants in natural populations.
Collapse
Affiliation(s)
- Li He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jian He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bin Guan
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Keling Chen
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qibin Hong
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jianhui Wang
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jianjun Liu
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
20
|
Bi Y, Zhao Q, Yan W, Li M, Liu Y, Cheng C, Zhang L, Yu X, Li J, Qian C, Wu Y, Chen J, Lou Q. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:178-186. [PMID: 31692131 DOI: 10.1111/tpj.14600] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/07/2023]
Abstract
Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double-stranded labelled oligos, which produced much stronger signals than single-stranded labelled oligos, by amplification using fluorophore-conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross-species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo-painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.
Collapse
Affiliation(s)
- Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengxue Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuntao Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
A universal chromosome identification system for maize and wild Zea species. Chromosome Res 2020; 28:183-194. [PMID: 32219602 DOI: 10.1007/s10577-020-09630-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Maize was one of the first eukaryotic species in which individual chromosomes can be identified cytologically, which made maize one of the oldest models for genetics and cytogenetics research. Nevertheless, consistent identification of all 10 chromosomes from different maize lines as well as from wild Zea species remains a challenge. We developed a new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH). We developed two oligonucleotide-based probes that hybridize to 24 chromosomal regions. Individual maize chromosomes show distinct FISH signal patterns, which allow universal identification of all chromosomes from different Zea species. We developed karyotypes from three Zea mays subspecies and two additional wild Zea species based on individually identified chromosomes. A paracentric inversion was discovered on the long arm of chromosome 4 in Z. nicaraguensis and Z. luxurians based on modifications of the FISH signal patterns. Chromosomes from these two species also showed distinct distribution patterns of terminal knobs compared with other Zea species. These results support that Z. nicaraguensis and Z. luxurians are closely related species.
Collapse
|
22
|
Song X, Song R, Zhou J, Yan W, Zhang T, Sun H, Xiao J, Wu Y, Xi M, Lou Q, Wang H, Wang X. Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L. Chromosome Res 2020; 28:171-182. [PMID: 32002727 DOI: 10.1007/s10577-020-09627-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
Chromosome painting is a useful technique for distinguishing specific chromosomes (fragments), elucidating the genetic relationships of different genomes or chromosomes, and identifying chromosomal rearrangements. The development of chromosome- or genome-specific probes is fundamental for chromosome painting. The possibility for developing such probes specifically painting homoeologous chromosomes in allopolyploid species has been questioned since that chromosomes belonging to the same homoeologous group share highly conserved sequences. In the present study, we attempted to construct a wheat chromosome 4D-specific oligo probe library by selecting 4D-specific sequences in reference genome of common wheat cv. Chinese Spring (CS, 2n = 6x = 42, AABBDD). The synthesized library contains 27,392 oligos. Oligo painting using the probe library confirmed its specificity, shown by that only chromosome 4D could be painted in three wheat genotypes and CS nulli-tetrasomic line N4AT4D. Oligo painting was successfully used to define the 4D breakpoints in CS deletion lines involving 4D and two wheat-Haynaldia villosa 4D-4V translocation lines. Thirteen wheat relatives and a Triticum durum-H. villosa amphiploid were used for oligo painting. Except the 4D in two Aegilops tauschii accessions, the 4M in Ae. comosa and 4U in Ae. umbellulata could be painted. In tetraploid Ae. ventricosa, both 4D and 4M could be painted; however, the signal intensity of 4M was less compared with 4D. No painted chromosome was observed for the other alien species. This indicated that the relationship among D/M/U was closer than that among D/A/B as well as D with genomes H/R/Ss/Sc/Y/P/N/J. Our successful development of 4D-specific oligo probe library may serve as a model for developing oligo probes specific for other homoeologous chromosomes.
Collapse
Affiliation(s)
- Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Rongrong Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jiawen Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Wenkai Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Mengli Xi
- Co-Innovation Center for Sustainable Forestry in Southern China/Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
23
|
Meng Z, Han J, Lin Y, Zhao Y, Lin Q, Ma X, Wang J, Zhang M, Zhang L, Yang Q, Wang K. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:187-199. [PMID: 31587087 DOI: 10.1007/s00122-019-03450-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 05/04/2023]
Abstract
A novel tetraploid S. spontaneum with basic chromosome x = 10 was discovered, providing us insights in the origin and evolution in Saccharum species. Sugarcane (Saccharum spp., Poaceae) is a leading crop for sugar production providing 80% of the world's sugar. However, the genetic and genomic complexities of this crop such as its high polyploidy level and highly variable chromosome numbers have significantly hindered the studies in deciphering the genomic structure and evolution of sugarcane. Here, we developed the first set of oligonucleotide (oligo)-based probes based on the S. spontaneum genome (x = 8), which can be used to simultaneously distinguish each of the 64 chromosomes of octaploid S. spontaneum SES208 (2n = 8x = 64) through fluorescence in situ hybridization (FISH). By comparative FISH assay, we confirmed the chromosomal rearrangements of S. spontaneum (x = 8) and S. officinarum (2n = 8x = 80), the main contributors of modern sugarcane cultivars. In addition, we examined a S. spontaneum accession, Np-X, with 2n = 40 chromosomes, and we found that it was a tetraploid with the unusual basic chromosome number of x = 10. Assays at the cytological and DNA levels demonstrated its close relationship with S. spontaneum with basic chromosome number x = 8 (the most common accessions in S. spontaneum), confirming its S. spontaneum identity. Population genetic structure and phylogenetic relationship analyses between Np-X and 64 S. spontaneum accessions revealed that Np-X belongs to the ancient Pan-Malaysia group, indicating a close relationship to S. spontaneum with basic chromosome number of x = 8. This finding of a tetraploid S. spontaneum with basic chromosome number of x = 10 suggested a parallel evolution path of genomes and polyploid series in S. spontaneum with different basic chromosome numbers.
Collapse
Affiliation(s)
- Zhuang Meng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinlei Han
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yujing Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingfang Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaokai Ma
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianping Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Agronomy, University of Florida, Gainesville, FL, 32611, USA
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Liangsheng Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qinghui Yang
- Sugarcane Research Institution, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
24
|
Bačovský V, Čegan R, Šimoníková D, Hřibová E, Hobza R. The Formation of Sex Chromosomes in Silene latifolia and S. dioica Was Accompanied by Multiple Chromosomal Rearrangements. FRONTIERS IN PLANT SCIENCE 2020; 11:205. [PMID: 32180787 PMCID: PMC7059608 DOI: 10.3389/fpls.2020.00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 05/02/2023]
Abstract
The genus Silene includes a plethora of dioecious and gynodioecious species. Two species, Silene latifolia (white campion) and Silene dioica (red campion), are dioecious plants, having heteromorphic sex chromosomes with an XX/XY sex determination system. The X and Y chromosomes differ mainly in size, DNA content and posttranslational histone modifications. Although it is generally assumed that the sex chromosomes evolved from a single pair of autosomes, it is difficult to distinguish the ancestral pair of chromosomes in related gynodioecious and hermaphroditic plants. We designed an oligo painting probe enriched for X-linked scaffolds from currently available genomic data and used this probe on metaphase chromosomes of S. latifolia (2n = 24, XY), S. dioica (2n = 24, XY), and two gynodioecious species, S. vulgaris (2n = 24) and S. maritima (2n = 24). The X chromosome-specific oligo probe produces a signal specifically on the X and Y chromosomes in S. latifolia and S. dioica, mainly in the subtelomeric regions. Surprisingly, in S. vulgaris and S. maritima, the probe hybridized to three pairs of autosomes labeling their p-arms. This distribution suggests that sex chromosome evolution was accompanied by extensive chromosomal rearrangements in studied dioecious plants.
Collapse
Affiliation(s)
- Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- *Correspondence: Václav Bačovský,
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Roman Hobza,
| |
Collapse
|
25
|
Xin H, Zhang T, Wu Y, Zhang W, Zhang P, Xi M, Jiang J. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:253-264. [PMID: 31529535 DOI: 10.1111/tpj.14536] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 05/22/2023]
Abstract
The karyotype represents the basic genetic make-up of a eukaryotic species. Comparative cytogenetic analysis of related species based on individually identified chromosomes has been conducted in only a few plant groups and not yet in woody plants. We have developed a complete set of 19 chromosome painting probes based on the reference genome of the model woody plant Populus trichocarpa. Using sequential fluorescence in situ hybridization we were able to identify all poplar chromosomes in the same metaphase cells, which led to the development of poplar karyotypes based on individually identified chromosomes. We demonstrate that five Populus species, belonging to five different sections within Populus, have maintained a remarkably conserved karyotype. No inter-chromosomal structural rearrangements were observed on any of the 19 chromosomes among the five species. Thus, the chromosomal synteny in Populus has been remarkably maintained after nearly 14 million years of divergence. We propose that the karyotypes of woody species are more stable than those of herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.
Collapse
Affiliation(s)
- Haoyang Xin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenli Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pingdong Zhang
- National Engineering Laboratory for Tree Breeding, College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Mengli Xi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
26
|
Šimoníková D, Němečková A, Karafiátová M, Uwimana B, Swennen R, Doležel J, Hřibová E. Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana ( Musa Spp.). FRONTIERS IN PLANT SCIENCE 2019; 10:1503. [PMID: 31824534 DOI: 10.3389/fpls.2019.01503/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 05/24/2023]
Abstract
Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Alžbeěta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- Banana Breeding, International Institute of Tropical Agriculture, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- Banana Breeding, International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
27
|
Zhao Q, Wang Y, Bi Y, Zhai Y, Yu X, Cheng C, Wang P, Li J, Lou Q, Chen J. Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis ×hytivus with dysploid parental karyotypes. BMC PLANT BIOLOGY 2019; 19:471. [PMID: 31694540 PMCID: PMC6833230 DOI: 10.1186/s12870-019-2060-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. RESULTS In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. CONCLUSIONS These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.
Collapse
Affiliation(s)
- Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Yunzhu Wang
- Institue of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Yufei Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Panqiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
28
|
do Vale Martins L, Yu F, Zhao H, Dennison T, Lauter N, Wang H, Deng Z, Thompson A, Semrau K, Rouillard JM, Birchler JA, Jiang J. Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nat Commun 2019; 10:4604. [PMID: 31601818 PMCID: PMC6787048 DOI: 10.1038/s41467-019-12646-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/20/2019] [Indexed: 01/25/2023] Open
Abstract
Meiotic crossovers (COs) play a critical role in generating genetic variation and maintaining faithful segregation of homologous chromosomes during meiosis. We develop a haplotype-specific fluorescence in situ hybridization (FISH) technique that allows visualization of COs directly on metaphase chromosomes. Oligonucleotides (oligos) specific to chromosome 10 of maize inbreds B73 and Mo17, respectively, are synthesized and labeled as FISH probes. The parental and recombinant chromosome 10 in B73 x Mo17 F1 hybrids and F2 progenies can be unambiguously identified by haplotype-specific FISH. Analysis of 58 F2 plants reveals lack of COs in the entire proximal half of chromosome 10. However, we detect COs located in regions very close to the centromere in recombinant inbred lines from an intermated B73 x Mo17 population, suggesting effective accumulation of COs in recombination-suppressed chromosomal regions through intermating and the potential to generate favorable allelic combinations of genes residing in these regions. Meiotic crossovers (COs) are essential for proper chromosome segregation and generating novel combinations of alleles. Here, the authors develop haplotype-specific oligos on maize chromosome 10 for fluorescence in situ hybridization and analyze CO patterns in an intermated recombinant population derived from B73 and Mo17.
Collapse
Affiliation(s)
- Lívia do Vale Martins
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Fan Yu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.,National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Tesia Dennison
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Nick Lauter
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, 50011, USA.,USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA
| | - Haiyan Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Addie Thompson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.,Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| | - Kassandra Semrau
- Arbor Biosciences, Ann Arbor, MI, 48103, USA.,Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Jean-Marie Rouillard
- Arbor Biosciences, Ann Arbor, MI, 48103, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA. .,Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Schemberger MO, Nascimento VD, Coan R, Ramos É, Nogaroto V, Ziemniczak K, Valente GT, Moreira-Filho O, Martins C, Vicari MR. DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma 2019; 128:547-560. [DOI: 10.1007/s00412-019-00721-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/25/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
|
30
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s10577-019-09607-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
31
|
Hou J, Wei S, Pan H, Zhuge Q, Yin T. Uneven selection pressure accelerating divergence of Populus and Salix. HORTICULTURE RESEARCH 2019; 6:37. [PMID: 30962934 PMCID: PMC6450953 DOI: 10.1038/s41438-019-0121-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Accepted: 12/30/2018] [Indexed: 05/22/2023]
Abstract
Populus (poplars) and Salix (willows) are sister genera in the Salicaceae family that arise from a common tetraploid ancestor. The karyotypes of these two lineages are distinguished by two major interchromosomal and some minor intrachromosomal rearrangements, but which one is evolutionarily more primitive remains debatable. In this study, we compare the selection pressure acting on the paralogous genes resulting from salicoid duplication (PGRS) within and between the genomes of the two lineages. Purifying selection was determined to act more strongly on the PGRS in willow than on those in poplar, which would cause a faster loss of paralogous duplicates in willow. Therefore, Salix species are supposed to evolve faster than Populus species, which is consistent with the observation that the former are taxonomically and morphologically more diverse than the latter. In these two lineages, different autosomes were found to have been evolving into sex chromosomes. Examining the ω ratio and the PGRS in the sex determination regions in willow and poplar revealed higher convergent selection pressure and a faster loss of PGRS in the sex determination regions of both lineages. At the chromosome level, the sex chromosome in poplar is characterized by the lowest gene density among all chromosome members, while this feature is not observed on the sex chromosome in willow, suggesting that Populus species may inherit the more incipient sex chromosome from their progenitor. Taken together, Salix is supposed to be the nascent lineage arising from the additional round of genome reorganization that distinguishes the karyotypes of the two sister genera. In this study, assessment of ω ratios also detected a list of paralogous genes under unusual selection pressure, which could have special consequences for the adaptive evolution of Salicaceae species. In conclusion, the results of this study provide unique information for better understanding the genetic mechanism accelerating the divergence of these two closely related lineages.
Collapse
Affiliation(s)
- Jing Hou
- The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Suyun Wei
- The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Huixin Pan
- The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Qiang Zhuge
- The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Tongming Yin
- The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
32
|
Šimoníková D, Němečková A, Karafiátová M, Uwimana B, Swennen R, Doležel J, Hřibová E. Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana ( Musa Spp.). FRONTIERS IN PLANT SCIENCE 2019; 10:1503. [PMID: 31824534 PMCID: PMC6879668 DOI: 10.3389/fpls.2019.01503] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 05/04/2023]
Abstract
Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Alžbeěta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- Banana Breeding, International Institute of Tropical Agriculture, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- Banana Breeding, International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- *Correspondence: Eva Hřibová,
| |
Collapse
|
33
|
He L, Braz GT, Torres GA, Jiang J. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma 2018; 127:505-513. [PMID: 30242479 DOI: 10.1007/s00412-018-0682-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66-78% of the meiotic cells at the pachytene stage. Solanum demissum (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83-98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.
Collapse
Affiliation(s)
- Li He
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.,Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Guilherme T Braz
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.,Departmento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200, Brazil
| | - Giovana A Torres
- Departmento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200, Brazil
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Hou L, Xu M, Zhang T, Xu Z, Wang W, Zhang J, Yu M, Ji W, Zhu C, Gong Z, Gu M, Jiang J, Yu H. Chromosome painting and its applications in cultivated and wild rice. BMC PLANT BIOLOGY 2018; 18:110. [PMID: 29879904 PMCID: PMC5991451 DOI: 10.1186/s12870-018-1325-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/24/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The chromosome-specific probe is a fundamental tool of chromosome painting and has been commonly applied in mammalian species. The technology, however, has not been widely applied in plants due to a lack of methodologies for probe development. Identification and labeling of a large number of oligonucleotides (oligos) specific to a single chromosome offers us an opportunity to establish chromosome-specific probes in plants. However, never before has whole chromosome painting been performed in rice. RESULTS We developed a pooled chromosome 9-specific probe in rice, which contains 25,000 oligos based on the genome sequence of a japonica rice (Oryza sativa L., AA, 2n = 2× = 24). Chromosome 9 was easily identified in both japonica and indica rice using this chromosome 9-painting probe. The probe was also successfully used to identify and characterize chromosome 9 in additional lines of O. sativa, a translocation line, two new aneuploids associated with chromosome 9 and a wild rice (Oryza eichingeri A. Peter, CC, 2n = 2× = 24). CONCLUSION The study reveals that a pool of oligos specific to a chromosome is a useful tool for chromosome painting in rice.
Collapse
Affiliation(s)
- Lili Hou
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhihao Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Weiyun Wang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Jianxiang Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Meimei Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Wen Ji
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Cenwen Zhu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhiyun Gong
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison|, Madison, WI 53706 USA
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|