1
|
Manca R, De Marco M, Soininen H, Ruffini L, Venneri A. Changes in neurotransmitter-related functional connectivity along the Alzheimer's disease continuum. Brain Commun 2025; 7:fcaf008. [PMID: 39980737 PMCID: PMC11840171 DOI: 10.1093/braincomms/fcaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Alzheimer's disease may be associated with early dopamine dysfunction. However, its effects on neurofunctional alterations in the neurotransmission pathways remain elusive. In this study, positron emission tomography atlases and functional MRI data for 86 older adults with mild cognitive impairment Alzheimer's disease (MCI), 58 with mild Alzheimer's disease-dementia and 76 cognitively unimpaired were combined to investigate connectivity alterations associated with the dopaminergic and cholinergic systems. A cross-sectional design was used to compare neurotransmitter-related functional connectivity across groups and associations between functional connectivity and cognitive performance. The findings show that the Alzheimer's disease dementia group showed a decline in mesocorticolimbic dopamine-related connectivity in the precuneus but heightened connectivity in the thalamus, whereas the Alzheimer's disease-MCI group showed a decline in nigrostriatal connectivity in the left temporal areas. Acetylcholine-related connectivity decline was observed in both Alzheimer's disease-MCI and Alzheimer's disease-dementia primarily in the temporo-parietal areas. Episodic memory scores correlated positively with acetylcholine- and dopamine-related connectivity in the temporo-parietal cortex and negatively with dopamine-related functional connectivity in the fronto-thalamic areas. This study shows that connectivity alterations in acetylcholine and dopamine functional pathways parallel cognitive decline in Alzheimer's disease and might be a clinically relevant marker in early Alzheimer's disease.
Collapse
Affiliation(s)
- Riccardo Manca
- Department of Life Sciences, Brunel University of London, UB8 3PH London, UK
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Matteo De Marco
- Department of Life Sciences, Brunel University of London, UB8 3PH London, UK
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Livia Ruffini
- Nuclear Medicine Division, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Annalena Venneri
- Department of Life Sciences, Brunel University of London, UB8 3PH London, UK
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| |
Collapse
|
2
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Neuropharmacology of Cevimeline and Muscarinic Drugs-Focus on Cognition and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22168908. [PMID: 34445613 PMCID: PMC8396258 DOI: 10.3390/ijms22168908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
At present, Alzheimer’s disease (AD) and related dementias cannot be cured. Therefore, scientists all over the world are trying to find a new approach to prolong an active life of patients with initial dementia. Both pharmacological and non-pharmacological pathways are investigated to improve the key symptom of the disease, memory loss. In this respect, influencing the neuromodulator acetylcholine via muscarinic receptors, such as cevimeline, might be one of the therapeutic alternatives. The purpose of this study is to explore the potential of cevimeline on the cognitive functions of AD patients. The methodology is based on a systematic literature review of available studies found in Web of Science, PubMed, Springer, and Scopus on the research topic. The findings indicate that cevimeline has shown an improvement in experimentally induced cognitive deficits in animal models. Furthermore, it has demonstrated to positively influence tau pathology and reduce the levels of amyloid-β (Aβ) peptide in the cerebral spinal fluid of Alzheimer’s patients. Although this drug has not been approved by the FDA for its use among AD patients and there is a lack of clinical studies confirming and extending this finding, cevimeline might represent a breakthrough in the treatment of AD.
Collapse
|
4
|
Colloby SJ, Nathan PJ, Bakker G, Lawson RA, Yarnall AJ, Burn DJ, O'Brien JT, Taylor JP. Spatial Covariance of Cholinergic Muscarinic M 1 /M 4 Receptors in Parkinson's Disease. Mov Disord 2021; 36:1879-1888. [PMID: 33973693 DOI: 10.1002/mds.28564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is associated with cholinergic dysfunction, although the role of M1 and M4 receptors remains unclear. OBJECTIVE To investigate spatial covariance patterns of cholinergic muscarinic M1 /M4 receptors in PD and their relationship with cognition and motor symptoms. METHODS Some 19 PD and 24 older adult controls underwent 123 I-iodo-quinuclidinyl-benzilate (QNB) (M1 /M4 receptor) and 99m Tc-exametazime (perfusion) single-photon emission computed tomography (SPECT) scanning. We implemented voxel principal components analysis, producing a series of images representing patterns of intercorrelated voxels across individuals. Linear regression analyses derived specific M1 /M4 spatial covariance patterns associated with PD. RESULTS A cholinergic M1 /M4 pattern that converged onto key hubs of the default, auditory-visual, salience, and sensorimotor networks fully discriminated PD patients from controls (F1,41 = 135.4, P < 0.001). In PD, we derived M1 /M4 patterns that correlated with global cognition (r = -0.62, P = 0.008) and motor severity (r = 0.53, P = 0.02). Both patterns emerged with a shared topography implicating the basal forebrain as well as visual, frontal executive, and salience circuits. Further, we found a M1 /M4 pattern that predicted global cognitive decline (r = 0.46, P = 0.04) comprising relative decreased binding within default and frontal executive networks. CONCLUSIONS Cholinergic muscarinic M1 /M4 modulation within key brain networks were apparent in PD. Cognition and motor severity were associated with a similar topography, inferring both phenotypes possibly rely on related cholinergic mechanisms. Relative decreased M1 /M4 binding within default and frontal executive networks could be an indicator of future cognitive decline. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sean J Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Herschel Smith Building for Brain & Mind Sciences, Cambridge, United Kingdom
| | - Geor Bakker
- Experimental Medicine, Sosei Heptares, Cambridge, United Kingdom
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - David J Burn
- Population Health Science Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Herschel Smith Building for Brain & Mind Sciences, Cambridge, United Kingdom
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Colloby SJ, Nathan PJ, McKeith IG, Bakker G, O'Brien JT, Taylor JP. Cholinergic muscarinic M 1/M 4 receptor networks in dementia with Lewy bodies. Brain Commun 2020; 2:fcaa098. [PMID: 32954342 PMCID: PMC7475694 DOI: 10.1093/braincomms/fcaa098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cholinergic dysfunction is central in dementia with Lewy bodies, possibly contributing to the cognitive and psychiatric phenotypes of this condition. We investigated baseline muscarinic M1/M4 receptor spatial covariance patterns in dementia with Lewy bodies and their association with changes in cognition and neuropsychiatric symptoms after 12 weeks of treatment with the cholinesterase inhibitor donepezil. Thirty-eight participants (14 cholinesterase inhibitor naive patients, 24 healthy older individuals) underwent 123I-iodo-quinuclidinyl-benzilate (M1/M4 receptor assessment) and 99mTc-exametazime (perfusion) single-photon emission computed tomography scanning. We implemented voxel principal components analysis, producing a series of images representing patterns of inter-correlated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns associated with patients. A discreet M1/M4 pattern that distinguished patients from controls (W1,19.7 = 16.7, P = 0.001), showed relative decreased binding in right lateral temporal and insula, as well as relative preserved/increased binding in frontal, precuneus, lingual and cuneal regions, implicating nodes within attention and dorsal visual networks. We then derived from patients an M1/M4 pattern that correlated with a positive change in mini-mental state examination (r = 0.52, P = 0.05), showing relative preserved/increased uptake in prefrontal, temporal pole and anterior cingulate, elements of attention-related networks. We also generated from patients an M1/M4 pattern that correlated with a positive change in neuropsychiatric inventory score (r = 0.77, P = 0.002), revealing relative preserved/increased uptake within a bilateral temporal-precuneal-striatal system. Although in a small sample and therefore tentative, we posit that optimal response of donepezil on cognitive and neuropsychiatric signs in patients with dementia with Lewy bodies were associated with a maintenance of muscarinic M1/M4 receptor expression within attentional/executive and ventral visual network hubs, respectively.
Collapse
Affiliation(s)
- Sean J Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Pradeep J Nathan
- Experimental Medicine, Neuroscience Therapeutic Area, Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, UK.,Department of Psychiatry, University of Cambridge, Cambridge CB2 0QC, UK
| | - Ian G McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Geor Bakker
- Experimental Medicine, Neuroscience Therapeutic Area, Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0QC, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
6
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
7
|
Erskine D, Taylor JP, Bakker G, Brown AJH, Tasker T, Nathan PJ. Cholinergic muscarinic M 1 and M 4 receptors as therapeutic targets for cognitive, behavioural, and psychological symptoms in psychiatric and neurological disorders. Drug Discov Today 2019; 24:2307-2314. [PMID: 31499186 DOI: 10.1016/j.drudis.2019.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Cholinergic dysfunction is involved in a range of neurological and psychiatric disorders, including schizophrenia, dementia and Lewy body disease (LBD), leading to widespread use of cholinergic therapies. However, such drugs have focused on increasing the availability of acetylcholine (ACh) generally, with relatively little work done on the muscarinic system and specific muscarinic receptor subtypes. In this review, we provide an overview of the major cholinergic pathways and cholinergic muscarinic receptors in the human brain and evidence for their dysfunction in several neurological and psychiatric disorders. We discuss how the selectivity of cholinergic system dysfunction suggests that targeted cholinergic therapeutics to the muscarinic receptor subtypes will be vital in treating several disorders associated with cognitive dysfunction and behavioural and psychological symptoms.
Collapse
Affiliation(s)
- Daniel Erskine
- Institute of Neuroscience, Newcastle University, Newcastle, UK.
| | | | | | | | | | - Pradeep J Nathan
- Sosei Heptares, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK; School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Higher levels of different muscarinic receptors in the cortex and hippocampus from subjects with Alzheimer’s disease. J Neural Transm (Vienna) 2016; 124:273-284. [DOI: 10.1007/s00702-016-1625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
|
9
|
Colloby SJ, McKeith IG, Burn DJ, Wyper DJ, O'Brien JT, Taylor JP. Cholinergic and perfusion brain networks in Parkinson disease dementia. Neurology 2016; 87:178-85. [PMID: 27306636 PMCID: PMC4940066 DOI: 10.1212/wnl.0000000000002839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/30/2016] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition.
Collapse
Affiliation(s)
- Sean J Colloby
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK.
| | - Ian G McKeith
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - David J Burn
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - David J Wyper
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - John T O'Brien
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - John-Paul Taylor
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| |
Collapse
|
10
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
11
|
Colloby SJ, McKeith IG, Wyper DJ, O'Brien JT, Taylor JP. Regional covariance of muscarinic acetylcholine receptors in Alzheimer's disease using (R, R) [(123)I]-QNB SPECT. J Neurol 2015; 262:2144-53. [PMID: 26122542 DOI: 10.1007/s00415-015-7827-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is characterised by deficits in cholinergic neurotransmission and subsequent receptor changes. We investigated (123)I-iodo-quinuclidinyl-benzilate (QNB) SPECT images using spatial covariance analysis (SCA), to detect an M1/M4 receptor spatial covariance pattern (SCP) that distinguished AD from controls. Furthermore, a corresponding regional cerebral blood flow (rCBF) SCP was also derived. Thirty-nine subjects (15 AD and 24 healthy elderly controls) underwent (123)I-QNB and (99m)Tc-exametazime SPECT. Voxel SCA was simultaneously applied to the set of smoothed/registered scans, generating a series of eigenimages representing common intercorrelated voxels across subjects. Linear regression identified individual M1/M4 and rCBF SCPs that discriminated AD from controls. The M1/M4 SCP showed concomitant decreased uptake in medial temporal, inferior frontal, basal forebrain and cingulate relative to concomitant increased uptake in frontal poles, occipital, pre-post central and precuneus/superior parietal regions (F1,37 = 85.7, p < 0.001). A largely different perfusion SCP was obtained showing concomitant decreased rCBF in medial and superior temporal, precuneus, inferior parietal and cingulate relative to concomitant increased rCBF in cerebellum, pre-post central, putamen, fusiform and brain stem/midbrain regions (F1,37 = 77.5, p < 0.001). The M1/M4 SCP expression correlated with the duration of cognitive symptoms (r = 0.90, p < 0.001), whereas the rCBF SCP expression negatively correlated with MMSE, CAMCOG and CAMCOGmemory (r ≥ |0.63|, p ≤ 0.006). (123)I-QNB SPECT revealed an M1/M4 basocortical covariance pattern, distinct from rCBF, reflecting the duration of disease rather than current clinical symptoms. This approach could be more sensitive than univariate methods in characterising the cholinergic/rCBF changes that underpin the clinical phenotype of AD.
Collapse
Affiliation(s)
- Sean J Colloby
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Ian G McKeith
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - David J Wyper
- SINAPSE, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Level E4, Box 189, Cambridge, CB2 0QC, UK
| | - John-Paul Taylor
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
12
|
Wang Q, Wei X, Gao H, Li J, Liao J, Liu X, Qin B, Yu Y, Deng C, Tang B, Huang XF. Simvastatin reverses the downregulation of M1/4 receptor binding in 6-hydroxydopamine-induced parkinsonian rats: The association with improvements in long-term memory. Neuroscience 2014; 267:57-66. [DOI: 10.1016/j.neuroscience.2014.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/24/2022]
|
13
|
The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol 2013; 16:721-31. [PMID: 22932339 DOI: 10.1017/s1461145712000752] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Episodic memory deficits are a core feature of neurodegenerative disorders. Muscarinic M(1) receptors play a critical role in modulating learning and memory and are highly expressed in the hippocampus. We examined the effect of GSK1034702, a potent M(1) receptor allosteric agonist, on cognitive function, and in particular episodic memory, in healthy smokers using the nicotine abstinence model of cognitive dysfunction. The study utilized a randomized, double-blind, placebo-controlled, cross-over design in which 20 male nicotine abstained smokers were tested following single doses of placebo, 4 and 8 mg GSK1034702. Compared to the baseline (nicotine on-state), nicotine abstinence showed statistical significance in reducing immediate (p=0.019) and delayed (p=0.02) recall. GSK1034702 (8 mg) significantly attenuated (i.e. improved) immediate recall (p=0.014) but not delayed recall. None of the other cognitive domains was modulated by either nicotine abstinence or GSK1034702. These findings suggest that stimulating M(1) receptor mediated neurotransmission in humans with GSK1034702 improves memory encoding potentially by modulating hippocampal function. Hence, selective M(1) receptor allosteric agonists may have therapeutic benefits in disorders of impaired learning including Alzheimer's disease.
Collapse
|
14
|
Alzheimer's disease biomarkers: correspondence between human studies and animal models. Neurobiol Dis 2013; 56:116-30. [PMID: 23631871 DOI: 10.1016/j.nbd.2013.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) represents an escalating global threat as life expectancy and disease prevalence continue to increase. There is a considerable need for earlier diagnoses to improve clinical outcomes. Fluid biomarkers measured from cerebrospinal fluid (CSF) and blood, or imaging biomarkers have considerable potential to assist in the diagnosis and management of AD. An additional important utility of biomarkers is in novel therapeutic development and clinical trials to assess efficacy and side effects of therapeutic interventions. Because many biomarkers are initially examined in animal models, the extent to which markers translate from animals to humans is an important issue. The current review highlights many existing and pipeline biomarker approaches, focusing on the degree of correspondence between AD patients and animal models. The review also highlights the need for greater translational correspondence between human and animal biomarkers.
Collapse
|
15
|
Sheffler DJ, Sevel C, Le U, Lovell KM, Tarr JC, Carrington SJS, Cho HP, Digby GJ, Niswender CM, Conn PJ, Hopkins CR, Wood MR, Lindsley CW. Further exploration of M₁ allosteric agonists: subtle structural changes abolish M₁ allosteric agonism and result in pan-mAChR orthosteric antagonism. Bioorg Med Chem Lett 2013; 23:223-7. [PMID: 23200253 PMCID: PMC3525729 DOI: 10.1016/j.bmcl.2012.10.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/18/2012] [Accepted: 10/29/2012] [Indexed: 01/22/2023]
Abstract
This letter describes the further exploration of two series of M(1) allosteric agonists, TBPB and VU0357017, previously reported from our lab. Within the TPBP scaffold, either electronic or steric perturbations to the central piperidine ring led to a loss of selective M(1) allosteric agonism and afforded pan-mAChR antagonism, which was demonstrated to be mediated via the orthosteric site. Additional SAR around a related M(1) allosteric agonist family (VU0357017) identified similar, subtle 'molecular switches' that modulated modes of pharmacology from allosteric agonism to pan-mAChR orthosteric antagonism. Therefore, all of these ligands are best classified as bi-topic ligands that possess high affinity binding at an allosteric site to engender selective M(1) activation, but all bind, at higher concentrations, to the orthosteric ACh site, leading to non-selective orthosteric site binding and mAChR antagonism.
Collapse
Affiliation(s)
- Douglas J. Sheffler
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Christian Sevel
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Uyen Le
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Kimberly M. Lovell
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - James C. Tarr
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Sheridan J. S. Carrington
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hyekyung P. Cho
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Gregory J. Digby
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M. Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Corey R. Hopkins
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael R. Wood
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Lebois EP, Digby GJ, Sheffler DJ, Melancon BJ, Tarr JC, Cho HP, Miller NR, Morrison R, Bridges TM, Xiang Z, Daniels JS, Wood MR, Conn PJ, Lindsley CW. Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. Bioorg Med Chem Lett 2011; 21:6451-5. [PMID: 21930376 PMCID: PMC3190051 DOI: 10.1016/j.bmcl.2011.08.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 12/18/2022]
Abstract
Herein we report the discovery and SAR of a novel series of M(1) agonists based on the MLPCN probe, ML071. From this, VU0364572 emerged as a potent, orally bioavailable and CNS penetrant M(1) agonist with high selectivity, clean ancillary pharmacology and enantiospecific activity.
Collapse
Affiliation(s)
- Evan P. Lebois
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gregory J. Digby
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas J. Sheffler
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bruce J. Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - James C. Tarr
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Hyekyung P. Cho
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | | | - Ryan Morrison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Thomas M. Bridges
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J. Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Michael R. Wood
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| |
Collapse
|
17
|
Cummings JL. Biomarkers in Alzheimer's disease drug development. Alzheimers Dement 2011; 7:e13-44. [PMID: 21550318 DOI: 10.1016/j.jalz.2010.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 12/27/2022]
Abstract
Developing new therapies for Alzheimer's disease (AD) is critically important to avoid the impending public health disaster imposed by this common disorder. Means must be found to prevent, delay the onset, or slow the progression of AD. These goals will be achieved by identifying disease-modifying therapies and testing them in clinical trials. Biomarkers play an increasingly important role in AD drug development. In preclinical testing, they assist in decisions to develop an agent. Biomarkers in phase I provide insights into toxic responses and drug metabolism and in Phase II proof-of-concept trials they facilitate go/no-go decisions and dose finding. Biomarkers can play a role in identifying presymptomatic patients or specific patient subgroups. They can provide evidence of target engagement before clinical changes can be expected. Brain imaging can serve as a primary outcome in Phase II trials and as a key secondary outcome in Phase III trials. Magnetic resonance imaging is currently best positioned for use in large multicenter clinical trials. Cerebrospinal fluid (CSF) measures of amyloid beta protein (Aβ), tau protein, and hyperphosphorylated tau (p-tau) protein are sensitive and specific to the diagnosis of AD and may serve as inclusion criteria and possibly as outcomes in clinical trials targeting relevant pathways. Plasma measures of Aβ are of limited diagnostic value but may provide important information as a measure of treatment response. A wide variety of measures of detectable products of cellular processes are being developed as possible biomarkers accessible in the cerebrospinal fluid and plasma or serum. Surrogate markers that can function as outcomes in pivotal trials and reliably predict clinical outcomes are needed to facilitate primary prevention trials of asymptomatic persons where clinical measures may be of limited value. Fit-for-purpose biomarkers are increasingly available to guide AD drug development decisions.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic Neurological Institute, Las Vegas, NV, USA.
| |
Collapse
|
18
|
Vernon AC, Ballard C, Modo M. Neuroimaging for Lewy body disease: is the in vivo molecular imaging of α-synuclein neuropathology required and feasible? ACTA ACUST UNITED AC 2010; 65:28-55. [PMID: 20685363 DOI: 10.1016/j.brainresrev.2010.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation is a neuropathological hallmark of many neurodegenerative diseases including Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), collectively termed the α-synucleinopathies. Substantial advances in clinical criteria and neuroimaging technology over the last 20 years have allowed great strides in the detection and differential diagnosis of these disorders. Nevertheless, it is clear that whilst the array of different imaging modalities in clinical use allow for a robust diagnosis of α-synucleinopathy in comparison to healthy subjects, there is no clear diagnostic imaging marker that affords a reliable differential diagnosis between the different forms of Lewy body disease (LBD) or that could facilitate tracking of disease progression. This has led to a call for a biomarker based on the pathological hallmarks of these diseases, namely α-synuclein-positive Lewy bodies (LBs). This potentially may be advantageous in terms of early disease detection, but may also be leveraged into a potential marker of disease progression. We here aim to firstly review the current status of neuroimaging biomarkers in PD and related synucleinopathies. Secondly, we outline the rationale behind α-synuclein imaging as a potential novel biomarker as well as the potential benefits and limitations of this approach. Thirdly, we attempt to illustrate the likely technical hurdles to be overcome to permit successful in vivo imaging of α-synuclein pathology in the diseased brain. Our overriding aim is to provide a framework for discussion of how to address this major unmet clinical need.
Collapse
Affiliation(s)
- Anthony C Vernon
- Kings College London, Institute of Psychiatry, Department of Neuroscience, Denmark Hill campus, London, UK
| | | | | |
Collapse
|
19
|
Regulation of M1-receptor mRNA stability by smilagenin and its significance in improving memory of aged rats. Neurobiol Aging 2010; 31:1010-9. [DOI: 10.1016/j.neurobiolaging.2008.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 05/17/2008] [Accepted: 06/16/2008] [Indexed: 11/19/2022]
|
20
|
|
21
|
Bridges TM, LeBois EP, Hopkins CR, Wood MR, Jones CK, Conn PJ, Lindsley CW. The antipsychotic potential of muscarinic allosteric modulation. DRUG NEWS & PERSPECTIVES 2010; 23:229-40. [PMID: 20520852 PMCID: PMC4780339 DOI: 10.1358/dnp.2010.23.4.1416977] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cholinergic hypothesis of schizophrenia emerged over 50 years ago based on clinical observations with both anticholinergics and pan-muscarinic agonists. Not until the 1990s did the cholinergic hypothesis of schizophrenia receive renewed enthusiasm based on clinical data with xanomeline, a muscarinic acetylcholine receptor M(1)/M(4)-preferring orthosteric agonist. In a clinical trial with Alzheimer's patients, xanomeline not only improved cognitive performance, but also reduced psychotic behaviors. This encouraging data spurred a second clinical trial in schizophrenic patients, wherein xanomeline significantly improved the positive, negative and cognitive symptom clusters. However, the question remained: Was the antipsychotic efficacy due to activation of M(1), M(4) or both M(1)/M(4)? Classical orthosteric ligands lacked the muscarinic receptor subtype selectivity required to address this key question. More recently, functional assays have allowed for the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric (acetylcholine) site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. Recently, allosteric ligands, with unprecedented selectivity for either M(1) or M(4), have been discovered and have demonstrated comparable efficacy to xanomeline in preclinical antipsychotic and cognition models. These data suggest that selective allosteric activation of either M(1) or M(4) has antipsychotic potential through distinct, yet complimentary mechanisms.
Collapse
Affiliation(s)
- Thomas M. Bridges
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Evan P. LeBois
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Corey R. Hopkins
- Department of Pharmacology, Vanderbilt Program in Drug Discovery and Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael R. Wood
- Department of Pharmacology, Vanderbilt Program in Drug Discovery and Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt Program in Drug Discovery and Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, and U.S. Department of Veterans Affairs, Tennessee Valley Healthcare System (TVHS), Nashville, Tennessee, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt Program in Drug Discovery and Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt Program in Drug Discovery and Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Cortical M1 receptor concentration increases without a concomitant change in function in Alzheimer's disease. J Chem Neuroanat 2010; 40:63-70. [PMID: 20347961 DOI: 10.1016/j.jchemneu.2010.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 01/08/2023]
Abstract
Although the M(1) muscarinic receptor is a potential therapeutic target for Alzheimer's disease (AD) based on its wide spread distribution in brain and its association with learning and memory processes, whether its receptor response is altered during the onset of AD remains unclear. A novel [(35)S]GTPgammaS binding/immunocapture assay was employed to evaluated changes in M(1) receptor function in cortical tissue samples harvested from people who had no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD. M(1) function was stable across clinical groups. However, [(3)H]-oxotremorine-M radioligand binding studies revealed that the concentration of M(1) cortical receptors increased significantly between the NCI and AD groups. Although M(1) receptor function did not correlate with cognitive function based upon mini-mental status examination (MMSE) or global cognitive score (GCS), functional activity was negatively correlated with the severity of neuropathology determined by Braak staging and NIA-Reagan criteria for AD. Since M(1) agonists have the potential to modify the pathologic hallmarks of AD, as well as deficits in cognitive function in animal models of this disease, the present findings provide additional support for targeting the M(1) receptor as a potential therapeutic for AD.
Collapse
|
23
|
In vivo imaging of synaptic function in the central nervous system. Behav Brain Res 2009; 204:1-31. [DOI: 10.1016/j.bbr.2009.06.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/27/2009] [Accepted: 06/02/2009] [Indexed: 01/07/2023]
|
24
|
Lebois EP, Bridges TM, Lewis LM, Dawson ES, Kane AS, Xiang Z, Jadhav SB, Yin H, Kennedy JP, Meiler J, Niswender CM, Jones CK, Conn PJ, Weaver CD, Lindsley CW. Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M(1) receptor function in the central nervous system. ACS Chem Neurosci 2009; 1:104-121. [PMID: 21961051 DOI: 10.1021/cn900003h] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M(1)-M(5). Of the mAChR subtypes, M(1) is among the most heavily expressed in regions that are critical for learning and memory, and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M(1) and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M(1). Using a functional HTS screen and subsequent diversity-oriented synthesis approach we have discovered a novel series of highly selective M(1) allosteric agonists. These compounds activate M(1) with EC(50) values in the 150 nM to 500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M(1) receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M(1) allosteric agonists provides critical research tools to allow dissection of M(1)-mediated effects in the CNS and potential leads for novel treatments for Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
| | | | - L. Michelle Lewis
- Department of Pharmacology
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (MLPCN)
| | - Eric S Dawson
- Department of Chemistry
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (MLPCN)
- Vanderbilt Program in Drug Discovery
- Vanderbilt Center for Structural Biology
| | | | - Zixiu Xiang
- Department of Pharmacology
- Vanderbilt Program in Drug Discovery
| | | | - Huiyong Yin
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (MLPCN)
| | | | - Jens Meiler
- Department of Chemistry
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (MLPCN)
- Vanderbilt Program in Drug Discovery
- Vanderbilt Center for Structural Biology
| | | | - Carrie K Jones
- Department of Pharmacology
- Vanderbilt Program in Drug Discovery
| | - P Jeffrey Conn
- Department of Pharmacology
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (MLPCN)
- Vanderbilt Program in Drug Discovery
| | - C David Weaver
- Department of Pharmacology
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (MLPCN)
- Vanderbilt Program in Drug Discovery
| | - Craig W Lindsley
- Department of Pharmacology
- Department of Chemistry
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (MLPCN)
- Vanderbilt Program in Drug Discovery
| |
Collapse
|