1
|
Camacho M, Greenland JC, Daruwalla C, Scott KM, Patel B, Apostolopoulos D, Ribeiro J, O'Reilly M, Hu MT, Williams-Gray CH. The profile of gastrointestinal dysfunction in prodromal to late-stage Parkinson's disease. NPJ Parkinsons Dis 2025; 11:123. [PMID: 40348767 PMCID: PMC12065915 DOI: 10.1038/s41531-025-00900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/18/2025] [Indexed: 05/14/2025] Open
Abstract
Gastrointestinal dysfunction (GID) may play a key role in Parkinson's disease (PD) but its relationship with disease progression remains unclear. We recruited 404 PD cases, 37 iRBD (isolated REM Sleep Behaviour Disorder) and 105 controls. Participants completed the Gastrointestinal Dysfunction Scale for PD (GIDS-PD) and standardised disease severity assessments. Whole gut transit time (WGTT) was measured by ingestion of blue dye and recorded time to blue stools appearance ('Blue Poop Challenge') in a subset of PD cases. Gastrointestinal symptoms were more common and prevalent in iRBD and PD versus controls, and WGTT was significantly higher in PD versus controls. After adjustment for confounding factors, disease stage was not a significant predictor of GIDS-PD Constipation or Bowel Irritability scores. Longitudinal assessment of GIDS-PD scores and WGTT confirmed stability over a 4 year period. Bowel dysfunction may be a phenotypic feature in a subset of Parkinson's with implications for patient stratification and management.
Collapse
Affiliation(s)
- Marta Camacho
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Julia C Greenland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cyrus Daruwalla
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kirsten M Scott
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bina Patel
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Joana Ribeiro
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Molly O'Reilly
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michele T Hu
- Nuffield Department Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
2
|
Roura I, Pardo J, Martín-Barceló C, Falcon C, Oltra J, Campabadal A, Bargalló N, Serradell M, Mayà G, Montini A, Pont-Sunyer C, Gaig C, Buongiorno M, Junqué C, Iranzo A, Segura B. Clinical and brain volumetric correlates of decreased DTI-ALPS, suggestive of local glymphatic dysfunction, in iRBD. NPJ Parkinsons Dis 2025; 11:87. [PMID: 40268930 PMCID: PMC12018923 DOI: 10.1038/s41531-025-00942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Glymphatic alterations may underlie neurodegeneration in alpha-synucleinopathies. Reduced Diffusion-Tensor Imaging ALong the Perivascular Space (DTI-ALPS), a proxy of perivascular glymphatic activity, has been scarcely studied in isolated REM sleep behaviour disorder (iRBD), a prodromal synucleinopathy stage. Furthermore, its associations with clinical symptoms and brain structural abnormalities remain unexplored. We assessed the DTI-ALPS in sixty-two patients with iRBD and twenty-three healthy controls (HC), exploring its associations with clinical symptoms, cortical thickness and brain volumetric data. iRBD patients exhibited a lower DTI-ALPS and poorer odor identification, semantic fluency and processing speed relative to HC. The DTI-ALPS positively correlated with cognitive performance, olfactory function and amygdalar, hippocampal, brainstem and diencephalic volumes, and negatively with age in iRBD. Perivascular glymphatic activity is compromised in iRBD and is associated with brain atrophy and clinical risk factors of progression to alpha-synucleinopathies, supporting the potential of the DTI-ALPS index as an early imaging neurodegeneration marker.
Collapse
Affiliation(s)
- Ignacio Roura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Cristina Martín-Barceló
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Carles Falcon
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Imaging Group, Centro de Investigación Biomédica en Red sobre Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Catalonia, Spain
| | - Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Aging Research Center, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Neurology Service, Consorci Corporació Sanitària Parc Taulí de Sabadell, Barcelona, Catalonia, Spain
| | - Nuria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Imaging Diagnostic Center (CDI), Hospital Clínic Universitari de Barcelona, Barcelona, Catalonia, Spain
| | - Mònica Serradell
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Gerard Mayà
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Angelica Montini
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Claustre Pont-Sunyer
- Movement Disorders Unit, Neurology Service, Fundació Privada Hospital Asil de, Granollers, Barcelona, Catalonia, Spain
| | - Carles Gaig
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain
| | - Alex Iranzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain.
| | - Bàrbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Baldelli L, Sambati L, Di Laudo F, Guaraldi P, Giannini G, Cecere A, Loddo G, Mainieri G, Mignani F, Barletta G, Cortelli P, Provini F, Calandra-Buonaura G. Association of Cardiovascular Autonomic Failure With Progression and Phenoconversion in Isolated REM Sleep Behavior Disorder. Neurology 2025; 104:e213470. [PMID: 40112275 PMCID: PMC11927751 DOI: 10.1212/wnl.0000000000213470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/15/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Isolated REM sleep behavior disorder (iRBD) is a prodromal state of α-synucleinopathies, presenting years before overt neurodegenerative disorders. Autonomic nervous system (ANS) involvement, particularly cardiovascular autonomic failure, may indicate progression. However, its role as a (multidimensional) marker for disease progression and phenoconversion remains unclear. This study aimed to investigate whether cardiovascular autonomic failure and symptoms of autonomic dysfunction serve as multidimensional markers in patients with iRBD. METHODS We conducted a prospective cohort study of patients with iRBD (iRBDs) and controls. Participants underwent cardiovascular reflex tests (CRTs) with beat-to-beat monitoring of blood pressure (BP) and ANS symptom assessments at baseline and annually. Primary outcomes were prevalence and progression of cardiovascular autonomic failure and the risk factors of phenoconversion. Longitudinal changes were evaluated through mixed-effects regression, predictors associated with conversion with Cox regression analysis. RESULTS Sixty-four iRBDs (mean age 68.89 ± 6.75 years, 75% male) and 67 controls (66.57 ± 7.91 years, 68% male) were recruited. At baseline, iRBDs exhibited a prevalent sympathetic cardiovascular dysfunction, with more frequent neurogenic orthostatic hypotension (nOH in 9 iRBDs) and abnormal BP responses to CRTs (pathologic Valsalva maneuver [VM] overshoot in 27 iRBDs). Longitudinal data demonstrated progressive deterioration of sympathetic baroreflex function, with increased prevalence of nOH (7 iRBDs with incident nOH; yearly odds ratio [OR] = 2.44) and deterioration of parasympathetic cardiovagal function. Thirteen patients (20.3%) phenoconverted to α-synucleinopathies. Neurogenic OH (hazard ratio [HR] = 5.05), altered sympathetic baroreflex function (pathologic VM HR = 3.49), and blunted parasympathetic cardiovagal responses (pathologic deep breathing heart rate ratio HR = 3.27) were significant risk factors for phenoconversion; their early appearance 5 years from iRBD onset increased the conversion risk, up to 4-fold. Symptoms of autonomic failure were more prevalent in iRBD and deteriorated over time but failed to predict conversion. DISCUSSION Progressive deterioration of cardiovascular autonomic function is a feature of iRBDs and affects the risk of phenoconversion. Limitations include the relatively short follow-up period and small number of converters. This study highlights the importance of objective cardiovascular autonomic testing as a multidimensional marker for risk stratification in iRBD.
Collapse
Affiliation(s)
- Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Felice Di Laudo
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Pietro Guaraldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Giulia Giannini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Annagrazia Cecere
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Giuseppe Loddo
- Department of Primary Care, Azienda AUSL di Bologna, Italy
| | - Greta Mainieri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Francesco Mignani
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Giorgio Barletta
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; and
| |
Collapse
|
4
|
de Oliveira P, Rodolpho Ramalho SH, Martins B, Cardoso F. Is rapid eye movement sleep behavior disorder a marker of Parkinson's disease severity? Parkinsonism Relat Disord 2025; 131:107258. [PMID: 39793322 DOI: 10.1016/j.parkreldis.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by motor and non-motor features. There are several proposed clinical markers to define disease severity. However, if rapid eye movement sleep behavior disorder (RBD) is associated with worse prognosis of both motor and non-motor findings in PD is unknown. OBJECTIVE To determine whether RBD is a marker of PD clinical severity. METHODS We cross-sectionally compared patients according to the presence of RBD and used Hoehn Yahr, Schwab and England (ADL), MDS-UPDRS, brain magnetic resonance, polysomnography and autonomic reactivity tests to evaluate PD stage and disability. Pairwise comparisons and regression techniques were used to investigate the association of PD clinical markers with RBD. RESULTS We enrolled 120 PD patients. RBD was present in 46 % (n = 55; median age 65 years; 67 % male), who were compared to PD patients without RBD (n = 65, median age 62 years, 64 % male). There was also a healthy control group comprising 48 subjects (median age 57 years, 54 % male). Comparing PD patients with and without RBD, RBD was associated with higher MDS-UPDRS Part II scores [15(11-21) x 12(7-16), p = 0.02], higher frequency of abnormal gait (43,6 % x 21,5 %; p = 0.01), greater use of walking aids (21,8 % x 4,6 %; p = 0.005), greater dysautonomia (56,4 % x 47,7 %, p = 0.002) and osteoporosis [PR 1,64(1.37-1.96), p < 0.001) and lower ADL scores [80(80-90) x 90(80-90); p = 0.002], CONCLUSION: The presence of RBD in PD patients was associated with indirect indicators of motor impairment, lower independence in ADL, possibly a higher frequency of dysautonomia and with a higher frequency of osteoporosis.
Collapse
Affiliation(s)
- Pérola de Oliveira
- Department of Neurology, SARAH Network of Rehabilitation Hospitals, Brasília, DF, Brazil
| | | | - Bernardo Martins
- Department of Radiology, SARAH Network of Rehabilitation Hospitals, Brasília, DF, Brazil
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Department of Clinical Medicine, Federal University of Minas Gerais, Av Pasteur 89/1107, 30150-290, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Lee DA, Lee HJ, Park KM. Brain MRI Detection of an Abnormal Peak Width of Skeletonized Mean Diffusivity in REM Sleep Behavior Disorder. J Neuroimaging 2025; 35:e70009. [PMID: 39786324 DOI: 10.1111/jon.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND AND PURPOSE Peak width of skeletonized mean diffusivity (PSMD) is a novel marker of white matter damage, which may be related to small vessel disease. This study aimed to investigate the presence of white matter damage in patients with isolated rapid eye movement sleep behavior disorder (RBD) using PSMD. METHODS We enrolled patients with newly diagnosed isolated RBD confirmed by polysomnography and age- and sex-matched healthy controls. Diffusion tensor imaging (DTI) was conducted using a 3-Tesla MRI scanner. We measured the PSMD based on DTI in several steps, including preprocessing, skeletonization, application of a custom mask, and histogram analysis, using the Functional Magnetic Resonance Imaging of the Brain Software Library program. We compared the incidence of PSMD between patients with RBD and healthy controls and performed a correlation analysis between PSMD and clinical factors in patients with RBD. RESULTS Thirty patients with isolated RBD and 41 healthy controls were enrolled. The PSMD was significantly higher in patients with RBD than that in the healthy controls (3.078 vs. 2.746 × 10-4 mm2/s, p = 0.001). In addition, PSMD positively correlated with age in patients with RBD (r = 0.477, p = 0.007). However, PSMD was not associated with other clinical or polysomnographic factors. CONCLUSION Patients with isolated RBD had a higher PSMD than healthy controls, indicating the evidence of white matter damage in patients with RBD. This finding highlights the potential of PSMD as a marker for detecting white matter damage, which may be related to small vessel diseases, in patients with sleep disorders.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
6
|
Navarro-Otano J, Llansó L, Alejaldre A, Diez L, Santamaría J, Iranzo A. Autonomic nervous system dysfunction in idiopathic REM sleep behavior disorder as a short-term risk for a synucleinopathy. J Neurol 2024; 272:1. [PMID: 39621109 DOI: 10.1007/s00415-024-12787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Idiopathic REM sleep behavior disorder (iRBD) is a prodromal marker of the alpha-synucleinopathies, in which autonomic nervous system (ANS) involvement may occur. We aimed to characterize the presence and severity of subjective and objective ANS dysfunction in iRBD and assess its capacity to predict short-term clinical progression to a synucleinopathy. METHODS Prospective study of patients with polysomnography-confirmed iRBD in whom symptomatic ANS involvement was assessed using the Composite Autonomic Symptom Score (COMPASS-31) and objective dysfunction with the Composite Autonomic Severity Score (CASS). Baseline ANS data were compared between those who later developed a synucleinopathy and those who did not. RESULTS We evaluated 25 subjects with iRBD without risk factors for autonomic neuropathy and at least 6 months of follow-up (mean: 19 months). At the end of the study, seven (28%) patients developed a synucleinopathy, namely Parkinson's disease (n = 5) and dementia with Lewy bodies (n = 2). 73.7% of patients had COMPASS-31 scores above the normal cut-off, while no score differences regarding phenoconversion status were observed. At baseline, 85.7% of the subjects who phenoconverted exhibited at least one abnormal result in the CASS score, compared to 38.9% of subjects who remained disease-free (p = 0.035). Adrenergic dysfunction evaluated by an impaired overshoot in Valsalva phase IV and by pressure recovery time was associated with the development of overt synucleinopathy (p = 0.032 and 0.033, respectively). CONCLUSION Symptomatic and subclinical ANS dysfunctions are common in iRBD. ANS dysfunction affecting mainly the adrenergic system seems to be a short-term risk for the development of a synucleinopathy.
Collapse
Affiliation(s)
- Judith Navarro-Otano
- Neurology Service, Hospital Clínic, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, - IDIBAPS, Barcelona, Spain.
| | - Laura Llansó
- Neurology Service, Hospital Clínic, Barcelona, Spain
- Neurology Service, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau, Barcelona, Spain
| | | | - Laura Diez
- Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Joan Santamaría
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, IDIBAPS, Barcelona, Spain
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
7
|
Miyamoto T, Nakajima I, Arikawa T, Miyamoto M. Bowel movement frequency and difficult defecation using constipation assessment scale in patients with isolated REM sleep behavior disorder. Clin Park Relat Disord 2024; 11:100269. [PMID: 39286572 PMCID: PMC11404085 DOI: 10.1016/j.prdoa.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction This study evaluated constipation, including reduced bowel movement frequency and difficult defecation, in patients with isolated rapid eye movement sleep behavior disorder (IRBD), which is prodromal Parkinson's disease (PD) or dementia with Lewy bodies (DLB) in middle-aged and older adults. Methods We used a validated Japanese version of the Constipation Assessment Scale (CAS-J) to evaluate bowel habits over 1 month in 117 men aged 50-86 years and 34 women aged 56-86 years with video-polysomnography-confirmed IRBD and 22 controls. Furthermore, we performed a longitudinal assessment of outcomes at follow-up visits. Results The CAS-J score was higher in the 22 IRBD patients than in 22 age- and gender-matched paired controls. In 151 IRBD patients, the CAS-J score was higher for women than for men. At baseline, the CAS-J score was similar between patients who developed PD and DLB, but the three IRBD patients who developed multiple system atrophy had a low CAS-J score. Those with constipation (CAS-J score ≥ 2) converted to PD or DLB in a significantly shorter time duration (i.e., time frame for phenoconversion) than those with CAS-J score < 2 (log-rank test, p < 0.001). When adjusted for age and gender, Cox hazards analysis revealed that the CAS-J score significantly predicted phenoconversion to PD or DLB (hazard ratio: 5.9, 95 % confidence interval: 1.8-19.1, p = 0.003). Conclusions Constipation, i.e., reduced bowel movement frequency and difficult defecation, was common in middle-aged and elderly patients with IRBD, and CAS-J score predicted phenoconversion to PD or DLB.
Collapse
Affiliation(s)
- Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center, Japan
| | - Itsuo Nakajima
- Center of Sleep Medicine, Dokkyo Medical University, Japan
| | - Takuo Arikawa
- Center of Sleep Medicine, Dokkyo Medical University, Japan
| | | |
Collapse
|
8
|
Xu P, Wei Y, Wu H, Zhang L. Genetic associations between Rapid Eye Movement (REM) sleep behavior disorder and cardiovascular diseases. PLoS One 2024; 19:e0301112. [PMID: 38771893 PMCID: PMC11108173 DOI: 10.1371/journal.pone.0301112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Previous studies revealed that sleep disorders are potential risk factors for cardiovascular diseases, such as obstructive sleep apnea and rapid eye movement (REM) sleep behavior disorder (RBD). However, the causal associations between RBD and cardiovascular diseases remained unknown. MATERIALS AND METHODS We used the latest and largest summary-level genome-wide association studies of RBD, stroke and its subtypes, coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF) to select genetic variants as the instrumental variables. Mendelian randomization (MR) analysis was performed to test the causal associations between RBD and the cardiovascular diseases above. Inverse variance weighted method was used as the main analysis. RESULTS After multiple comparisons, genetically predicted RBD was significantly associated with the risk of HF [odds ratio (OR) = 1.033, 95% CI 1.013-1.052, p = 0.001]. Leave-one-out analysis further supported the robustness of the causal association. Furthermore, we identified a suggestive association between genetically predicted MI and RBD (OR = 0.716, 95% CI 0.546-0.940, p = 0.016). However, in our study no associations were identified of RBD with CAD or stroke and its subtypes. CONCLUSION Our study highlighted the potential associations between RBD and cardiovascular diseases at genetic level, including HF and MI. More studies were required to clarify the biological mechanisms involved the associations.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurosurgery, Nanyang Central Hospital, Nanyang, Henan, China
| | - Yitong Wei
- Department of Neurosurgery, Nanyang Central Hospital, Nanyang, Henan, China
| | - Haibo Wu
- Department of Neurology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Li Zhang
- Department of Neurology, Nanyang Central Hospital, Nanyang, Henan, China
| |
Collapse
|
9
|
Oertel WH, Paule E, Hasemann T, Sittig E, Belke M, Unger MM, Mayer G, Werner R, Jansen A, Pape H, Höglinger GU, Vadasz D, Müller HH, Knake S, Janzen A. Reduced Gastric Contraction in Rapid-Eye-Movement Sleep Behavior Disorder and De Novo Parkinson's Disease. Mov Disord 2024; 39:53-63. [PMID: 37955157 DOI: 10.1002/mds.29652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Reduced gastric motility in Parkinson's disease (PD) has been reported, but hardly any study exists in subjects with isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD), a specific prodrome of α-synucleinopathies. OBJECTIVES We compared the gastric motility of 17 iRBD subjects with that of 18 PD subjects (15 drug naive, 3 early treated in defined off) and 15 healthy controls (HC) with real-time magnetic resonance imaging (rtMRI). METHODS After overnight fasting, participants consumed a standardized breakfast and underwent a 3-T rtMRI of the stomach. Amplitude and velocity of the peristaltic waves were analyzed under blinded conditions. Gastric motility index (GMI) was calculated. The procedure was repeated in 12 of 17 iRBD subjects ~2.5 years later. Nine of these 12 iRBD subjects were hyposmic. RESULTS In iRBD and PD subjects the amplitude of the peristaltic waves was significantly reduced compared with HCs (iRBD vs. HC: 8.7 ± 3.7 vs. 11.9 ± 4.1 mm, P = 0.0097; PD vs. HC: 6.8 ± 2.2 vs. 11.9 ± 4.1 mm, P = 0.0001). The amplitude in iRBD and PD subjects was decreased to the same extent. The GMI was reduced in only PD subjects (PD vs. HC: P = 0.0027; PD vs. iRBD: P = 0.0203). After ~2.5 years the amplitude in iRBD subjects did not significantly decrease further. CONCLUSION The amplitude of the peristaltic waves was markedly reduced in iRBD, a prodrome of α-synucleinopathies. This reduction was similar to the extent observed already in manifest early PD. This finding implies that the α-synuclein pathology affects the innervation of the stomach already in the prodromal stage. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wolfgang H Oertel
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Esther Paule
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Theresa Hasemann
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Elisabeth Sittig
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Marcus Belke
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Marcus M Unger
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Department of Neurology, Saarland University, Saarbrücken, Germany
- Department of Neurology, SHG Kliniken Sonnenberg, Saarbruecken, Germany
| | - Geert Mayer
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Rita Werner
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Andreas Jansen
- Core-Facility Brain Imaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
- CMBB-Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Heidi Pape
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Günter U Höglinger
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University Munich, München, Germany
| | - Dávid Vadasz
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Hans-Helge Müller
- Institute of Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Marburg, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Core-Facility Brain Imaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
- CMBB-Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| |
Collapse
|
10
|
Zhang D, Zhou L, Yao J, Shi Y, He H, Wei H, Tong Q, Liu J, Wu T. Increased Free Water in the Putamen in Idiopathic REM Sleep Behavior Disorder. Mov Disord 2023; 38:1645-1654. [PMID: 37342973 DOI: 10.1002/mds.29499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND It has been suggested that the loss of nigrostriatal dopaminergic axon terminals occurs before the loss of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). This study aimed to use free-water imaging to evaluate microstructural changes in the dorsoposterior putamen (DPP) of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) patients, which is considered a prodromal stage of synucleinopathies. METHODS Free water values in the DPP, dorsoanterior putamen (DAP), and posterior SN were compared between the healthy controls (n = 48), iRBD (n = 43) and PD (n = 47) patients. In iRBD patients, the relationships between baseline and longitudinal free water values and clinical manifestations or dopamine transporter (DAT) striatal binding ratio (SBR) were analyzed. RESULTS Free water values were significantly higher in the DPP and posterior substantia nigra (pSN), but not in the DAP, in the iRBD and PD groups than in controls. In iRBD patients, free water values in the DPP were progressively increased and correlated with the progression of clinical manifestations and the striatal DAT SBR. Baseline free water in the DPP was negatively correlated with striatal DAT SBR and hyposmia and positively correlated with motor deficits. CONCLUSIONS This study demonstrates that free water values in the DPP are increased cross-sectionally and longitudinally and associated with clinical manifestations and the function of the dopaminergic system in the prodromal stage of synucleinopathies. Our findings indicate that free-water imaging of the DPP has the potential to be a valid marker of early diagnosis and progression of synucleinopathies. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
| | - Yuting Shi
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
- School of Physics, Zhejiang University, Zhejiang, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Koeglsperger T, Rumpf SL, Schließer P, Struebing FL, Brendel M, Levin J, Trenkwalder C, Höglinger GU, Herms J. Neuropathology of incidental Lewy body & prodromal Parkinson's disease. Mol Neurodegener 2023; 18:32. [PMID: 37173733 PMCID: PMC10182593 DOI: 10.1186/s13024-023-00622-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with a loss of dopaminergic (DA) neurons. Despite symptomatic therapies, there is currently no disease-modifying treatment to halt neuronal loss in PD. A major hurdle for developing and testing such curative therapies results from the fact that most DA neurons are already lost at the time of the clinical diagnosis, rendering them inaccessible to therapy. Understanding the early pathological changes that precede Lewy body pathology (LBP) and cell loss in PD will likely support the identification of novel diagnostic and therapeutic strategies and help to differentiate LBP-dependent and -independent alterations. Several previous studies identified such specific molecular and cellular changes that occur prior to the appearance of Lewy bodies (LBs) in DA neurons, but a concise map of such early disease events is currently missing. METHODS Here, we conducted a literature review to identify and discuss the results of previous studies that investigated cases with incidental Lewy body disease (iLBD), a presumed pathological precursor of PD. RESULTS Collectively, our review demonstrates numerous cellular and molecular neuropathological changes occurring prior to the appearance of LBs in DA neurons. CONCLUSIONS Our review provides the reader with a summary of early pathological events in PD that may support the identification of novel therapeutic and diagnostic targets and aid to the development of disease-modifying strategies in PD.
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany.
| | - Svenja-Lotta Rumpf
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Patricia Schließer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix L Struebing
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Centre for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- Clinical Study Unit, DZNE - German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Medizinische Hochschule Hannover (MHH), Hannover, Germany
| | - Jochen Herms
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Centre for Neuropathology and Prion Research, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| |
Collapse
|
12
|
Figorilli M, Meloni M, Lanza G, Casaglia E, Lecca R, Saibene FL, Congiu P, Puligheddu M. Considering REM Sleep Behavior Disorder in the Management of Parkinson's Disease. Nat Sci Sleep 2023; 15:333-352. [PMID: 37180094 PMCID: PMC10167974 DOI: 10.2147/nss.s266071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is the result of the loss of physiological inhibition of muscle tone during REM sleep, characterized by dream-enacting behavior and widely recognized as a prodromal manifestation of alpha-synucleinopathies. Indeed, patients with isolated RBD (iRBD) have an extremely high estimated risk to develop a neurodegenerative disease after a long follow up. Nevertheless, in comparison with PD patients without RBD (PDnoRBD), the occurrence of RBD in the context of PD (PDRBD) seems to identify a unique, more malignant phenotype, characterized by a more severe burden of disease in terms of both motor and non-motor symptoms and increased risk for cognitive decline. However, while some medications (eg, melatonin, clonazepam, etc.) and non-pharmacological options have been found to have some therapeutic benefits on RBD there is no available treatment able to modify the disease course or, at least, slow down the neurodegenerative process underlying phenoconversion. In this scenario, the long prodromal phase may allow an early therapeutic window and, therefore, the identification of multimodal biomarkers of disease onset and progression is becoming increasingly crucial. To date, several clinical (motor, cognitive, olfactory, visual, and autonomic features) neurophysiological, neuroimaging, biological (biofluids or tissue biopsy), and genetic biomarkers have been identified and proposed, also in combination, as possible diagnostic or prognostic markers, along with a potential role for some of them as outcome measures and index of treatment response. In this review, we provide an insight into the present knowledge on both existing and future biomarkers of iRBD and highlight the difference with PDRBD and PDnoRBD, including currently available treatment options.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elisa Casaglia
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Huang B, Chau SWH, Liu Y, Chan JWY, Wang J, Ma SL, Zhang J, Chan PKS, Yeoh YK, Chen Z, Zhou L, Wong SH, Mok VCT, To KF, Lai HM, Ng S, Trenkwalder C, Chan FKL, Wing YK. Gut microbiome dysbiosis across early Parkinson's disease, REM sleep behavior disorder and their first-degree relatives. Nat Commun 2023; 14:2501. [PMID: 37130861 PMCID: PMC10154387 DOI: 10.1038/s41467-023-38248-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
The microbiota-gut-brain axis has been suggested to play an important role in Parkinson's disease (PD). Here we performed a cross-sectional study to profile gut microbiota across early PD, REM sleep behavior disorder (RBD), first-degree relatives of RBD (RBD-FDR), and healthy controls, which could reflect the gut-brain staging model of PD. We show gut microbiota compositions are significantly altered in early PD and RBD compared with control and RBD-FDR. Depletion of butyrate-producing bacteria and enrichment of pro-inflammatory Collinsella have already emerged in RBD and RBD-FDR after controlling potential confounders including antidepressants, osmotic laxatives, and bowel movement frequency. Random forest modelling identifies 12 microbial markers that are effective to distinguish RBD from control. These findings suggest that PD-like gut dysbiosis occurs at the prodromal stages of PD when RBD develops and starts to emerge in the younger RBD-FDR subjects. The study will have etiological and diagnostic implications.
Collapse
Affiliation(s)
- Bei Huang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steven W H Chau
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaping Liu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Joey W Y Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Wang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Suk Ling Ma
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jihui Zhang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kit Yeoh
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Zhou
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sunny Hei Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Fai To
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Simon Ng
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claudia Trenkwalder
- Clinic for Neurosurgery, University Medical Center, Georg August University Göttingen, Göttingen, Germany
- Center of Parkinsonism and Movement Disorders, Paracelsus-Elena Hospital, Kassel, Germany
| | - Francis K L Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Ryman S, Vakhtin AA, Richardson SP, Lin HC. Microbiome-gut-brain dysfunction in prodromal and symptomatic Lewy body diseases. J Neurol 2023; 270:746-758. [PMID: 36355185 PMCID: PMC9886597 DOI: 10.1007/s00415-022-11461-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Lewy body diseases, such as Parkinson's disease and dementia with Lewy bodies, vary in their clinical phenotype but exhibit the same defining pathological feature, α-synuclein aggregation. Microbiome-gut-brain dysfunction may play a role in the initiation or progression of disease processes, though there are multiple potential mechanisms. We discuss the need to evaluate gastrointestinal mechanisms of pathogenesis across Lewy body diseases, as disease mechanisms likely span across diagnostic categories and a 'body first' clinical syndrome may better account for the heterogeneity of clinical presentations across the disorders. We discuss two primary hypotheses that suggest that either α-synuclein aggregation occurs in the gut and spreads in a prion-like fashion to the brain or systemic inflammatory processes driven by gastrointestinal dysfunction contribute to the pathophysiology of Lewy body diseases. Both of these hypotheses posit that dysbiosis and intestinal permeability are key mechanisms and potential treatment targets. Ultimately, this work can identify early interventions targeting initial disease pathogenic processes before the development of overt motor and cognitive symptoms.
Collapse
Affiliation(s)
- Sephira Ryman
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Andrei A Vakhtin
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Henry C Lin
- Department of Medicine, The University of New Mexico, Albuquerque, NM, 87131, USA
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
| |
Collapse
|
15
|
Wang C, Chen F, Li Y, Liu J. Possible predictors of phenoconversion in isolated REM sleep behaviour disorder: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:395-403. [PMID: 34937751 DOI: 10.1136/jnnp-2021-328062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND A number of promising biomarkers for predicting imminent α-synucleinopathies have been suggested in isolated rapid eye movement sleep behaviour disorder (iRBD). However, existing evidence is conflicting without quantitative evaluation. METHODS PubMed, Web of Science and ClinicalTrials.gov were searched through June 2021 to identify possible predictors of phenoconversion from iRBD to Parkinson's disease (PD). The pooled HRs and standardised mean differences (SMDs) with 95% CIs were calculated using fixed-effects or random-effects model. RESULTS A total of 123 studies were included in the meta-analysis. Significant motor dysfunction (HR 1.83, 95% CI 1.33 to 2.51, I2=86.8%, p<0.001), constipation (HR 1.52, 95% CI 1.26 to 1.84, I2=8.3%, p=0.365), orthostatic hypotension (HR 1.93, 95% CI 1.05 to 3.53, I2=54.9%, p=0.084), hyposmia (HR 2.78, 95% CI 1.83 to 4.23, I2=23.9%, p=0.255), mild cognitive impairment (HR 2.27, 95% CI 1.58 to 3.27, I2=0%, p=0.681) and abnormal colour vision (SMD -0.34, 95% CI -0.63 to -0.05, I2=45.6%, p=0.087) correlated with susceptibility to PD. The process can also be traced by putaminal dopamine transporter imaging (HR 2.60, 95% CI 1.94 to 3.48, I2=0%, p=0.781) and tonic electromyographic activity (HR 1.50, 95% CI 1.04 to 2.15, I2=70%, p=0.018). CONCLUSIONS The predictive value of each biomarker was initially highlighted with comprehensive evaluation. Combining specific predictors with high sensitivity is promising for detecting phenoconversion in the prodromal stage. Large-scale and multicentre studies are pivotal to extend our findings.
Collapse
Affiliation(s)
- Chunyi Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China .,CAS Center for Excellence in Brain Science & Intelligence Technology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregneration, Nantong University, Nantong, China
| |
Collapse
|
16
|
Zhang H, Iranzo A, Högl B, Arnulf I, Ferini‐Strambi L, Manni R, Miyamoto T, Oertel WH, Dauvilliers Y, Ju Y, Puligheddu M, Sonka K, Pelletier A, Montplaisir JY, Stefani A, Ibrahim A, Frauscher B, Leu‐Semenescu S, Zucconi M, Terzaghi M, Miyamoto M, Janzen A, Figorilli M, Fantini ML, Postuma RB. Risk factors for phenoconversion in
REM
sleep behavior disorder. Ann Neurol 2022; 91:404-416. [DOI: 10.1002/ana.26298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Zhang
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China
- Department of Neurology McGill University, Montreal General Hospital Montreal Canada
| | - Alex Iranzo
- Neurology Service, Hospital Clinic de Barcelona IDIBAPS, CIBERNED Barcelona Spain
| | - Birgit Högl
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Isabelle Arnulf
- Sorbonne University, Paris Brain Institute and sleep disorder unit Pitie‐Salpetriere Hospital, APHP Paris France
| | | | | | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center Saitama Japan
| | | | - Yves Dauvilliers
- Department of Neurology, Hôpital Gui de Chauliac, Montpellier, INSERM U1061 Montpellier F‐34093 Cedex 5 France
| | - Yo‐EI Ju
- Washington University School of Medicine, Department of Neurology St. Louis Missouri USA
| | - Monica Puligheddu
- Sleep Center, Department of Cardiovascular and Neurological Sciences University of Cagliari Italy
| | - Karel Sonka
- Department of Neurology First Faculty of Medicine, Charles University and General University Hospital Prague Czech Republic
| | - Amélie Pelletier
- Centre d'Études Avancées en Médecine du Sommeil Hôpital du Sacré‐Cœur de Montréal Montréal Canada
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil Hôpital du Sacré‐Cœur de Montréal Montréal Canada
- Department of Psychiatry University of Montreal Montreal Canada
| | - Ambra Stefani
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Abubaker Ibrahim
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Birgit Frauscher
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Smaranda Leu‐Semenescu
- Sorbonne University, Paris Brain Institute and sleep disorder unit Pitie‐Salpetriere Hospital, APHP Paris France
| | - Marco Zucconi
- Sleep Disorders Center Università Vita‐Salute San Raffaele Milan Italy
| | | | - Masayuki Miyamoto
- Department of Neurology Dokkyo Medical University School of Medicine Tochigi Japan
| | - Annette Janzen
- Department of Neurology Philipps‐Universität Marburg Germany
| | - Michela Figorilli
- Sleep Center, Department of Cardiovascular and Neurological Sciences University of Cagliari Italy
| | - Maria L Fantini
- Sleep Center, Department of Cardiovascular and Neurological Sciences University of Cagliari Italy
- Department of Neurology Université d'Auvergne Clermont‐Ferrand France
| | - Ronald B Postuma
- Department of Neurology McGill University, Montreal General Hospital Montreal Canada
- Centre d'Études Avancées en Médecine du Sommeil Hôpital du Sacré‐Cœur de Montréal Montréal Canada
| |
Collapse
|
17
|
Kim H, Jung HR, Kim JB, Kim DJ. Autonomic Dysfunction in Sleep Disorders: From Neurobiological Basis to Potential Therapeutic Approaches. J Clin Neurol 2022; 18:140-151. [PMID: 35274834 PMCID: PMC8926769 DOI: 10.3988/jcn.2022.18.2.140] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Sleep disorder has been portrayed as merely a common dissatisfaction with sleep quality and quantity. However, sleep disorder is actually a medical condition characterized by inconsistent sleep patterns that interfere with emotional dynamics, cognitive functioning, and even physical performance. This is consistent with sleep abnormalities being more common in patients with autonomic dysfunction than in the general population. The autonomic nervous system coordinates various visceral functions ranging from respiration to neuroendocrine secretion in order to maintain homeostasis of the body. Because the cell population and efferent signals involved in autonomic regulation are spatially adjacent to those that regulate the sleep-wake system, sleep architecture and autonomic coordination exert effects on each other, suggesting the presence of a bidirectional relationship in addition to shared pathology. The primary goal of this review is to highlight the bidirectional and shared relationship between sleep and autonomic regulation. It also introduces the effects of autonomic dysfunction on insomnia, breathing disorders, central disorders of hypersomnolence, parasomnias, and movement disorders. This information will assist clinicians in determining how neuromodulation can have the greatest therapeutic effects in patients with sleep disorders.
Collapse
Affiliation(s)
- Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Hee Ra Jung
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
- Department of Artificial Intelligence, Korea University, Seoul, Korea
- NeuroTx, Co., Ltd., Seoul, Korea
| |
Collapse
|
18
|
Zhou Z, Zhou X, Zhou X, Xiang Y, Zhu L, Qin L, Wang Y, Pan H, Zhao Y, Sun Q, Xu Q, Wu X, Yan X, Guo J, Tang B, Liu Z. Characteristics of Autonomic Dysfunction in Parkinson's Disease: A Large Chinese Multicenter Cohort Study. Front Aging Neurosci 2021; 13:761044. [PMID: 34916924 PMCID: PMC8670376 DOI: 10.3389/fnagi.2021.761044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
Autonomic dysfunction (AutD) is one of the non-motor symptoms (NMSs) in Parkinson's disease (PD). To investigate the prevalence and clinical features of AutD in Chinese patients with PD, a large multicenter cohort of 2,556 individuals with PD were consecutively involved in the Parkinson's Disease and Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) between January 1, 2017, and December 31, 2019. The assessment of AutD was performed using the Scale for Outcomes in Parkinson's Disease for Autonomic Symptoms (SCOPA-AUT). The evaluation of motor symptoms and other NMSs were performed using well-established scales recommended by the Movement Disorder Society. We found that out of 2,556 patients with PD, 2,333 patients with PD (91.28%) had AutD. Compared with the group of patients with PD without AutD, the group of patients with PD with AutD had older age, older age of onset, longer disease duration, more severe motor symptoms, motor complications, and more frequent NMSs. As for partial correlation analysis, the total SCOPA-AUT score was significantly and positively associated with motor severity scales [Unified Parkinson's Disease Rating Scale (UPDRS) total score] and some of the NMSs [Rapid Eye Movement Sleep Behavior Disorder Questionnaire (RBD), Epworth Sleepiness Scale, Hamilton Depression Scale], Fatigue Severity Scale, and Parkinson's disease questionnaire. PD Sleep Scale was significantly and negatively correlated with AutD. With logistic regression analysis for potentially related factors, age, UPDRS total score, RBD, hyposmia, depression, and fatigue may be associated with PD with AutD. In conclusion, our multicenter cohort study reported the high prevalence of AutD in Chinese PD and revealed the associated factors of PD with AutD.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoting Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyin Wu
- Department of Public Health, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
19
|
Basaran S, Akıncı E. Screening autonomic functions in patients with restless legs syndrome: A case-control study in a tertiary care hospital. Auton Neurosci 2021; 237:102924. [PMID: 34871924 DOI: 10.1016/j.autneu.2021.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The clinical importance of autonomic involvement in patients with restless legs syndrome (RLS) remains unclear. To our knowledge, no study has explored the relationship between autonomic dysfunction and disease-related variables in patients with RLS. Therefore, this study aimed 1) to determine the presence of autonomic symptoms in drug-naïve patients with RLS in comparison with healthy controls using Scales for Outcomes in Parkinson's disease-Autonomic (SCOPA-AUT) questionnaire and 2) to evaluate the possible associations of autonomic dysfunction with clinical factors in RLS. METHODS A total of 70 drug-naïve patients with RLS and 85 healthy volunteers were enrolled. The SCOPA-AUT questionnaire and Epworth Sleepiness Scale (ESS) scores were used to determine autonomic functions and sleep propensity, respectively. Moreover, the International Restless Legs Syndrome Study Group rating scale was used to evaluate disease severity in the patient group. RESULTS Compared with the control group, the RLS group had significantly higher subscale scores (gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual [women]) and total scores of the SCOPA-AUT questionnaire (p < 0.05). In the patient group, there was a significant correlation between the total scores and subscale scores (gastrointestinal, cardiovascular, and thermoregulatory subscales) of the SCOPA-AUT questionnaire and disease severity. Moreover, ESS was positively correlated with the total scores and subscale scores (urinary, cardiovascular, and pupillomotor) of the SCOPA-AUT questionnaire. CONCLUSION Disease severity and daytime sleepiness may be related to autonomic dysfunction in RLS. Further studies focusing on autonomic functions in RLS are required to improve management strategies and clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov. NCT04906486; May 28, 2021.
Collapse
Affiliation(s)
- Sehnaz Basaran
- Department of Neurology, Kocaeli Derince Training and Research Hospital, Kocaeli, Turkey.
| | - Erhan Akıncı
- Department of Psychiatry, Canakkale Onsekiz Mart University Medicine Faculty, Canakkale, Turkey.
| |
Collapse
|
20
|
Cocoros NM, Svensson E, Szépligeti SK, Vestergaard SV, Szentkúti P, Thomsen RW, Borghammer P, Sørensen HT, Henderson VW. Long-term Risk of Parkinson Disease Following Influenza and Other Infections. JAMA Neurol 2021; 78:1461-1470. [PMID: 34694344 DOI: 10.1001/jamaneurol.2021.3895] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Influenza has been associated with the risk of developing Parkinson disease, but the association is controversial. Objective To examine whether prior influenza and other infections are associated with Parkinson disease more than 10 years after infection. Design, Setting, and Participants This case-control study used data from 1977 to 2016 from the Danish National Patient Registry. All individuals with Parkinson disease, excluding those with drug-induced parkinsonism, were included and matched to 5 population controls on sex, age, and date of Parkinson diagnosis. Data were analyzed from December 2019 to September 2021. Exposures Infections were ascertained between 1977 and 2016 and categorized by time from infection to Parkinson disease diagnosis. To increase specificity of influenza diagnoses, influenza exposure was restricted to months of peak influenza activity. Main Outcomes and Measures Parkinson disease diagnoses were identified between January 1, 2000, and December 31, 2016. Crude and adjusted odds ratios (ORs) and 95% CIs were calculated by conditional logistic regression overall and stratified by time between infection and Parkinson disease (5 years or less, more than 5 to 10 years, more than 10 years). Results Of 61 626 included individuals, 23 826 (38.7%) were female, and 53 202 (86.3%) were older than 60 years. A total of 10 271 individuals with Parkinson disease and 51 355 controls were identified. Influenza diagnosed at any time during a calendar year was associated with Parkinson disease more than 10 years later (OR, 1.73; 95% CI, 1.11-2.71). When influenza exposure was restricted to months of highest influenza activity, an elevated OR with a wider confidence interval was found (OR, 1.52; 95% CI, 0.80-2.89). There was no evidence of an association with any type of infection more than 10 years prior to Parkinson disease (OR, 1.04; 95% CI, 0.98-1.10). Several specific infections yielded increased odds of Parkinson disease within 5 years of infection, but results were null when exposure occurred more than 10 years prior. Conclusions and Relevance In this case-control study, influenza was associated with diagnoses of Parkinson disease more than 10 years after infection. These observational data suggest a link between influenza and Parkinson disease but do not demonstrate causality. While other infections were associated with Parkinson disease diagnoses soon after infection, null associations after more than 10 years suggest these shorter-term associations are not causal.
Collapse
Affiliation(s)
- Noelle M Cocoros
- Department of Population Medicine at Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Elisabeth Svensson
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,The Danish Clinical Quality Program, National Clinical Registries, Aarhus, Denmark
| | | | - Søren Viborg Vestergaard
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Péter Szentkúti
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Reimar W Thomsen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Clinical Excellence Research Center, Stanford University, Stanford, California
| | - Victor W Henderson
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Epidemiology and Population Health, Stanford University, Stanford, California.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
21
|
Terzaghi M, Pilati L, Ghiotto N, Arnaldi D, Versino M, Rustioni V, Rustioni G, Sartori I, Manni R. Twenty-four hour blood pressure profile in idiopathic REM sleep behaviour disorder. Sleep 2021; 45:6374537. [PMID: 34555174 DOI: 10.1093/sleep/zsab239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES To determine whether autonomic dysfunction in idiopathic REM sleep behaviour disorder (iRBD) affects circadian blood pressure (BP) profile. METHODS 21 iRBD (mean age 68.8±6.4, mean age at onset 62.2±9.3), 21 drug-free de novo Parkinson's disease (PD) subjects and 21 control subjects (HCs), comparable for age and sex, underwent 24-hour ambulatory BP monitoring. A prospective follow-up study was performed to evaluate the occurrence of neurodegenerative disorders in the iRBD cohort. RESULTS In the iRBD group, night-time systolic BP (SBP) was higher (124.0±20.0, p=.026), nocturnal BP decrease lower (4.0±8.7% for SBP and 8.7±8.0% for DBP, p=.001), and non-dipping status more frequent (71.4% for systolic and 52.4% for diastolic BP; p=.001 and p=.01 respectively) than in the HCs. Reverse dipping of SBP was found in 23.8% (p=.048) of the iRBD subjects. Non-dipping status was not associated with differences in gender, age, disease duration, age at disease onset, UPDRS score, presence of antihypertensive therapy or polysomnographic measures. Patients with PD showed daytime and night-time BP profiles comparable to those observed in iRBD. A sub-group analysis considering only the subjects without antihypertensive therapy (12 iRBD, 12 PD) showed results superimposable on those of the whole iRBD and PD groups.Longitudinal follow up (mean 5.1±1.9 years) showed no differences in BP profile at baseline between converters (n=6) and non-converters. CONCLUSIONS 24-hour BP control was impaired in iRBD. This impairment, similar to patterns observed in de novo PD, consisted of reduced amplitude of nocturnal dipping and increased frequency of non-dipping status. These findings could have implications for cardiovascular morbidity and mortality in iRBD.
Collapse
Affiliation(s)
- Michele Terzaghi
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Laura Pilati
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy.,Department of Biomedicine and Clinical Neuroscience, University of Palermo, Italy
| | - Natascia Ghiotto
- Interinstitutional Center of Neurological Medicine, IRCCS Mondino Foundation, Pavia, Italy
| | - Dario Arnaldi
- Clinical Neurology, DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Versino
- Neurology and Stroke Unit, ASST Sette laghi Ospedale di Circolo, Varese; DMC University of Insubria, Varese, Italy
| | - Valter Rustioni
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Gianluca Rustioni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ivana Sartori
- C. Munari Center of Epilepsy Surgery, Niguarda Hospital, Milan, Italy
| | - Raffaele Manni
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
22
|
Ye G, Li Y, Zhou L, Zhang Y, Zhu L, Zhao A, Kang W, Liu J. Predictors of Conversion to α-Synucleinopathy Diseases in Idiopathic Rapid Eye Movement Sleep Behavior Disorder. JOURNAL OF PARKINSONS DISEASE 2021; 10:1443-1455. [PMID: 32986685 DOI: 10.3233/jpd-202243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Idiopathic rapid eye movement sleep behavior disorder (iRBD) often precedes the development of α-synucleinopathy diseases. OBJECTIVE We aimed to assess the predictive value of clinical variables and biomarkers for the early development of α-synucleinopathy diseases in subjects with iRBD. METHODS 56 patients with RBD Screening Questionnaire (RBDSQ) scores ≥5 at baseline and subsequent visit were enrolled as probable iRBD from the Parkinson's Progression Markers Initiative (PPMI) database. Baseline clinical data and biomarkers were analyzed. The endpoint was defined as disease progression to α-synucleinopathy diseases. Cox proportional hazard and Kaplan-Meier analyses were used to evaluate the predictive values of the indicators. RESULTS During a mean follow-up duration of 5.1 years, 15 of 56 patients (26.8%) developed α-synucleinopathy diseases. Baseline clinical variables, including University of Pennsylvania Smell Identification Test (UPSIT, HR = 26.18, p = 0.004), 15-item Geriatric Depression Scale (GDS, HR = 14.26, p = 0.001), Montreal Cognitive Assessment (MoCA, HR = 3.56, p = 0.025), and Hopkins Verbal Learning Test Total recall (HVLT-TR, HR = 3.70, p = 0.014); genotype status of TMEM175 (HR = 3.74, p = 0.017), SCN3A (HR = 5.81, p = 0.022) and NUCKS1 (HR = 0.342, p = 0.049); ratio of phosphorylated tau to total tau (p-tau/t-tau, HR = 8.36, p = 0.001) in cerebrospinal fluid; and gray matter atrophy in inferior frontal gyrus (IFG, HR = 15.49, p = 0.001) were associated with phenoconversion to α-synucleinopathy diseases. A model combined the three independent variables (UPSIT, TMEM175 and gray matter atrophy in IFG) exhibited significantly improved predictive performance. CONCLUSION For patients with iRBD, progression to α-synucleinopathy diseases can be predicted with good accuracy using a model combining clinical variables and biomarkers, which could form a basis for future disease prevention.
Collapse
Affiliation(s)
- Guanyu Ye
- Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology & Institute of Neurology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichi Zhang
- Department of Neurology & Institute of Neurology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology & Institute of Neurology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Kang
- Department of Neurology, Ruijin Hospital/North Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Miglis MG, Adler CH, Antelmi E, Arnaldi D, Baldelli L, Boeve BF, Cesari M, Dall'Antonia I, Diederich NJ, Doppler K, Dušek P, Ferri R, Gagnon JF, Gan-Or Z, Hermann W, Högl B, Hu MT, Iranzo A, Janzen A, Kuzkina A, Lee JY, Leenders KL, Lewis SJG, Liguori C, Liu J, Lo C, Ehgoetz Martens KA, Nepozitek J, Plazzi G, Provini F, Puligheddu M, Rolinski M, Rusz J, Stefani A, Summers RLS, Yoo D, Zitser J, Oertel WH. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021; 20:671-684. [PMID: 34302789 DOI: 10.1016/s1474-4422(21)00176-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.
Collapse
Affiliation(s)
- Mitchell G Miglis
- Department of Neurology and Neurological Sciences and Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA, USA.
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Clinical Neurology, DINOGMI, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Baldelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Dall'Antonia
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Nico J Diederich
- Department of Neuroscience, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | | | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal-Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Ziv Gan-Or
- The Neuro-Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Research Site Rostock, Rostock, Germany
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Annette Janzen
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany
| | | | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Klaus L Leenders
- Department of Nuclear Medicine and Biomedical Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Claudio Liguori
- Sleep Medicine Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jun Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Lo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kaylena A Ehgoetz Martens
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; UOC Clinica Neurologica Rete Metropolitana NEUROMET, Bellaria Hospital, Bologna, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Michal Rolinski
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, South Korea
| | - Jennifer Zitser
- Department of Neurology and Neurological Sciences, University of California, San Francisco, CA, USA; Department of Neurology, Tel Aviv Sourasky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wolfgang H Oertel
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany; Institute for Neurogenomics, Helmholtz Center for Health and Environment, München-Neuherberg, Germany
| |
Collapse
|
24
|
Koch J, Willemsen K, Dogan I, Rolke R, Schulz JB, Schiefer J, Reetz K, Maier A. Quantitative sensory testing and norepinephrine levels in REM sleep behaviour disorder - a clue to early peripheral autonomic and sensory dysfunction? J Neurol 2021; 269:923-932. [PMID: 34170404 PMCID: PMC8782803 DOI: 10.1007/s00415-021-10675-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Studies have reported autonomic impairment in patients with idiopathic REM sleep behaviour disorder (iRBD), which is considered a prodromal stage of alpha-synucleinopathies. It is still debated whether central or peripheral pathologies are first manifestations of alpha-synucleinopathies. This study aimed to characterize autonomic and somatosensory function in iRBD patients. METHODS This cross-sectional prospective case-control study included 17 iRBD patients (mean age 66.3 ± 9.2 years) and 16 healthy controls (HCs, 66.6 ± 11.3 years). Quantitative sensory testing, neurological and neuropsychological assessments, norepinephrine blood plasma levels, tilt table examination with orthostatic blood pressure, and heart rate variability were carried out. Longitudinal data of 10 iRBD patients, including neurological, neuropsychological, and tilt table examination, were assessed. RESULTS iRBD patients more frequently presented with orthostatic dysfunction than HCs (70.6% vs. 6.3%, p < 0.0001). Supine norepinephrine plasma levels were normal, but lower in iRBD (249.59 ± 99.78 pg/ml iRBD, 354.13 ± 116.38 pg/ml HCs, p < 0.05). Quantitative sensory testing revealed impaired cold (CDT) and vibration detection thresholds (VDT) on the foot in iRBD (CDT foot iRBD - 1.24 ± 0.31, HCs - 9.89E-17 ± 0.25, VDT iRBD - 1.11 ± 0.47, HCs - 1.46E-16 ± 0.25, p < 0.05). Cold detection thresholds differed between the foot and hand among iRBD patients (foot - 1.24 ± 0.31, hand - 0.56 ± 0.25, p < 0.05). Longitudinal data revealed an increase in maximum systolic and diastolic orthostatic blood pressure changes and a decrease in the Valsalva ratio in the follow-up group (p < 0.05). CONCLUSION This study revealed autonomic dysfunction with somatosensory impairment, and decreased norepinephrine levels in iRBD, which may serve as a possible prodromal marker for developing alpha-synucleinopathy.
Collapse
Affiliation(s)
- Julia Koch
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Kira Willemsen
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Imis Dogan
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Johannes Schiefer
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen, Germany.
| |
Collapse
|
25
|
Oliveira PD, Cardoso F. Impact of rapid eye movement sleep behavior disorder and autonomic disorders on Parkinson's disease: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:156-166. [PMID: 33759983 DOI: 10.1590/0004-282x-anp-2020-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) has heterogeneous clinical manifestations and prognoses. It is accompanied by a group of motor and non-motor symptoms ranging from independence to total disability, limiting work and personal care activities. Currently, disease subtype markers for informing prognosis remain elusive. However, some studies have reported an association between rapid eye movement (REM) sleep behavior disorder (RBD) and faster motor and non-motor symptom progression, including autonomic dysfunction and cognitive decline. Moreover, since autonomic dysfunction has been described in idiopathic forms of RBD, and they share some central regulatory pathways, it remains unclear whether they have a primary association or if they are more severe in patients with PD and RBD, and thus are a disease subtype marker. This article aimed at critically reviewing the literature on the controversies about the prevalence of RBD in PD, the higher incidence of PD non-motor symptoms associated with RBD, the evidence of faster motor worsening in parkinsonian patients with this parasomnia, and the main pathophysiological hypotheses that support these findings.
Collapse
Affiliation(s)
- Pérola de Oliveira
- Rede SARAH de Hospitais de Reabilitação, Departamento de Neurologia, Brasília DF, Brazil
| | - Francisco Cardoso
- Universidade Federal de Minas Gerais, Unidade de Distúrbios do Movimento, Serviço de Neurologia, Departamento de Clínica Médica, Belo Horizonte MG, Brazil
| |
Collapse
|
26
|
Yang JH, Choi SH, Lee MH, Oh SM, Choi JW, Park JE, Park KS, Lee YJ. Association of heart rate variability with REM sleep without atonia in idiopathic REM sleep behavior disorder. J Clin Sleep Med 2021; 17:461-469. [PMID: 33112228 DOI: 10.5664/jcsm.8934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STUDY OBJECTIVES Idiopathic rapid eye movement sleep behavior disorder (iRBD), characterized by rapid eye movement sleep without atonia (RSWA) and dream-enactment behavior, has been suggested to be a predictor of α-synucleinopathies. Autonomic instability, represented by heart rate variability, is a common characteristic of both iRBD and α-synucleinopathies. Previous studies reported that RSWA was associated with autonomic dysfunction and was a possible predictor of phenoconversion. Therefore, we sought to compare heart rate variability between iRBD and control groups and explore the relationship between heart rate variability and RSWA in patients with iRBD. METHODS Nocturnal polysomnographic data on 47 patients (28 men, 19 women) diagnosed with iRBD based on video-polysomnography and 26 age-matched and sex-matched controls were reviewed. The first 5-minute epoch with a stable electrocardiogram lead II on video-polysomnography was selected from stage N2, wake, and rapid eye movement. For quantification of RSWA, tonic activity was analyzed from the submentalis electromyogram and phasic activity from the submentalis and bilateral anterior tibialis electromyogram channels. RESULTS Compared to the control group, the iRBD group showed significant reductions in the standard deviation of the R-R intervals, the root mean square of successive R-R interval differences, and high-frequency values. Quantified tonic activity was inversely correlated with normalized low-frequency values and low-frequency/high-frequency ratios and positively correlated with normalized high-frequency values. CONCLUSIONS This study implied decreased cardiac autonomic function in patients with iRBD, which showed parasympathetic predominance. Heart rate variability of the patients with iRBD in this study was associated with quantified tonic RSWA, which was previously reported to be a possible predictor of phenoconversion.
Collapse
Affiliation(s)
- Jeong Hun Yang
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Ho Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Mi Hyun Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Seong Min Oh
- Department of Psychiatry, Dongguk University Ilsan Hospital, Gyeonggi-do, Republic of Korea
| | - Jae-Won Choi
- Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul
| | - Jee Eun Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang Suk Park
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
27
|
Ashraf-Ganjouei A, Moradi K, Aarabi M, Abdolalizadeh A, Kazemi SZ, Kasaeian A, Vahabi Z. The Association Between REM Sleep Behavior Disorder and Autonomic Dysfunction in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:747-755. [PMID: 33579870 DOI: 10.3233/jpd-202134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND REM behavior disorder (RBD) can occur in the context of neurodegenerative alpha-synucleinopathies, such as Parkinson's disease (PD). PD patients with RBD (PD-pRBD) represent more severe symptoms and signs compared with those without RBD (PD-nRBD). On another note, autonomic dysfunction in PD patients is categorized as one of the most prominent non-motor symptoms and has been lately the field of interest in research. OBJECTIVE In the current study, we longitudinally studied autonomic dysfunction in PD-pRBD and PD-nRBD groups. METHOD This study was conducted on 420 drug-naïve PD patients selected from the Parkinson's Progression Markers Initiative database. The RBD Screening Questionnaire was used to define the presence of probable RBD. SCOPA-AUT was used to assess autonomic dysfunction. Additionally, dopamine transporter deficits on [123I] FP-CIT SPECT imaging was performed for all of the patients. RESULTS Out of 420 PD patients, 158 individuals (37.6%) were considered to have probable RBD (PD-pRBD) and others without RBD (PD-nRBD). Except for pupillomotor function, all the autonomic symptoms were significantly more severe in PD-pRBD group. In PD-nRBD group, caudate striatal binding ratio was negatively correlated with SCOPA-AUT scores, while no significant correlation was observed in PD-pRBD group. Finally, there was a significant difference considering the longitudinal changes of SCOPA-AUT total between PD-pRBD and PD-nRBD groups, suggesting a more severe autonomic decline in PD-pRBD patients. CONCLUSION Our results indicate that PD-pRBD patients have more severe autonomic dysfunction. These results support the theory that PD patients can be categorized based on the clinical presentation, possibly representing differences in the disease pathophysiology.
Collapse
Affiliation(s)
- Amir Ashraf-Ganjouei
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Moradi
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadhadi Aarabi
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Zahra Kazemi
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Dadar M, Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB, Collins DL. White Matter Hyperintensities Mediate Impact of Dysautonomia on Cognition in Parkinson's Disease. Mov Disord Clin Pract 2020; 7:639-647. [PMID: 32775509 DOI: 10.1002/mdc3.13003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background Patients with Parkinson's disease (PD) present with a broad spectrum of nonmotor features including autonomic disorders. More severe autonomic dysfunction in PD is associated with increased cognitive deficits. The presence of cerebral small-vessel disease, measured by T2-weighted magnetic resonance imaging white matter hyperintensity (WMH) burden, is also observed in patients with PD with faster cognitive decline. Objective To investigate whether baseline orthostatic hypotension and autonomic dysfunction in early-stage PD affect later cognitive decline via mediation through cerebral small-vessel disease. Methods De novo PD patients (N = 365) and age-matched controls (N = 174) with baseline T2-weighted/ fluid-attenuated inversion recovery scans were selected from the Parkinson's Progression Markers Initiative. WMHs were automatically segmented. Mediation analysis was used to assess whether WMH load mediates the effect of orthostatic hypotension and autonomic dysfunction (measured by Scales for Outcomes in Parkinson's Disease-Autonomic) on future cognitive decline (measured by Montreal Cognitive Assessment) in an average of 4 years of follow-up. Results Mediation analysis supported the existence of a full mediation of WMHs on the effect of diastolic orthostatic hypotension in patients with PD and future cognitive decline (average causal mediation effect: ab = -0.032, 95% confidence interval = -0.064 to -0.01, P = 0.01). There was also a partial mediation for overall autonomic dysfunction (ab = -0.027, 95% confidence interval = -0.054 to 0.00, P = 0.02). Conclusions WMHs fully mediate the effect of diastolic orthostatic hypotension and partially mediate the effect of autonomic dysregulation on future cognitive decline in patients with PD. Our findings support the hypothesis that autonomic dysfunction in early clinical stages predisposes the brain to WMHs through dysregulation of the blood flow in the small vessels. This in turn increases the risk of future cognitive impairment in early PD.
Collapse
Affiliation(s)
- Mahsa Dadar
- NeuroImaging and Surgical Tools Laboratory, Montreal Neurological Institute McGill University Montreal Quebec Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - Seyed-Mohammad Fereshtehnejad
- McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada.,Division of Neurology, Department of Medicine University of Ottawa and Ottawa Hospital Research Institute Ottawa Ontario Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - Ronald B Postuma
- McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - D Louis Collins
- NeuroImaging and Surgical Tools Laboratory, Montreal Neurological Institute McGill University Montreal Quebec Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada
| |
Collapse
|
29
|
Videnovic A, Ju YES, Arnulf I, Cochen-De Cock V, Högl B, Kunz D, Provini F, Ratti PL, Schiess MC, Schenck CH, Trenkwalder C. Clinical trials in REM sleep behavioural disorder: challenges and opportunities. J Neurol Neurosurg Psychiatry 2020; 91:740-749. [PMID: 32404379 PMCID: PMC7735522 DOI: 10.1136/jnnp-2020-322875] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023]
Abstract
The rapid eye movement sleep behavioural disorder (RBD) population is an ideal study population for testing disease-modifying treatments for synucleinopathies, since RBD represents an early prodromal stage of synucleinopathy when neuropathology may be more responsive to treatment. While clonazepam and melatonin are most commonly used as symptomatic treatments for RBD, clinical trials of symptomatic treatments are also needed to identify evidence-based treatments. A comprehensive framework for both disease-modifying and symptomatic treatment trials in RBD is described, including potential treatments in the pipeline, cost-effective participant recruitment and selection, study design, outcomes and dissemination of results. For disease-modifying treatment clinical trials, the recommended primary outcome is phenoconversion to an overt synucleinopathy, and stratification features should be used to select a study population at high risk of phenoconversion, to enable more rapid clinical trials. For symptomatic treatment clinical trials, objective polysomnogram-based measurement of RBD-related movements and vocalisations should be the primary outcome measure, rather than subjective scales or diaries. Mobile technology to enable objective measurement of RBD episodes in the ambulatory setting, and advances in imaging, biofluid, tissue, and neurophysiological biomarkers of synucleinopathies, will enable more efficient clinical trials but are still in development. Increasing awareness of RBD among the general public and medical community coupled with timely diagnosis of these diseases will facilitate progress in the development of therapeutics for RBD and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yo-El S Ju
- Department of Neurology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Isabelle Arnulf
- Assistance Publique Hôpitaux de Paris, Service des pathologies du Sommeil, Hôpital Pitié-Salpêtrière, Paris, France.,UMR S 1127, CNRS UMR 7225, ICM, Sorbonne Universités, UPMC University Paris, Paris, France
| | - Valérie Cochen-De Cock
- Neurologie et sommeil, Clinique Beau Soleil, Montpellier, France.,Laboratoire Movement to Health (M2H), EuroMov, Université Montpellier, Montpellier, France
| | - Birgit Högl
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Dieter Kunz
- Clinic for Sleep and Chronomedicine, Berlin, Germany
| | - Federica Provini
- IRCCS Institute of Neurological Sciences of Bologna, University of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Mya C Schiess
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Carlos H Schenck
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Regional Sleep Disorders Center, Minneapolis, Minnesota, USA
| | - Claudia Trenkwalder
- Paracelsus Elena Klinik, Kassel, Germany.,Department of Neurosurgery, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
30
|
McCarter SJ, Gehrking TL, St Louis EK, Suarez MD, Boeve BF, Silber MH, Low PA, Singer W. Autonomic dysfunction and phenoconversion in idiopathic REM sleep behavior disorder. Clin Auton Res 2020; 30:207-213. [PMID: 32193800 PMCID: PMC7255960 DOI: 10.1007/s10286-020-00674-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND REM sleep behavior disorder (RBD) is a common finding among patients with synucleinopathies. We aimed to determine the degree of autonomic dysfunction in patients presenting with idiopathic RBD (iRBD), and the predictive value of autonomic dysfunction for phenoconversion to a defined neurodegenerative disease. METHODS We searched our electronic medical record for patients diagnosed with iRBD who also underwent standardized autonomic function testing within 6 months of iRBD diagnosis, and who had clinical follow-up of at least 3 years following iRBD diagnosis. The composite autonomic severity score (CASS) was derived and compared between phenoconverters and non-converters using chi-square and Wilcoxon rank-sum tests. RESULTS We identified 18 patients who fulfilled inclusion and exclusion criteria. Average age at autonomic testing was 67 ± 6.6 years. Twelve (67%) patients phenoconverted during the follow-up period; six developed Parkinson's disease (PD), and the other six, dementia with Lewy bodies (DLB). Fifteen (83%) patients had at least mild autonomic dysfunction. There were no significant differences between overall converters and non-converters in total CASS or CASS subscores. However, iRBD patients who developed DLB had significantly higher total and cardiovagal CASS scores compared with those who developed PD (p < 0.05), and a trend for higher adrenergic CASS scores compared to those who developed PD and those who did not phenoconvert. DISCUSSION Autonomic dysfunction was seen in 83% of iRBD patients, and more severe baseline cardiovagal autonomic dysfunction in iRBD was associated with phenoconversion to DLB but not PD. Prospective studies are needed to confirm the value of autonomic testing for predicting phenoconversion and disease phenotype in iRBD.
Collapse
Affiliation(s)
- Stuart J McCarter
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Tonette L Gehrking
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, USA
- Department of Sleep Medicine, Mayo Clinic, Rochester, USA
| | - Mariana D Suarez
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
- Department of Sleep Medicine, Mayo Clinic, Rochester, USA
| | - Michael H Silber
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
- Department of Sleep Medicine, Mayo Clinic, Rochester, USA
| | - Phillip A Low
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
Fedorova TD, Knudsen K, Sommerauer M, Svendsen KB, Otto M, Borghammer P. A Screening-Based Method for Identifying Patients with REM Sleep Behaviour Disorder in a Danish Community Setting. JOURNAL OF PARKINSONS DISEASE 2020; 10:1249-1253. [PMID: 32417799 DOI: 10.3233/jpd-202020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Isolated REM sleep behaviour disorder (iRBD) is a predictive marker of prodromal Lewy body disease. iRBD prevalence in the general population is around 1%, but it remains under-diagnosed, even though symptoms are alleviated by medication. We developed a population screening strategy and identified 16 iRBD patients by conducting telephone interviews and polysomnography examinations. We compared our population-screened cohort with sleep-center referred patients and found higher MoCA scores and lower MDS-UPDRS-III scores in our patients. In conclusion, screening can be used to identify iRBD patients in a cost-effective manner with the benefit of identifying patients at a very early disease stage.
Collapse
Affiliation(s)
- Tatyana D Fedorova
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus, Denmark
| | - Karoline Knudsen
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus, Denmark
| | | | | | - Marit Otto
- Aarhus University Hospital, Department of Neurology, Aarhus, Denmark
| | - Per Borghammer
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus, Denmark
| |
Collapse
|
32
|
Lv S, Wang Z, Sun X, Jin H, Liu J, Deng F, Lv Y, Jia M, Guo ZN, Yang Y. Compromised Dynamic Cerebral Autoregulation in Patients With Idiopathic Rapid Eye Movement Behavior Disorder: A Case-Control Study Using Transcranial Doppler. Front Psychiatry 2020; 11:51. [PMID: 32140114 PMCID: PMC7042385 DOI: 10.3389/fpsyt.2020.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Patients with idiopathic rapid eye movement behavior disorder (IRBD) have been suggested to exhibit altered cerebral perfusion and abnormal cerebral blood flow, which imply a possibility of cerebral autoregulation (CA) impairment. We aimed to investigate the dynamic CA (dCA) in patients with IRBD during wakefulness and to explore the correlations between dCA parameters and clinical measurements. METHODS We assessed the dCA capability of 30 patients with IRBD and 36 sex- and age-matched healthy controls by using transcranial Doppler and finger plethysmography. CA function was evaluated by transfer function analysis based on spontaneous oscillation of cerebral blood flow and arterial blood pressure. Transfer function parameters (phase difference and gain) were used to quantify the CA. RESULTS No significant differences were observed between the right and left middle cerebral artery dCA parameters (phase difference and gain) of both groups. Patients with IRBD had significantly lower phase difference than the healthy controls, indicating their impaired CA capability. Besides, the value of gain in patients with IRBD was higher than the healthy controls, but the difference did not reach statistical level. CONCLUSIONS CA function is compromised in patients with IRBD during wakefulness, which might be an intermediate link between IRBD and neurological symptoms.
Collapse
Affiliation(s)
- Shan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yudan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Meiyan Jia
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I. Contribution of the GABAergic System to Non-Motor Manifestations in Premotor and Early Stages of Parkinson's Disease. Front Pharmacol 2019; 10:1294. [PMID: 31736763 PMCID: PMC6831739 DOI: 10.3389/fphar.2019.01294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Non-motor symptoms are common in Parkinson’s disease (PD) and they represent a major source of disease burden. Several non-motor manifestations, such as rapid eye movement sleep behavior disorder, olfactory loss, gastrointestinal abnormalities, visual alterations, cognitive and mood disorders, are known to precede the onset of motor signs. Nonetheless, the mechanisms mediating these alterations are poorly understood and probably involve several neurotransmitter systems. The dysregulation of GABAergic system has received little attention in PD, although the spectrum of non-motor symptoms might be linked to this pathway. This Mini Review aims to provide up-to-date information about the involvement of the GABAergic system for explaining non-motor manifestations in early stages of PD. Therefore, special attention is paid to the clinical data derived from patients with isolated REM sleep behavior disorder or drug-naïve patients with PD, as they represent prodromal and early stages of the disease, respectively. This, in combination with animal studies, might help us to understand how the disturbance of the GABAergic system is related to non-motor manifestations of PD.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Andikoetxea
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
34
|
Abstract
Hypertension is a major determinant of cardiovascular morbidity and mortality and is highly prevalent in the general population. While the relationship between sleep apnea and increased blood pressure has been well documented, less recognized is emerging evidence linking sleep-related movement disorders such as restless legs syndrome/periodic limb movements of sleep and sleep-related bruxism with blood pressure (BP) dysregulation and hypertension. There is also recent literature linking narcolepsy-cataplexy with elevated BP and altered pressor responses, and there are data suggesting abnormal BP control in rapid eye movement sleep behavior disorder. It is thought that neural circulatory mechanisms, sympathetic activation in particular, comprise the predominant mediator underlying elevated BP in these neurological sleep disorders. There is very limited evidence that treating these sleep disorders may be beneficial in lowering BP primarily because this question has received very little attention. In this review, we discuss the potential pathophysiologic mechanisms underlying elevated BP in restless legs syndrome/periodic limb movements of sleep, sleep-related bruxism, narcolepsy-cataplexy, and rapid eye movement sleep behavior disorder. We also examine the relationship between these sleep disorders and elevated BP and the impact of treatment of these conditions on BP control. Last, we discuss gaps in the literature evaluating the associations between these sleep disorders and elevated BP and identify areas for further research.
Collapse
Affiliation(s)
- Meghna P. Mansukhani
- Center for Sleep Medicine, Mayo Clinic; Address: 200, First Street SW, Rochester, Minnesota
| | - Naima Covassin
- Department of Cardiovascular Diseases, Mayo Clinic; Address: 200, First Street SW, Rochester, Minnesota
| | - Virend K. Somers
- Department of Cardiovascular Diseases, Mayo Clinic; Address: 200, First Street SW, Rochester, Minnesota
| |
Collapse
|
35
|
Erdal Y, Akdogan O, Nalbantoglu M, Kavasoglu G, Emre U. Autonomic dysfunction in restless legs syndrome. Sleep Breath 2019; 24:995-999. [DOI: 10.1007/s11325-019-01939-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/10/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
|
36
|
Zitser J, During EH, Chiaro G, Miglis MG. Autonomic impairment as a potential biomarker in idiopathic REM-sleep-behavior disorder. Auton Neurosci 2019; 220:102553. [DOI: 10.1016/j.autneu.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
|
37
|
Barateau L, Chenini S, Evangelista E, Jaussent I, Lopez R, Dauvilliers Y. Clinical autonomic dysfunction in narcolepsy type 1. Sleep 2019; 42:5550322. [DOI: 10.1093/sleep/zsz187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/08/2019] [Indexed: 12/20/2022] Open
Abstract
AbstractStudy Objectives(1) To compare the presence of autonomic symptoms using the validated SCOPA-AUT questionnaire in untreated patients with narcolepsy type 1 (NT1) to healthy controls, (2) to study the determinants of a high total SCOPA-AUT score in NT1, and (3) to evaluate the effect of drug intake on SCOPA-AUT results in NT1.MethodsThe SCOPA-AUT questionnaire that evaluates gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual dysfunction was completed by 92 consecutive drug-free adult NT1 patients (59 men, 39.1 ± 15.6 years old) and 109 healthy controls (63 men, 42.6 ± 18.2 years old). A subgroup of 59 NT1 patients completed the questionnaire a second time, under medication (delay between two evaluations: 1.28 ± 1.14 years).ResultsCompared to controls, NT1 patients were more frequently obese, had more dyslipidemia, with no difference for age and gender. The SCOPA-AUT score of NT1 was higher than in controls in crude and adjusted models. Patients experienced more problems than controls in all subdomains. A higher score in NT1 was associated with older age, longer disease duration, altered quality of life and more depressive symptoms, but not with orexin levels and disease severity. Among patients evaluated twice, the SCOPA-AUT score total did not differ according to treatment status, neither did each subdomain.ConclusionWe captured a frequent and large spectrum of clinical autonomic dysfunction in NT1, with impairment in all SCOPA-AUT domains, without key impact of medication intake. This assessment may allow physicians to screen and treat various symptoms, often not spontaneously reported but associated with poor quality of life.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Network for Narcolepsy, CHU Montpellier, France
- INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Épidémiologique, University of Montpellier, Montpellier, France
| | - Sofiene Chenini
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Network for Narcolepsy, CHU Montpellier, France
| | - Elisa Evangelista
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Network for Narcolepsy, CHU Montpellier, France
- INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Épidémiologique, University of Montpellier, Montpellier, France
| | - Isabelle Jaussent
- INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Épidémiologique, University of Montpellier, Montpellier, France
| | - Regis Lopez
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Network for Narcolepsy, CHU Montpellier, France
- INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Épidémiologique, University of Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Network for Narcolepsy, CHU Montpellier, France
- INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Épidémiologique, University of Montpellier, Montpellier, France
| |
Collapse
|
38
|
Pace-Schott EF, Amole MC, Aue T, Balconi M, Bylsma LM, Critchley H, Demaree HA, Friedman BH, Gooding AEK, Gosseries O, Jovanovic T, Kirby LA, Kozlowska K, Laureys S, Lowe L, Magee K, Marin MF, Merner AR, Robinson JL, Smith RC, Spangler DP, Van Overveld M, VanElzakker MB. Physiological feelings. Neurosci Biobehav Rev 2019; 103:267-304. [DOI: 10.1016/j.neubiorev.2019.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
39
|
Postuma RB, Berg D. Prodromal Parkinson's Disease: The Decade Past, the Decade to Come. Mov Disord 2019; 34:665-675. [DOI: 10.1002/mds.27670] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ronald B. Postuma
- Department of NeurologyMontreal General Hospital Montreal, Quebec Canada
| | - Daniela Berg
- Department of NeurologyChristian‐Albrechts‐University of Kiel Kiel Germany
| |
Collapse
|
40
|
Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Haase AM, Svendsen KB, Otto M, Østergaard K, Krogh K, Borghammer P. Objective intestinal function in patients with idiopathic REM sleep behavior disorder. Parkinsonism Relat Disord 2019; 58:28-34. [DOI: 10.1016/j.parkreldis.2018.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023]
|
41
|
Dall’Antonia I, Šonka K, Dušek P. Olfaction and Colour Vision: What Can They Tell Us about Parkinson’s Disease? Prague Med Rep 2018; 119:85-96. [DOI: 10.14712/23362936.2018.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder with the pathological accumulation of alpha synuclein in the brain and peripheral nerve tissue. Early stages of synucleinopathies, often present clinically with rapid eye movement (REM) sleep disorder (RBD). Clinical markers that indicate early progression from RBD to manifest synucleinopathies include abnormal dopamine transporter (DAT) imaging, motor and non-motor symptoms. Despite the high diagnostic strength of DAT imaging and motor abnormalities, they are not the earliest biomarkers. Non-motor signs of neurodegeneration such as colour vision and olfaction abnormalities are detectable by clinical examination as early as 20 years before disease onset. Detailed analysis of olfactory and colour vision dysfunction can provide valuable information regarding brain pathologies, further specifying clinical phenotypes, and giving clues to underlying pathophysiological mechanisms in Parkinson’s disease and related disorders.
Collapse
|
42
|
Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi PH, Plazzi G, Montplaisir J, Boeve B. REM sleep behaviour disorder. Nat Rev Dis Primers 2018; 4:19. [PMID: 30166532 DOI: 10.1038/s41572-018-0016-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia that is characterized by loss of muscle atonia during REM sleep (known as REM sleep without atonia, or RSWA) and abnormal behaviours occurring during REM sleep, often as dream enactments that can cause injury. RBD is categorized as either idiopathic RBD or symptomatic (also known as secondary) RBD; the latter is associated with antidepressant use or with neurological diseases, especially α-synucleinopathies (such as Parkinson disease, dementia with Lewy bodies and multiple system atrophy) but also narcolepsy type 1. A clinical history of dream enactment or complex motor behaviours together with the presence of muscle activity during REM sleep confirmed by video polysomnography are mandatory for a definite RBD diagnosis. Management involves clonazepam and/or melatonin and counselling and aims to suppress unpleasant dreams and behaviours and improve bedpartner quality of life. RSWA and RBD are now recognized as manifestations of an α-synucleinopathy; most older adults with idiopathic RBD will eventually develop an overt neurodegenerative syndrome. In the future, studies will likely evaluate neuroprotective therapies in patients with idiopathic RBD to prevent or delay α-synucleinopathy-related motor and cognitive decline.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France. .,INSERM, U1061, Montpellier, France, Université Montpellier, Montpellier, France.
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ronald B Postuma
- Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Alex Iranzo
- Neurology Service, Multidisciplinary Sleep Unit, Hospital Clinic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Pierre-Herve Luppi
- UMR 5292 CNRS/U1028 INSERM, Center of Research in Neuroscience of Lyon (CRNL), SLEEP Team, Université Claude Bernard Lyon I, Faculté de Médecine RTH Laennec, Lyon, France
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Jacques Montplaisir
- Department of Psychiatry, Université de Montréal, Québec, Canada and Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Quebec, Canada
| | - Bradley Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Skorvanek M, Feketeova E, Kurtis MM, Rusz J, Sonka K. Accuracy of Rating Scales and Clinical Measures for Screening of Rapid Eye Movement Sleep Behavior Disorder and for Predicting Conversion to Parkinson's Disease and Other Synucleinopathies. Front Neurol 2018; 9:376. [PMID: 29887829 PMCID: PMC5980959 DOI: 10.3389/fneur.2018.00376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by repeated episodes of REM sleep-related vocalizations and/or complex motor behaviors. Definite diagnosis of RBD is based on history and polysomnography, both of which are less accessible due to the lack of trained specialists and high cost. While RBD may be associated with disorders like narcolepsy, focal brain lesions, and encephalitis, idiopathic RBD (iRBD) may convert to Parkinson's disease (PD) and other synucleinopathies in more than 80% of patients and it is to date the most specific clinical prodromal marker of PD. Identification of individuals at high risk for development of PD is becoming one of the most important topics for current PD-related research as well as for future treatment trials targeting prodromal PD. Furthermore, concomitant clinical symptoms, such as subtle motor impairment, hyposmia, autonomic dysfunction, or cognitive difficulties, in subjects with iRBD may herald its phenoconversion to clinically manifest parkinsonism. The assessment of these motor and non-motor symptoms in iRBD may increase the sensitivity and specificity in identifying prodromal PD subjects. This review evaluates the diagnostic accuracy of individual rating scales and validated single items for screening of RBD and the role and accuracy of available clinical, electrophysiological, imaging, and tissue biomarkers in predicting the phenoconversion from iRBD to clinically manifest synucleinopathies.
Collapse
Affiliation(s)
- Matej Skorvanek
- Department of Neurology, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovakia
| | - Eva Feketeova
- Department of Neurology, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovakia
| | - Monica M. Kurtis
- Movement Disorders Unit, Department of Neurology, Hospital Ruber Internacional, Madrid, Spain
| | - Jan Rusz
- Department of Neurology, Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Karel Sonka
- Department of Neurology, Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
44
|
Li M, Wang L, Liu JH, Zhan SQ. Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment. Chin Med J (Engl) 2018; 131:966-973. [PMID: 29664058 PMCID: PMC5912064 DOI: 10.4103/0366-6999.229886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) is characterized by dream enactment and loss of muscle atonia during rapid eye movement sleep. RBD is closely related to α-synucleinopathies including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Many studies have investigated the markers of imaging and neurophysiological, genetic, cognitive, autonomic function of RBD and their predictive value for neurodegenerative diseases. This report reviewed the progress of these studies and discussed their limitations and future research directions. DATA SOURCES Using the combined keywords: "RBD", "neurodegenerative disease", "Parkinson disease", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to January 1, 2018. STUDY SELECTION A total of 150 published articles were initially identified citations. Of the 150 articles, 92 articles were selected after further detailed review. This study referred to all the important English literature in full. RESULTS Single-nucleotide polymorphisms in SCARB2 (rs6812193) and MAPT (rs12185268) were significantly associated with RBD. The olfactory loss, autonomic dysfunction, marked electroencephalogram slowing during both wakefulness and rapid eye movement sleep, and cognitive impairments were potential predictive markers for RBD conversion to neurodegenerative diseases. Traditional structural imaging studies reported relatively inconsistent results, whereas reduced functional connectivity between the left putamen and substantia nigra and dopamine transporter uptake demonstrated by functional imaging techniques were relatively consistent findings. CONCLUSIONS More longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated. There is a need for more treatment trials to determine the effectiveness of interventions of RBD on preventing the conversion to neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Li Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiang-Hong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shu-Qin Zhan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
45
|
Stokholm MG, Iranzo A, Østergaard K, Serradell M, Otto M, Bacher Svendsen K, Garrido A, Vilas D, Parbo P, Borghammer P, Santamaria J, Møller A, Gaig C, Brooks DJ, Tolosa E, Pavese N. Extrastriatal monoaminergic dysfunction and enhanced microglial activation in idiopathic rapid eye movement sleep behaviour disorder. Neurobiol Dis 2018. [PMID: 29522818 DOI: 10.1016/j.nbd.2018.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND The majority of patients diagnosed with idiopathic rapid eye movement sleep behaviour disorder (iRBD) progress over time to a Lewy-type α-synucleinopathy such as Parkinson's disease or dementia with Lewy bodies. This in vivo molecular imaging study aimed to investigate if extrastriatal monoaminergic systems are affected in iRBD patients and if this coincides with neuroinflammation. METHODS We studied twenty-one polysomnography-confirmed iRBD patients with 18F-DOPA and 11C-PK11195 positron emission tomography (PET) to investigate extrastriatal monoaminergic function and microglial activation. Twenty-nine healthy controls (n = 9 18F-DOPA and n = 20 11C-PK11195) were also investigated. Analyses were performed within predefined regions of interest and at voxel-level with Statistical Parametric Mapping. RESULTS Regions of interest analysis detected monoaminergic dysfunction in iRBD thalamus with a 15% mean reduction of 18F-DOPA Ki values compared to controls (mean difference = -0.00026, 95% confidence interval [-0.00050 to -0.00002], p-value = 0.03). No associated thalamic changes in 11C-PK11195 binding were observed. Other regions sampled showed no 18F-DOPA or 11C-PK11195 PET differences between groups. Voxel-level interrogation of 11C-PK11195 binding identified areas with significantly increased binding within the occipital lobe of iRBD patients. CONCLUSION Thalamic monoaminergic dysfunction in iRBD patients may reflect terminal dysfunction of projecting neurons from the locus coeruleus and dorsal raphe nucleus, two structures that regulate REM sleep and are known to be involved in the early phase of PD. The observation of significantly raised microglial activation in the occipital lobe of these patients might suggest early local Lewy-type α-synuclein pathology and possibly an increased risk for later cognitive dysfunction.
Collapse
Affiliation(s)
| | - Alex Iranzo
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | | | - Mónica Serradell
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark
| | | | - Alicia Garrido
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Dolores Vilas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Peter Parbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Joan Santamaria
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Arne Møller
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Carles Gaig
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark; Division of Neuroscience, Newcastle University, England, United Kingdom
| | - Eduardo Tolosa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Nicola Pavese
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark; Division of Neuroscience, Newcastle University, England, United Kingdom.
| |
Collapse
|
46
|
Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration - an update. Nat Rev Neurol 2018; 14:40-55. [PMID: 29170501 DOI: 10.1038/nrneurol.2017.157] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
So-called idiopathic rapid eye movement (REM) sleep behaviour disorder (RBD), formerly seen as a rare parasomnia, is now recognized as the prodromal stage of an α-synucleinopathy. Given the very high risk that patients with idiopathic RBD have of developing α-synucleinopathies, such as Parkinson disease (PD), PD dementia, dementia with Lewy bodies or multiple system atrophy, and the outstandingly high specificity and very long interval between the onset of idiopathic RBD and the clinical manifestations of α-synucleinopathies, the prodromal phase of this disorder represents a unique opportunity for potentially disease-modifying intervention. This Review provides an update on classic and novel biomarkers of α-synuclein-related neurodegeneration in patients with idiopathic RBD, focusing on advances in imaging and neurophysiological, cognitive, autonomic, tissue-specific and other biomarkers. We discuss the strengths, potential weaknesses and suitability of these biomarkers for identifying RBD and neurodegeneration, with an emphasis on predicting progression to overt α-synucleinopathy. The role of video polysomnography in providing quantifiable and potentially treatment-responsive biomarkers of neurodegeneration is highlighted. In light of all these advances, and the now understood role of idiopathic RBD as an early manifestation of α-synuclein disease, we call for idiopathic RBD to be reconceptualized as isolated RBD.
Collapse
Affiliation(s)
- Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts 02114, USA
| |
Collapse
|
47
|
Haba-Rubio J, Frauscher B, Marques-Vidal P, Toriel J, Tobback N, Andries D, Preisig M, Vollenweider P, Postuma R, Heinzer R. Prevalence and determinants of rapid eye movement sleep behavior disorder in the general population. Sleep 2017; 41:4690595. [PMID: 29216391 DOI: 10.1093/sleep/zsx197] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY OBJECTIVES Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia associated with neurodegenerative synucleinopathies. Its prevalence is largely unknown. This study determined the prevalence and characteristics of RBD in the general population using gold-standard polysomnography. METHODS Full polysomnographic data from 1,997 participants (age = 59 ± 11.1 years, 53.6% women) participating in a population-based study (HypnoLaus, Lausanne, Switzerland) were collected. Sleep-related complaints and habits were investigated using various sleep measures including the Munich Parasomnia Screening (MUPS) questionnaire, which includes two questions evaluating complex motor behaviors suggestive of RBD. Full polysomnography was performed at home. For participants screening positive for RBD, muscle activity during REM sleep was quantified to diagnose RBD. RESULTS Three hundred sixty-eight participants endorsed dream-enactment behavior on either of the two MUPS questions, and 21 fulfilled polysomnographic criteria for RBD, resulting in an estimated prevalence of 1.06% (95% CI = 0.61-1.50), with no difference between men and women. Compared with RBD- participants, RBD+ took more frequently antidepressants and antipsychotics (23.8% vs. 5.4%, p = .005; 14.3% vs. 1.5%, p = .004, respectively) and were more frequently smokers or ex-smokers (85% vs. 56.6%, p = .011). On polysomnography, RBD+ had more stage N2 sleep (52 ± 11.5% vs. 46.3 ± 10.2%, p = .024) and less REM sleep (18 ± 6.4% vs. 21.9 ± 6.2%, p = .007), lower apnea-hypopnea index in REM sleep (3.8 ± 5.2 vs. 8.9 ± 13/hour, p = .035), and lower autonomic arousal index (31 ± 14.9 vs. 42.6 ± 19.5/hour, p = .002). CONCLUSIONS In our middle-to-older age population-based sample, the prevalence of RBD was 1.06%, with no difference between men and women. RBD was associated with antidepressant and antipsychotic use and with minor differences in sleep structure.
Collapse
Affiliation(s)
- José Haba-Rubio
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Birgit Frauscher
- Department of Medicine and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerl
| | - Jérôme Toriel
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nadia Tobback
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Daniela Andries
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerl
| | - Ronald Postuma
- Department of Neurology, Montreal General Hospital, Montréal, Quebec, Canada
| | - Raphaël Heinzer
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Department of Pulmonary Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
48
|
Chiaro G, Calandra-Buonaura G, Cecere A, Mignani F, Sambati L, Loddo G, Cortelli P, Provini F. REM sleep behavior disorder, autonomic dysfunction and synuclein-related neurodegeneration: where do we stand? Clin Auton Res 2017; 28:519-533. [PMID: 28871332 DOI: 10.1007/s10286-017-0460-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/20/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION From newfound parasomnia to a marker of future synucleinopathy, since its first description in 1986, REM sleep behavior disorder (RBD) has been systematically tackled from virtually many viewpoints in basic, translational, and clinical studies. The time delay between RBD and synucleinopathy onset offers an exceptional window for observation and design of neuroprotective trials. In the last few years, research has focused on characterizing possible differences within RBD patients in order to draw potential profiles more or less susceptible to further neurodegeneration. Attention has been drawn towards autonomic dysfunction in RBD as one of such variables. OVERVIEW In this review, REM sleep physiology and relevant brain anatomy is briefly mentioned and integrated with neuroanatomical and physiological concepts regarding the central autonomic network. A detailed summary of works showing the presence of autonomic dysfunction in RBD is provided, and clinical and electrophysiological features of RBD in synucleinopathies are discussed. A short overview of RBD in other neurodegenerative diseases is also provided.
Collapse
Affiliation(s)
- Giacomo Chiaro
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,Neurocenter of Southern Switzerland, Lugano, Switzerland
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Annagrazia Cecere
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Francesco Mignani
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Giuseppe Loddo
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy. .,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy.
| |
Collapse
|
49
|
REM Sleep Behavior Disorder and Other Sleep Disturbances in Non-Alzheimer Dementias. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Borghammer P, Knudsen K, Fedorova TD, Brooks DJ. Imaging Parkinson's disease below the neck. NPJ Parkinsons Dis 2017; 3:15. [PMID: 28649615 PMCID: PMC5460119 DOI: 10.1038/s41531-017-0017-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease is a systemic disorder with widespread and early α-synuclein pathology in the autonomic and enteric nervous systems, which is present throughout the gastrointestinal canal prior to diagnosis. Gastrointestinal and genitourinary autonomic symptoms often predate clinical diagnosis by several years. It has been hypothesized that progressive α-synuclein aggregation is initiated in hyperbranched, non-myelinated neuron terminals, and may subsequently spread via retrograde axonal transport. This would explain why autonomic nerves are so prone to formation of α-synuclein pathology. However, the hypothesis remains unproven and in vivo imaging methods of peripheral organs may be essential to study this important research field. The loss of sympathetic and parasympathetic nerve terminal function in Parkinson's disease has been demonstrated using radiotracers such as 123I-meta-iodobenzylguanidin, 18F-dopamine, and 11C-donepezil. Other radiotracer and radiological imaging methods have shown highly prevalent dysfunction of pharyngeal and esophageal motility, gastric emptying, colonic transit time, and anorectal function. Here, we summarize the methodology and main findings of radio-isotope and radiological modalities for imaging peripheral pathology in Parkinson's disease.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D. Fedorova
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J. Brooks
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|