1
|
Maya-González C, Tettamanti G, Taylan F, Skarin Nordenvall A, Sejersen T, Nordgren A. Cancer Risk in Patients With Muscular Dystrophy and Myotonic Dystrophy: A Register-Based Cohort Study. Neurology 2024; 103:e209883. [PMID: 39298705 PMCID: PMC11446166 DOI: 10.1212/wnl.0000000000209883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Muscular dystrophies and myotonic disorders are genetic disorders characterized by progressive skeletal muscle degeneration and weakness. Epidemiologic studies have found an increased cancer risk in myotonic dystrophy, although the cancer risk spectrum is poorly characterized. In patients with muscular dystrophy, the cancer risk is uncertain. We aimed to determine the overall cancer risk and cancer risk spectrum in patients with muscular dystrophy and myotonic dystrophy using data from the Swedish National registers. METHODS We performed a matched cohort study in all patients with muscular dystrophy or myotonic dystrophy born in Sweden 1950-2017 and 50 matched comparisons by sex, year of birth, and birth county per individual. The association with cancer overall and specific malignancies was estimated using stratified Cox proportional hazard models. RESULTS We identified 2,355 and 1,968 individuals with muscular dystrophy and myotonic dystrophy, respectively. No increased overall cancer risk was found in muscular dystrophy. However, we observed an increased risk of astrocytomas and other gliomas during childhood (hazard ratio [HR] 8.70, 95% CI 3.57-21.20) and nonthyroid endocrine cancer (HR 2.35, 95% CI 1.03-5.34) and pancreatic cancer (HR 4.33, 95% CI 1.55-12.11) in adulthood. In myotonic dystrophy, we found an increased risk of pediatric brain tumors (HR 3.23, 95% CI 1.16-9.01) and an increased overall cancer risk in adults (HR 2.26, CI 1.92.2.66), specifically brain tumors (HR 10.44, 95% CI 7.30-14.95), thyroid (HR 3.92, 95% CI 1.70-9.03), and nonthyroid endocrine cancer (HR 7.49, 95% CI 4.47-12.56), endometrial (HR 8.32, 95% CI 4.22-16.40), ovarian (HR 4.00, 95% CI 1.60-10.01), and nonmelanoma skin cancer (HR 3.27, 95% CI 1.32-8.13). DISCUSSION Here, we analyze the cancer risk spectrum of patients with muscular dystrophy and myotonic dystrophy. To the best of our knowledge, this is the first report of an increased risk for CNS tumors in childhood and adult nonthyroid endocrine and pancreatic cancer in muscular dystrophy. Furthermore, for myotonic dystrophy, we confirmed previously reported associations with cancer and expanded the cancer spectrum, finding an unreported increased risk for nonthyroid endocrine cancer. Additional studies confirming the cancer risk and delineating the cancer spectrum in different genetic subtypes of muscular dystrophies are warranted before considering altered cancer screening recommendations than for the general population.
Collapse
Affiliation(s)
- Carolina Maya-González
- From the Department of Molecular Medicine and Surgery, Center for Molecular Medicine (C.M.G., G.T., F.T., A.S.N., A.N.), Unit of Epidemiology, Institute of Environmental Medicine (G.T.), and Department of Women's and Children's Health (T.S.), Karolinska Institutet; Department of Clinical Genetics and Genomics (F.T., A.N.), Department of Radiology (A.S.N.), and Department of Child Neurology, Astrid Lindgren Children's Hospital (T.S.), Karolinska University Hospital, Stockholm; Department of Clinical Genetics and Genomics (A.N.), Sahlgrenska University Hospital, Gothenburg; and Institute of Biomedicine, Department of Laboratory Medicine (A.N.), University of Gothenburg, Sweden
| | - Giorgio Tettamanti
- From the Department of Molecular Medicine and Surgery, Center for Molecular Medicine (C.M.G., G.T., F.T., A.S.N., A.N.), Unit of Epidemiology, Institute of Environmental Medicine (G.T.), and Department of Women's and Children's Health (T.S.), Karolinska Institutet; Department of Clinical Genetics and Genomics (F.T., A.N.), Department of Radiology (A.S.N.), and Department of Child Neurology, Astrid Lindgren Children's Hospital (T.S.), Karolinska University Hospital, Stockholm; Department of Clinical Genetics and Genomics (A.N.), Sahlgrenska University Hospital, Gothenburg; and Institute of Biomedicine, Department of Laboratory Medicine (A.N.), University of Gothenburg, Sweden
| | - Fulya Taylan
- From the Department of Molecular Medicine and Surgery, Center for Molecular Medicine (C.M.G., G.T., F.T., A.S.N., A.N.), Unit of Epidemiology, Institute of Environmental Medicine (G.T.), and Department of Women's and Children's Health (T.S.), Karolinska Institutet; Department of Clinical Genetics and Genomics (F.T., A.N.), Department of Radiology (A.S.N.), and Department of Child Neurology, Astrid Lindgren Children's Hospital (T.S.), Karolinska University Hospital, Stockholm; Department of Clinical Genetics and Genomics (A.N.), Sahlgrenska University Hospital, Gothenburg; and Institute of Biomedicine, Department of Laboratory Medicine (A.N.), University of Gothenburg, Sweden
| | - Anna Skarin Nordenvall
- From the Department of Molecular Medicine and Surgery, Center for Molecular Medicine (C.M.G., G.T., F.T., A.S.N., A.N.), Unit of Epidemiology, Institute of Environmental Medicine (G.T.), and Department of Women's and Children's Health (T.S.), Karolinska Institutet; Department of Clinical Genetics and Genomics (F.T., A.N.), Department of Radiology (A.S.N.), and Department of Child Neurology, Astrid Lindgren Children's Hospital (T.S.), Karolinska University Hospital, Stockholm; Department of Clinical Genetics and Genomics (A.N.), Sahlgrenska University Hospital, Gothenburg; and Institute of Biomedicine, Department of Laboratory Medicine (A.N.), University of Gothenburg, Sweden
| | - Thomas Sejersen
- From the Department of Molecular Medicine and Surgery, Center for Molecular Medicine (C.M.G., G.T., F.T., A.S.N., A.N.), Unit of Epidemiology, Institute of Environmental Medicine (G.T.), and Department of Women's and Children's Health (T.S.), Karolinska Institutet; Department of Clinical Genetics and Genomics (F.T., A.N.), Department of Radiology (A.S.N.), and Department of Child Neurology, Astrid Lindgren Children's Hospital (T.S.), Karolinska University Hospital, Stockholm; Department of Clinical Genetics and Genomics (A.N.), Sahlgrenska University Hospital, Gothenburg; and Institute of Biomedicine, Department of Laboratory Medicine (A.N.), University of Gothenburg, Sweden
| | - Ann Nordgren
- From the Department of Molecular Medicine and Surgery, Center for Molecular Medicine (C.M.G., G.T., F.T., A.S.N., A.N.), Unit of Epidemiology, Institute of Environmental Medicine (G.T.), and Department of Women's and Children's Health (T.S.), Karolinska Institutet; Department of Clinical Genetics and Genomics (F.T., A.N.), Department of Radiology (A.S.N.), and Department of Child Neurology, Astrid Lindgren Children's Hospital (T.S.), Karolinska University Hospital, Stockholm; Department of Clinical Genetics and Genomics (A.N.), Sahlgrenska University Hospital, Gothenburg; and Institute of Biomedicine, Department of Laboratory Medicine (A.N.), University of Gothenburg, Sweden
| |
Collapse
|
2
|
Unni JV, Daryani D, Uthkal MP, Mustafa SM. An Unusual Case of Hybrid Odontogenic Tumor in Type 1 Myotonic Dystrophy Patient. Int J Appl Basic Med Res 2023; 13:255-258. [PMID: 38229729 PMCID: PMC10789463 DOI: 10.4103/ijabmr.ijabmr_208_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024] Open
Abstract
Myotonic dystrophy, also referred myotonic muscular dystrophy, is an autosomal dominant, slowly progressive, multisystem disease characterized by skeletal muscle weakness, wasting, and myotonia. A hybrid tumor of odontogenic apparatus is a lesion showing combined histopathological characteristics of two or more previously recognized odontogenic tumors and/or cysts of different categories. We, therefore, report a case of hybrid tumor (adenomatoid odontogenic tumor associated with calcifying cystic odontogenic tumor) in a myotonic dystrophic patient.
Collapse
Affiliation(s)
- Jiji V. Unni
- Department of Oral Medicine and Radiology, Malabar Dental College and Research Centre, Edappal, Kerala, India
| | - Deepak Daryani
- Department of Oral Medicine and Radiology, Malabar Dental College and Research Centre, Edappal, Kerala, India
| | - M. P. Uthkal
- Department of Oral Medicine and Radiology, Malabar Dental College and Research Centre, Edappal, Kerala, India
| | - Shabil Mohamed Mustafa
- Department of Oral Medicine and Radiology, Malabar Dental College and Research Centre, Edappal, Kerala, India
| |
Collapse
|
3
|
D’Ambrosio ES, Gonzalez-Perez P. Cancer and Myotonic Dystrophy. J Clin Med 2023; 12:1939. [PMID: 36902726 PMCID: PMC10004154 DOI: 10.3390/jcm12051939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Myotonic dystrophy (DM) is the most common muscular dystrophy in adults. Dominantly inherited CTG and CCTG repeat expansions in DMPK and CNBP genes cause DM type 1 (DM1) and 2 (DM2), respectively. These genetic defects lead to the abnormal splicing of different mRNA transcripts, which are thought to be responsible for the multiorgan involvement of these diseases. In ours and others' experience, cancer frequency in patients with DM appears to be higher than in the general population or non-DM muscular dystrophy cohorts. There are no specific guidelines regarding malignancy screening in these patients, and the general consensus is that they should undergo the same cancer screening as the general population. Here, we review the main studies that investigated cancer risk (and cancer type) in DM cohorts and those that researched potential molecular mechanisms accounting for DM carcinogenesis. We propose some evaluations to be considered as malignancy screening in patients with DM, and we discuss DM susceptibility to general anesthesia and sedatives, which are often needed for the management of cancer. This review underscores the importance of monitoring the adherence of patients with DM to malignancy screenings and the need to design studies that determine whether they would benefit from a more intensified cancer screening than the general population.
Collapse
|
4
|
Intergenerational Influence of Gender and the DM1 Phenotype of the Transmitting Parent in Korean Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13081465. [PMID: 36011377 PMCID: PMC9408469 DOI: 10.3390/genes13081465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common autosomal-dominant disorder caused by the CTG repeat expansion of the DMPK, and it has been categorized into three phenotypes: mild, classic, and congenital DM1. Here, we reviewed the intergenerational influence of gender and phenotype of the transmitting parent on the occurrence of Korean DM1. A total of 44 parent–child pairs matched for the gender of the transmitting parent and the affected child and 29 parent–child pairs matched for the gender and DM1 phenotype of the transmitting parent were reviewed. The CTG repeat size of the DMPK in the affected child was found to be significantly greater when transmitted by a female parent to a female child (DM1-FF) (median, 1309 repeats; range, 400–2083) than when transmitted by a male parent to a male child (650; 160–1030; p = 0.038 and 0.048 using the Tukey HSD and the Bonferroni test) or by a male parent to a female child (480; 94–1140; p = 0.003). The difference in the CTG repeat size of the DMPK between the transmitting parent and the affected child was also lower when transmitted from a male parent with classic DM1 (−235; −280 to 0) compared to when it was transmitted from a female parent with mild DM1 (866; 612–905; p = 0.015 and 0.019) or from a female parent with classic DM1 (DM1-FC) (605; 10–1393; p = 0.005). This study highlights that gender and the DM1 phenotype of the transmitting parent had an impact on the CTG repeat size of the DMPK in the affected child, with greater increases being inherited from the DM1-FF or DM1-FC situations in Korean DM1.
Collapse
|
5
|
Kong HE, Pollack BP. Cutaneous findings in myotonic dystrophy. JAAD Int 2022; 7:7-12. [PMID: 35243403 PMCID: PMC8867117 DOI: 10.1016/j.jdin.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/06/2022] Open
Abstract
Myotonic dystrophy types 1 and 2 are a group of complex genetic disorders resulting from the expansion of (CTG)n nucleotide repeats in the DMPK gene. In addition to the hallmark manifestations of myotonia and skeletal muscle atrophy, myotonic dystrophy also affects a myriad of other organs including the heart, lungs, as well as the skin. The most common cutaneous manifestations of myotonic dystrophy are early male frontal alopecia and adult-onset pilomatricomas. Myotonic dystrophy also increases the risk of developing malignant skin diseases such as basal cell carcinoma and melanoma. To aid in the diagnosis and treatment of myotonic dystrophy related skin conditions, it is important for the dermatologist to become cognizant of the common and rare cutaneous manifestations of this genetic disorder. We performed a PubMed search using the key terms “myotonic dystrophy” AND “cutaneous” OR “skin” OR “dermatologic” AND “manifestation” OR “finding.” The resulting publications were manually reviewed for additional relevant publications, and subsequent additional searches were performed as needed, especially regarding the molecular mechanisms of pathogenesis. In this review, we aim to provide an overview of myotonic dystrophy types 1 and 2 and summarize their cutaneous manifestations as well as potential mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Ha Eun Kong
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Brian P Pollack
- Atlanta VA Health System, Decatur, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Perna A, Maccora D, Rossi S, Nicoletti TF, Zocco MA, Riso V, Modoni A, Petrucci A, Valenza V, Grieco A, Miele L, Silvestri G. High Prevalence and Gender-Related Differences of Gastrointestinal Manifestations in a Cohort of DM1 Patients: A Perspective, Cross-Sectional Study. Front Neurol 2020; 11:394. [PMID: 32595582 PMCID: PMC7303304 DOI: 10.3389/fneur.2020.00394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1, MIM #160900), the most common muscular dystrophy among adults, is a multisystem disorder, which affects, besides the skeletal muscle, several other tissues and/or organs, including the gastrointestinal apparatus, with manifestations that frequently affect the quality of life of DM1 patients. So far, only few, mainly retrospective studies evaluated this specific topic in DM1, so we performed a perspective study, enrolling 61 DM1 patients who underwent an extensive diagnostic protocol, including administration of the Gastrointestinal Symptom Rating Scale (GSRS), a validated patient-reported questionnaire about GI symptoms, laboratory tests, liver US scan, and an intestinal permeability assay, in order to characterize frequency and assess correlations regarding specific gastrointestinal manifestations with demographic or other DM1-related features. Our results in our DM1 cohort confirm the high frequency of various gastrointestinal manifestations, with the most frequent being constipation (45.9%). γGT levels were pathologically increased in 65% of DM1 patients and GPT in 29.82%; liver ultrasound studies showed steatosis in 34.4% of patients. Significantly, 91.22% of DM1 patients showed signs of altered intestinal permeability at the specific assay. We documented a gender-related prevalence and severity of gastrointestinal manifestations in DM1 females compared to DM1 males, while males showed higher serum GPT and γGT levels than females. Correlation studies documented a direct correlation between severity of muscle weakness estimated by MIRS score and γGT and alkaline phosphatase levels, suggesting their potential use as biomarkers of muscle disease severity in DM1.
Collapse
Affiliation(s)
- Alessia Perna
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daria Maccora
- Department of Image Diagnostics, Oncological Radiotherapy and Hematology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Rossi
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Maria Assunta Zocco
- Department of Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Vittorio Riso
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Modoni
- UOC of Neurology, Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Disease, S. Camillo Forlanini Hospital, Rome, Italy
| | - Venanzio Valenza
- Department of Image Diagnostics, Oncological Radiotherapy and Hematology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Grieco
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Miele
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Silvestri
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC of Neurology, Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
7
|
Gutiérrez Gutiérrez G, Díaz-Manera J, Almendrote M, Azriel S, Eulalio Bárcena J, Cabezudo García P, Camacho Salas A, Casanova Rodríguez C, Cobo A, Díaz Guardiola P, Fernández-Torrón R, Gallano Petit M, García Pavía P, Gómez Gallego M, Gutiérrez Martínez A, Jericó I, Kapetanovic García S, López de Munaín Arregui A, Martorell L, Morís de la Tassa G, Moreno Zabaleta R, Muñoz-Blanco J, Olivar Roldán J, Pascual Pascual S, Peinado Peinado R, Pérez H, Poza Aldea J, Rabasa M, Ramos A, Rosado Bartolomé A, Rubio Pérez M, Urtizberea J, Zapata-Wainberg G, Gutiérrez-Rivas E. Guía clínica para el diagnóstico y seguimiento de la distrofia miotónica tipo 1, DM1 o enfermedad de Steinert. Neurologia 2020; 35:185-206. [DOI: 10.1016/j.nrl.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/05/2019] [Indexed: 01/18/2023] Open
|
8
|
Gutiérrez Gutiérrez G, Díaz-Manera J, Almendrote M, Azriel S, Eulalio Bárcena J, Cabezudo García P, Camacho Salas A, Casanova Rodríguez C, Cobo A, Díaz Guardiola P, Fernández-Torrón R, Gallano Petit M, García Pavía P, Gómez Gallego M, Gutiérrez Martínez A, Jericó I, Kapetanovic García S, López de Munaín Arregui A, Martorell L, Morís de la Tassa G, Moreno Zabaleta R, Muñoz-Blanco J, Olivar Roldán J, Pascual Pascual S, Peinado Peinado R, Pérez H, Poza Aldea J, Rabasa M, Ramos A, Rosado Bartolomé A, Rubio Pérez M, Urtizberea J, Zapata-Wainberg G, Gutiérrez-Rivas E. Clinical guide for the diagnosis and follow-up of myotonic dystrophy type 1, MD1 or Steinert's disease. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype. PLoS One 2020; 15:e0230003. [PMID: 32155193 PMCID: PMC7064234 DOI: 10.1371/journal.pone.0230003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease which results from an expansion of repetitive DNA elements within the 3' untranslated region of the DMPK gene. Some patients develop multiple pilomatricomas as well as malignant tumors in other tissues. Mutations of the catenin-β gene (CTNNB1) could be demonstrated in most non-syndromic pilomatricomas. In order to gain insight into the molecular mechanisms which might be responsible for the occurrence of multiple pilomatricomas and cancers in patients with DM1, we have sequenced the CTNNB1 gene of four pilomatricomas and of one pilomatrical carcinoma which developed in one patient with molecularly proven DM1 within 4 years. We further analyzed the pilomatrical tumors for microsatellite instability as well as by NGS for mutations in 161 cancer-associated genes. Somatic and independent point-mutations were detected at typical hotspot regions of CTNNB1 (S33C, S33F, G34V, T41I) while one mutation within CTNNB1 represented a duplication mutation (G34dup.). Pilomatricoma samples were analyzed for microsatellite instability and expression of mismatch repair proteins but no mutated microsatellites could be detected and expression of mismatch repair proteins MLH1, MSH2, MSH6, PMS2 was not perturbed. NGS analysis only revealed one heterozygous germline mutation c.8494C>T; p.(Arg2832Cys) within the ataxia telangiectasia mutated gene (ATM) which remained heterozygous in the pilomatrical tumors. The detection of different somatic mutations in different pilomatricomas and in the pilomatrical carcinoma as well as the observation that the patient developed multiple pilomatricomas and one pilomatrical carcinoma over a short time period strongly suggest that the patient displays a hypermutation phenotype. This hypermutability seems to be tissue and gene restricted. Simultaneous transcription of the mutated DMPK gene and the CTNNB1 gene in cycling hair follicles might constitute an explanation for the observed tissue and gene specificity of hypermutability observed in DM1 patients. Elucidation of putative mechanisms responsible for hypermutability in DM1 patients requires further research.
Collapse
|
10
|
Alsaggaf R, Pfeiffer RM, Wang Y, St George DMM, Zhan M, Wagner KR, Amr S, Greene MH, Gadalla SM. Diabetes, metformin and cancer risk in myotonic dystrophy type I. Int J Cancer 2019; 147:785-792. [PMID: 31749144 DOI: 10.1002/ijc.32801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type I (DM1) is an autosomal dominant multisystem disorder characterized by myotonia and muscle weakness. Type 2 diabetes (T2D) and cancer have been shown to be part of the DM1 phenotype. Metformin, a well-established agent for the management of T2D, is thought to have cancer-preventive effects in the general population. In our study, we aimed to assess the association between T2D, metformin use and the risk of cancer in DM1 patients. We identified a cohort of 913 DM1 patients and an age-, sex- and clinic-matched cohort of 12,318 DM1-free controls from the UK Clinical Practice Research Datalink, a large primary care records database. We used Cox regression models to assess cancer risk in T2D patients who were metformin users or nonusers compared to patients without T2D. Separate analyses were conducted for DM1 patients and controls. T2D was more prevalent in DM1 than in controls (8% vs. 3%, p < 0.0001). DM1 patients with T2D, compared to those without T2D, were more likely to develop cancer (hazard ratio [HR] = 3.60, 95% confidence interval [CI] = 1.18-10.97; p = 0.02), but not if they were treated with metformin (HR = 0.43, 95% CI = 0.06-3.35; p = 0.42). Among controls, we observed no significant associations between T2D and cancer risk in either users or nonusers of Metformin (HR = 1.28, 95% CI = 0.91-1.79; p = 0.16 and HR = 1.13, 95% CI = 0.72-1.79; p = 0.59, respectively). These results show an association between T2D and cancer risk in DM1 patients and may provide new insights into the possible benefits of Metformin use in DM1.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD
| | - Kathryn R Wagner
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sania Amr
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD.,Marlene and Stuart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
11
|
Higgs C, Hilbert JE, Wood L, Martens WB, Marini-Bettolo C, Nikolenko N, Alsaggaf R, Lochmüller H, Moxley RT, Greene MH, Wang Y, Gadalla SM. Reproductive Cancer Risk Factors in Women With Myotonic Dystrophy (DM): Survey Data From the US and UK DM Registries. Front Neurol 2019; 10:1071. [PMID: 31681146 PMCID: PMC6797599 DOI: 10.3389/fneur.2019.01071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction: Recent evidence demonstrates that women with myotonic dystrophy type 1 are at increased risk of reproductive organ tumors. However, studies of reproductive cancer risk factors in those patients are lacking. Methods: Using questionnaires, we collected and analyzed personal history information related to cancer risk factors from women enrolled in a UK and US registry for myotonic dystrophy (dystrophia myotonica; DM) patients. Results: The survey was completed by 242 DM type 1 (DM1) and 44 DM type 2 (DM2) women enrolled in the UK Registry (N = 124) and the US National Registry (N = 162). The mean age at DM1 diagnosis was 33.8 years (standard deviation, SD = 13.2) and for DM2 was 49.2 (SD = 13.0). Mean age at survey was 48.7 (SD = 12.8) and 59.1 years (SD = 12.8) for DM1 and DM2, respectively. There were no statistically significant differences between DM1 and DM2 regarding menstrual history or fertility-related factors. Yet, women with DM2 were more likely to have used menopausal hormone therapy (HT) than women with DM1 (52.3 vs. 22.1%, p < 0.0001), and more women with DM2 had a hysterectomy (53.5 vs. 29.5%, p < 0.01). These differences were not statistically significant after age adjustment (OR = 2.00, p = 0.08, and OR = 1.40, p = 0.38, respectively). The frequency of self-reported reproductive organ tumors was not significantly different comparing DM1 to DM2 (p = 0.28). However, the data suggested that women with DM2 appear to have a lower risk of malignant tumors compared to those with DM1 (OR = 0.72, p = 0.69). Discussion: Our study is the first to characterize a wide range of reproductive risk factors in women with DM. We observed no significant differences between DM1 and DM2 in the factors that were evaluated, which suggests that the known excesses of ovarian and endometrial cancer previously reported in women with DM1 cannot be attributed to greater prevalence of standard cancer-related reproductive risk factors. Larger studies evaluating the possible link between reproductive cancer risk factors and risk of tumors in women with DM are needed.
Collapse
Affiliation(s)
- Cecilia Higgs
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, United States
| | - James E Hilbert
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Libby Wood
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - William B Martens
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nikoletta Nikolenko
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Rotana Alsaggaf
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, United States
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation Barcelona, Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Richard T Moxley
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, United States
| | - Youjin Wang
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, United States
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
12
|
Alsaggaf R, St George DMM, Zhan M, Pfeiffer RM, Wang Y, Anderson LA, Liu Z, Koshiol J, Bauer AJ, Wagner KR, Greene MH, Amr S, Gadalla SM. Benign tumors in myotonic dystrophy type I target disease-related cancer sites. Ann Clin Transl Neurol 2019; 6:1510-1518. [PMID: 31402615 PMCID: PMC6689687 DOI: 10.1002/acn3.50856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023] Open
Abstract
Objectives Recent evidence showed that myotonic dystrophy type I (DM1) patients are at increased risk of certain cancers, but the risk of benign tumors is unknown. We compared the risk of benign tumors in DM1 patients with matched DM1‐free individuals and assessed the association between benign tumors and subsequent cancers. Methods We identified 927 DM1 patients and 13,085 DM1‐free individuals matched on gender, birth‐year, clinic, and clinic‐registration year from the UK Clinical Practice Research Datalink, a primary care records database. We used Cox regression models for statistical analyses. Results DM1 patients had elevated risks of thyroid nodules (Hazard Ratio [HR] = 10.4; 95% Confidence Interval [CI] = 3.91–27.52; P < 0.001), benign tumors of the brain or nervous system (HR = 8.4; 95% CI = 2.48–28.47; P < 0.001), colorectal polyps (HR = 4.3; 95% CI = 1.76–10.41; P = 0.001), and possibly uterine fibroids (HR = 2.7; 95% CI = 1.22–5.88; P = 0.01). Pilomatricomas and salivary gland adenomas occurred almost exclusively in DM1 patients (Fisher's exact P < 0.001). The HR for colorectal polyps was elevated in DM1 males but not in females (HR = 8.2 vs. 1.3, respectively; P‐heterogeneity < 0.001), whereas endocrine and brain tumors occurred exclusively in females. The data suggested an association between benign tumors and subsequent cancer in classic DM1 patients (HR = 2.7; 95% CI = 0.93–7.59; P = 0.07). Interpretation Our study showed a similar site‐specific benign tumor profile to that previously reported for DM1‐associated cancers. The possible association between benign tumors and subsequent cancer in classic DM1 patients warrants further investigation as it may guide identifying patients at elevated risk of cancer. Our findings underscore the importance of following population‐based screening recommendations in DM1 patients, for example, for colorectal cancer.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.,Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| | | | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Lesley A Anderson
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Zhiwei Liu
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn R Wagner
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sania Amr
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland.,Marlene and Stuart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
13
|
Guía clínica para el diagnóstico y seguimiento de la distrofia miotónica tipo 1, DM1 o enfermedad de Steinert. Med Clin (Barc) 2019; 153:82.e1-82.e17. [DOI: 10.1016/j.medcli.2018.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023]
|
14
|
Emparanza JI, López de Munain A, Greene MH, Matheu A, Fernández-Torrón R, Gadalla SM. Cancer phenotype in myotonic dystrophy patients: Results from a meta-analysis. Muscle Nerve 2019; 58:517-522. [PMID: 30028904 DOI: 10.1002/mus.26194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Recent studies have provided evidence that patients with myotonic dystrophy (DM) are at excess risk of cancer. However, inconsistencies regarding affected anatomic sites persist. METHODS We performed a meta-analysis of cancer risk in DM, searching among studies published between January 1, 1990 and December 31, 2016. Eligible studies were full reports of DM cohorts with site-specific risks. RESULTS The analysis included 5 studies, comprising 2,779 patients. Risk estimates for cancers of the endometrium and cutaneous melanoma were reported in all studies. The pooled standardized incidence ratio (pSIRs) for endometrial cancer was 7.48 (95% confidence interval [CI] 4.72-11.8) and for cutaneous melanoma was 2.45 (95% CI 1.31-4.58). Among cancers reported in 4 of 5 studies, elevated risks were observed for thyroid (pSIR = 8.52, 95% CI 3.62-20.1), ovarian (pSIR = 5.56, 95% CI 2.99-10.3), testicular (pSIR = 5.95, 95% CI 2.34-15.1), and colorectal (pSIR = 2.2, 95% CI 1.39-3.49) cancers. DISCUSSION Our data refine the DM cancer phenotype, which may guide patient clinical management and inform plans for molecular investigations to understand DM-related carcinogenesis. Muscle Nerve 58: 517-522, 2018.
Collapse
Affiliation(s)
- Jose I Emparanza
- Clinical Epidemiology Unit, Donostia University Hospital, San Sebastian, Spain
| | | | - Mark H Greene
- Clinical Genetics Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ander Matheu
- Oncology Area, Institute Biodonostia, San Sebastián, Spain
| | | | - Shahinaz M Gadalla
- Clinical Genetics Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Ben Hamou A, Espiard S, Do Cao C, Ladsous M, Loyer C, Moerman A, Boury S, Kyheng M, Dhaenens CM, Tiffreau V, Pigny P, Lebuffe G, Caiazzo R, Aubert S, Vantyghem MC. Systematic thyroid screening in myotonic dystrophy: link between thyroid volume and insulin resistance. Orphanet J Rare Dis 2019; 14:42. [PMID: 30760283 PMCID: PMC6375124 DOI: 10.1186/s13023-019-1019-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Myotonic dystrophy (DM1), a neuromuscular disease related to DMPK gene mutations, is associated to endocrine disorders and cancer. A routine endocrine work-up, including thyroid ultrasound (US), was conducted in 115 genetically-proven DM1 patients in a neuromuscular reference center. The aim of this study was to determine the prevalence and the causes of US thyroid abnormalities in DM1. Results In the whole population (age 45.1 ± 12.2 years, 61.7% female), palpable nodules or goiters were present in 29.2%. The percentage of US goiter (thyroid volume > 18 mL) and US nodules were, respectively, 38.3 and 60.9%. Sixteen of the 115 patients had a thyroidectomy, after 22 fine-needle aspiration cytology guided by thyroid imaging reporting and data system (TIRADS) classification. Six micro- (1/6 pT3) and 3 macro-papillary thyroid carcinoma (PTCs) (2/3 intermediate risk) were diagnosed (7.9% of 115). Thyroid US led to the diagnosis of 4 multifocal and 2 unifocal (including 1 macro-PTC) non-palpable PTCs. Ultrasound thyroid volume was positively correlated to body mass index (BMI) (p = 0.015) and parity (p = 0.036), and was inversely correlated to TSH (p < 0.001) and vitamin D levels (p = 0.023). The BMI, the frequencies of glucose intolerance and PTC were significantly higher in UsGoiter versus non-UsGoiter groups. Conclusion In this systematically screened DM1 cohort, the frequency of UsGoiter, mainly associated to BMI, was about 40%, US nodules 60%, thyroidectomies 13–14%, and PTCs 8%, two-thirds of them being micro-PTCs with good prognosis. Therefore, a systematic screening remains debatable. A targeted US screening in case of clinical abnormality or high BMI seems more appropriate. Electronic supplementary material The online version of this article (10.1186/s13023-019-1019-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrien Ben Hamou
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000, Lille, France. .,Department of Endocrinology, Diabetology and Metabolism, CHR-U Lille, 1, Rue Polonovski, 59037, Lille, France.
| | - Stéphanie Espiard
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000, Lille, France
| | - Christine Do Cao
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000, Lille, France
| | - Miriam Ladsous
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000, Lille, France
| | - Camille Loyer
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000, Lille, France
| | | | | | - Maéva Kyheng
- CHU Lille, EA 2694 - Public Health, Epidemiology and Quality of Care, F-59000, Lille, France
| | - Claire-Marie Dhaenens
- Univ Lille, Inserm, CHU Lille, UMR 837-1, Alzheimer & Tauopathies, F-59000, Lille, France
| | - Vincent Tiffreau
- CHU Lille Neuromuscular Reference Center, F-59000, Lille, France
| | - Pascal Pigny
- CHU Lille, Institute of Biochemistry and Molecular Biology - Biology Center, F-59000, Lille, France
| | | | - Robert Caiazzo
- CHU Lille, General and Endocrine Surgery, F-59000, Lille, France.,Univ Lille, Inserm, CHU Lille, UMR 1190 Translational Research in Diabetes, F-59000, Lille, France.,EGID European Genomics Institute for Diabetes, CHU Lille, F-59000, Lille, France
| | - Sébastien Aubert
- CHU Lille, Institute of Biochemistry and Molecular Biology - Pathology Center, F-59000, Lille, France
| | - Marie Christine Vantyghem
- CHU Lille, Endocrinology, Diabetology and Metabolism, F-59000, Lille, France. .,CHU Lille Neuromuscular Reference Center, F-59000, Lille, France. .,Univ Lille, Inserm, CHU Lille, UMR 1190 Translational Research in Diabetes, F-59000, Lille, France. .,EGID European Genomics Institute for Diabetes, CHU Lille, F-59000, Lille, France. .,Department of Endocrinology, Diabetology and Metabolism, CHR-U Lille, 1, Rue Polonovski, 59037, Lille, France.
| |
Collapse
|
16
|
Alsaggaf R, St George DMM, Zhan M, Pfeiffer RM, Wang Y, Wagner KR, Greene MH, Amr S, Gadalla SM. Cancer Risk in Myotonic Dystrophy Type I: Evidence of a Role for Disease Severity. JNCI Cancer Spectr 2018; 2:pky052. [PMID: 30556050 DOI: 10.1093/jncics/pky052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is an inherited trinucleotide repeat disorder in which specific cancers have been implicated as part of the disease phenotype. This study aimed to assess whether cancer risk in DM1 patients is modified by disease severity. Methods Using the United Kingdom Clinical Practice Research Datalink (primary care electronic medical records), we identified a cohort of 927 DM1 and a matched cohort of 13 085 DM1-free individuals between January 1, 1988 and February 29, 2016. We used Cox regression models to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of organ-specific cancer risks. Analyses were stratified by age at DM1 diagnosis as a surrogate for disease severity. Statistical tests were two-sided. Results Patients with classic DM1 (age at diagnosis: 11-40 years) were at elevated risk of cancer overall (HR = 1.81; 95% CI = 1.12 to 2.93); cancers of the thyroid (HR = 15.93; 95% CI = 2.45 to 103.64), uterus (HR = 26.76; 95% CI = 2.32 to 309.26), and cutaneous melanoma (HR = 5.98; 95% CI = 1.24 to 28.79) accounted for the excess. In late-onset DM1 patients (age at diagnosis >40 years), a reduced overall cancer risk was observed (HR = 0.53; 95% CI = 0.32 to 0.85), possibly driven by the deficit in hematological malignancies (DM1 = 0 cases, DM1-free = 54 cases; P = .02). The difference between the observed HR for classic and late-onset DM1 was statistically significant (P < .001). Conclusions The observed difference in relative cancer risk between classic and late-onset DM1 patients compared with their DM1-free counterparts provides the first evidence that disease severity modifies DM1-related cancer susceptibility. This novel finding may guide clinical management and scientific investigations for the underlying molecular mechanisms in DM-related carcinogenesis.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD
| | | | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathryn R Wagner
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sania Amr
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD.,Marlene and Stuart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Silvestri G, Rossi S, Perna A. Clarification on Uveal Melanoma Associated With Myotonic Dystrophy. JAMA Ophthalmol 2018; 136:1426-1427. [PMID: 30193333 DOI: 10.1001/jamaophthalmol.2018.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Gabriella Silvestri
- Department of Geriatrics, Orthopaedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Salvatore Rossi
- Department of Geriatrics, Orthopaedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Alessia Perna
- Department of Geriatrics, Orthopaedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
18
|
Dalvin LA, Pulido JS, Shields CL. Clarification on Uveal Melanoma Associated With Myotonic Dystrophy-Reply. JAMA Ophthalmol 2018; 136:1427. [PMID: 30193376 DOI: 10.1001/jamaophthalmol.2018.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Lauren A Dalvin
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota.,Department Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Sponziello M, Silvestri G, Verrienti A, Perna A, Rosignolo F, Brunelli C, Pecce V, Rossi ED, Lombardi CP, Durante C, Filetti S, Fadda G. A novel nonsense EIF1AX mutation identified in a thyroid nodule histologically diagnosed as oncocytic carcinoma. Endocrine 2018; 62:492-495. [PMID: 29700698 DOI: 10.1007/s12020-018-1611-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Gabriella Silvestri
- Institute of Neurology, Foundation "Agostino Gemelli" University Hospital, Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Alessia Perna
- Institute of Neurology, Foundation "Agostino Gemelli" University Hospital, Rome, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Chiara Brunelli
- Division of Anatomic Pathology and Histology, Foundation "Agostino Gemelli" University Hospital, Rome, Italy
| | - Valeria Pecce
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Esther Diana Rossi
- Division of Anatomic Pathology and Histology, Foundation "Agostino Gemelli" University Hospital, Rome, Italy
| | - Celestino Pio Lombardi
- Division of Endocrine Surgery, Foundation "Agostino Gemelli" University Hospital, Rome, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Sebastiano Filetti
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Guido Fadda
- Division of Anatomic Pathology and Histology, Foundation "Agostino Gemelli" University Hospital, Rome, Italy
| |
Collapse
|
20
|
Wang Y, Pfeiffer RM, Alsaggaf R, Meeraus W, Gage JC, Anderson LA, Bremer RC, Nikolenko N, Lochmuller H, Greene MH, Gadalla SM. Risk of skin cancer among patients with myotonic dystrophy type 1 based on primary care physician data from the U.K. Clinical Practice Research Datalink. Int J Cancer 2018; 142:1174-1181. [PMID: 29114849 PMCID: PMC5773358 DOI: 10.1002/ijc.31143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 11/06/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited multisystem neuromuscular disorder caused by a CTG trinucleotide repeat expansion in the DMPK gene. Recent evidence documents that DM1 patients have an increased risk of certain cancers, but whether skin cancer risks are elevated is unclear. Using the U.K. Clinical Practice Research Datalink (CPRD), we identified 1,061 DM1 patients and 15,119 DM1-free individuals matched on gender, birth year (±2 years), attending practice and registration year (±1 year). We calculated the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of DM1 diagnosis with skin cancer risk using Cox proportional hazards models, for all skin cancers combined and by histological subtype. Follow-up started at the latest of the age at practice registration, DM1 diagnosis/control selection or January 1st 1988, and ended at the earliest of the age at first skin cancer diagnosis, death, transfer out of the practice, last date of data collection or the end of the CPRD record (October 31, 2016). During a median follow-up of 3.6 years, 35 DM1 patients and 108 matched DM1-free individuals developed a skin cancer. DM1 patients had an increased risk of skin cancer overall (HR = 5.44, 95% CI = 3.33-8.89, p < 0.0001), and basal cell carcinoma (BCC) (HR = 5.78, 95% CI = 3.36-9.92, p < 0.0001). Risks did not differ by gender, or age at DM1 diagnosis (p-heterogeneity > 0.5). Our data confirm suggested associations between DM1 and skin neoplasms with the highest risk seen for BCC. Patients are advised to minimize ultraviolet light exposure and seek medical advice for suspicious lesions.
Collapse
Affiliation(s)
- Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ruth M. Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Julia C. Gage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lesley A. Anderson
- Center for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen’s University, Belfast, UK
| | - Renée C. Bremer
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nikoletta Nikolenko
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, UK
| | - Hanns Lochmuller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, UK
| | - Mark H. Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Shahinaz M. Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
21
|
Mignarri A, Gentili F, Masia F, Genua A, Cenciarelli S, Brunori P, Mazzei MA, Malandrini A, Federico A, Mazzei FG, Dotti MT. Imaging of the thymus in myotonic dystrophy type 1. Neurol Sci 2017; 39:347-351. [PMID: 29177794 DOI: 10.1007/s10072-017-3202-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/18/2017] [Indexed: 02/01/2023]
Abstract
The occurrence of thymoma in myotonic dystrophy type 1 (DM1) has been occasionally reported, and an increased risk of tumors has been observed. We performed imaging of the thymus in 22 patients carrying DMPK expansion. Clinical examination and routine instrumental exams were performed at the same time. We observed no thymic abnormalities in 13 subjects, thymic hyperplasia in eight patients, and an invasive thymoma in one case. Subjects with thymic abnormalities did not show peculiarities as regards clinical and electrophysiological features. We observed thymoma in one patient with an expansion in the higher range. Abnormalities of the thymus including hyperplasia and thymoma can be present in DM1, but do not seem to play a major role in DM1 pathogenesis. Further studies are needed to understand if some RNA splicing factors involved in DM1 and influenced by CTG expansion size could have a role in thymocytes proliferation.
Collapse
Affiliation(s)
- Andrea Mignarri
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
| | - Francesco Gentili
- Diagnostic Imaging, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Masia
- Oncohematology Division, Department of Medicine and Medical Specialties, University of Perugia, Perugia, Italy
| | - Angelo Genua
- Oncohematology Division, Department of Medicine and Medical Specialties, University of Perugia, Perugia, Italy
| | - Silvia Cenciarelli
- Unit of Neurology, Ospedale di Città di Castello, Città di Castello, Italy
| | - Paola Brunori
- Department of Neurophysiopathology, Silvestrini Hospital, Perugia, Italy
| | - Maria Antonietta Mazzei
- Diagnostic Imaging, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandro Malandrini
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Antonio Federico
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | | | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| |
Collapse
|
22
|
Alsaggaf R, Wang Y, Marini-Bettolo C, Wood L, Nikolenko N, Lochmüller H, Greene MH, Gadalla SM. Benign and malignant tumors in the UK myotonic dystrophy patient registry. Muscle Nerve 2017; 57:316-320. [PMID: 28662292 DOI: 10.1002/mus.25736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2017] [Indexed: 11/08/2022]
Abstract
INTRODUCTION In light of recent evidence indicating that cancer is part of the myotonic dystrophy (DM) phenotype, we assessed the prevalence of benign and malignant tumors among 220 patients enrolled in the UK Myotonic Dystrophy Patient Registry and evaluated factors associated with their development. METHODS A survey was distributed to collect tumor history and lifestyle information. We used multinomial logistic regression for the analysis. RESULTS Thirty-nine benign (30 patients), and 16 malignant (15 patients) tumors were reported. Increasing age (odds ratio [OR] = 1.13, 95% confidence interval [CI] = 1.05-1.21, P = 0.001) and earlier age at DM diagnosis (OR = 1.06, 95% CI = 1.00-1.13, P = 0.04) were associated with benign and malignant tumors (OR = 1.20, 95% CI = 1.10-1.30, P < 0.001 and OR = 1.08, 95% CI = 1.01-1.15, P = 0.02, respectively). Female gender was associated with benign tumors only (OR = 6.43, 95% CI = 1.79-23.04, P = 0.004). No associations were observed between tumors and smoking (P = 0.24), alcohol consumption (P = 0.50), or body mass index (P = 0.21). DISCUSSION Our results confirm previous findings suggesting a limited role for common lifestyle factors and a potential genetic contribution in DM tumor predisposition. Muscle Nerve 57: 316-320, 2018.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Libby Wood
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nikoletta Nikolenko
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Gadalla SM, Hilbert JE, Martens WB, Givens S, Moxley RT, Greene MH. Pigmentation phenotype, photosensitivity and skin neoplasms in patients with myotonic dystrophy. Eur J Neurol 2017; 24:713-718. [PMID: 28317292 PMCID: PMC5464410 DOI: 10.1111/ene.13276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/04/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies have suggested a possible excess risk of skin neoplasms in patients with myotonic dystrophy (DM). Risk factors related to this observation have not been defined. METHOD Information regarding personal history of skin tumors, pigmentation phenotype, and skin reaction to sun exposure were collected from 266 DM patients who were enrolled in the US National Institutes of Health National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members. RESULTS Seventy-seven subjects reported having skin tumors that were either benign (n = 31), malignant (n = 32) or both (n = 14). Female gender [odds ratio (OR) = 2.27, 95% confidence interval (CI) 1.02-5.05, P = 0.04], older age (OR = 1.10, 95% CI 1.05-1.16, P < 0.001) and DM1 subtype (OR = 3.42, 95% CI 1.27-9.26, P = 0.02) were associated with a malignant skin tumor. The associations between malignant skin tumors and known risk factors [light eye color (OR = 1.62, 95% CI 0.78-3.39, P = 0.20), light skin complexion (OR = 1.31, 95% CI 0.63-2.73, P = 0.48) and moderate/extensive face freckles (OR = 1.47, 95% CI 0.50-4.34, P = 0.49)] were modest. Strong, but not statistically significant, associations were noted with sunburn reactions when exposed to sunlight (OR = 4.28, 95% CI 0.91-19.95, P = 0.06, and OR = 2.19, 95% CI 0.67-7.09, P = 0.19, for sunburn with and without blistering, respectively). CONCLUSIONS Although our study was limited by small sample size, the risk factors for malignant skin tumors in DM strongly resemble the general population. It is recommended that DM patients adhere to sun exposure protective behavior.
Collapse
Affiliation(s)
- Shahinaz M. Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - James E. Hilbert
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, USA
| | - William B. Martens
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Shannon Givens
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Richard T. Moxley
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark H. Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
24
|
Campione E, Botta A, Di Prete M, Rastelli E, Gibellini M, Petrucci A, Bernardini S, Novelli G, Bianchi L, Orlandi A, Massa R, Terracciano C. Cutaneous features of myotonic dystrophy types 1 and 2: Implication of premature aging and vitamin D homeostasis. Neuromuscul Disord 2016; 27:163-169. [PMID: 28065683 DOI: 10.1016/j.nmd.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/08/2023]
Abstract
Skin changes have been described in myotonic dystrophy type 1 (DM1). However, whether and in which way skin is a target of specific disease alterations in DM1 and DM2 has not been yet clarified. This study aims to explore cutaneous features of DM1 and DM2 patients. Skin examination was performed in 60 DM1, 15 DM2, and 103 control, unselected patients by means of dermoscopy. It revealed quantitative and qualitative abnormalities of nevi and typical signs of premature aging in both DM1 and DM2 patients, with a significantly higher frequency of dysplastic nevi, alopecia, xerosis and seborrheic dermatitis. Twenty-eight nevi were excised in DM patients and none showed histological features of melanoma, although 12 of them were diagnosed as dysplastic and the remaining 16 presented histological irregularity in melanin distribution. In DM1 patients, the number of nevi correlated with CTG expansion size, whereas the presence of dysplastic nevi and xerosis inversely correlated with vitamin D levels. DM1 and DM2 patients display a high frequency of skin abnormalities, the most common of which correlate with genotype severity and serum vitamin D levels. Skin examination is highly informative in these patients and reveals features suggestive of premature aging and impaired vitamin D homeostasis.
Collapse
Affiliation(s)
- Elena Campione
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Division of Medical Genetics, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Monia Di Prete
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Emanuele Rastelli
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Manuela Gibellini
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases S. Camillo-Forlanini Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Division of Medical Genetics, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Luca Bianchi
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Division of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Roberto Massa
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Chiara Terracciano
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| |
Collapse
|
25
|
Smith CA, Gutmann L. Myotonic Dystrophy Type 1 Management and Therapeutics. Curr Treat Options Neurol 2016; 18:52. [DOI: 10.1007/s11940-016-0434-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|