1
|
Vasta R, Ombelet F, Hobin F, Manera U, Ammar AC, Caravaca Puchades A, Corcia P, Galvin M, Hardiman O, Heverin M, Holmdahl O, Ingre C, Lamaire N, McDermott C, Mac Domhnaill É, McDonough H, McFarlane R, Mouzouri M, Sarah OM, Povedano Panadés M, Sennfält S, Shaw P, Terrafeta Pastor C, van den Berg LH, van Eijk RPA, Veldink JH, Weemering DN, Van Damme P, Chiò A. Real-world prognostic role of riluzole use in ALS: a multi-center study from PRECISION-ALS. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:50-60. [PMID: 40326914 DOI: 10.1080/21678421.2025.2472889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) remains an incurable disease, with limited treatment options, and riluzole is the most widely available drug. We evaluated survival in a large cohort of patients with ALS, comparing those treated with riluzole to those who were not. METHODS Using data from the PRECISION-ALS database, we retrospectively analyzed patients with ALS who were treated with 100 mg of riluzole daily at the time of diagnosis. ALSFRS-R slope from onset to diagnosis (ΔFRS) was calculated. Based on the ΔFRS distribution, we defined fast progressors as patients having a ΔFRS > 1.17, intermediate progressors as those with 1.17 > ΔFRS > 0.31 and slow progressors as those with a ΔFRS < 0.31 points per month. We used Kaplan-Meier curves and Cox proportional hazards model to explore the association of riluzole use with patient survival since diagnosis. RESULTS Out of the 5842 patients with available riluzole data, 4847 (82.9%) received riluzole. The overall survival significantly differed between patients treated and not treated with riluzole (HR 0.70, 95%CI 0.69, 0.79), independently of sex, site of onset, age at onset and diagnostic delay. Patients treated with riluzole exhibited a 7 month longer median survival than those who did not receive riluzole (17.6 months, IQR 9.7, 29.9 vs 10.7 months, IQR 4.3, 23.4; p = 2 × 10-16). The relationship between riluzole use and extended survival varied across ΔFRS strata, being only evident among fast progressors (HR = 0.50, 95% 0.40, 0.63). CONCLUSIONS Treatment with riluzole is an independent prognostic factor in ALS. The extended survival related to riluzole use was only evident among fast-progressing patients.
Collapse
Affiliation(s)
- Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Fouke Ombelet
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Neuroscience Department, Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Frederik Hobin
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Neuroscience Department, Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Al-Chalabi Ammar
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Department of Neurosciences, King's College Hospital, London, UK
| | | | - Philippe Corcia
- Centre de Reference Maladies Rares SLA, CHU Tours, Tours, France
- UMR 1253 Imaging Brain and Neuropsychiatry, Université de Tours, Inserm, Tours, France
| | - Miriam Galvin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Oskar Holmdahl
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Nikita Lamaire
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Neuroscience Department, Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christopher McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals, NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Éanna Mac Domhnaill
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Harry McDonough
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Robert McFarlane
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | | | - Opie-Martin Sarah
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | - Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Pamela Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals, NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands, and
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands, and
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands, and
| | - Daphne N Weemering
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands, and
| | - Philip Van Damme
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Neuroscience Department, Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Apostolo D, Ferreira LL, D'Onghia D, Vincenzi F, Vercellino N, Perazzi M, Pirisi M, Cantello R, Minisini R, Mazzini L, Bellan M, De Marchi F. Lower Circulating Gas6 Levels Are Associated with Bulbar Phenotype and Faster Disease Progression in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2025; 62:6273-6282. [PMID: 39762711 DOI: 10.1007/s12035-024-04671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects the motor neurons in the brain and spinal cord. While the exact cause of ALS is not fully understood, a combination of genetic and environmental factors is believed to contribute to its development. Growth arrest-specific 6 (Gas6), a vitamin K-dependent protein, has been recognized to enhance oligodendrocytes and neurons' survival and is associated with different kinds of (neuro)inflammatory conditions. Therefore, we aimed to determine a possible implication of Gas6 in ALS phenotype and progression by evaluating the value of circulating Gas6 and its soluble receptors (sAxl, sMer, sTyro-3) in ALS patients. We conducted a prospective observational study including 65 ALS patients and measured the circulating serum levels of Gas6, sAxl, sMer, soluble Tyro-3 (sTyro-3), and neurofilaments (NfLs). In our ALS cohort, lower serum levels of Gas6 and concomitantly higher levels of NfLs were associated with a more aggressive disease, expressed with bulbar phenotype (p-value for Gas6 = 0.03) and faster progression (p-value for Gas6 = 0.03). Also, serum Gas6 was able to distinguish (area under the curve, cut-off 13.70 ng/mL, sensitivity 69.57%, specificity 72.72%) between fast and slow progressors. Due to its neuroprotective properties, our data suggest that Gas6 could be an intriguing biomarker in ALS patients.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luciana L Ferreira
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Davide D'Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Letizia Mazzini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
- AOU Maggiore Della Carità, Novara, Italy.
| | - Fabiola De Marchi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- AOU Maggiore Della Carità, Novara, Italy
| |
Collapse
|
3
|
González-Sánchez M, Ramírez-Expósito MJ, Martínez-Martos JM. Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies. Life (Basel) 2025; 15:647. [PMID: 40283201 PMCID: PMC12029092 DOI: 10.3390/life15040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and evolving therapeutic strategies. Mechanistically, ALS arises from complex interactions between genetic mutations (e.g., in C9orf72, SOD1, TARDBP (TDP-43), and FUS) and dysregulated cellular pathways, including impaired RNA metabolism, protein misfolding, nucleocytoplasmic transport defects, and prion-like propagation of toxic aggregates. Phenotypic heterogeneity, manifesting as bulbar-, spinal-, or respiratory-onset variants, complicates its early diagnosis, which thus necessitates the rigorous application of the revised El Escorial criteria and emerging biomarkers such as neurofilament light chain. Clinically, ALS intersects with frontotemporal dementia (FTD) in up to 50% of the cases, driven by shared TDP-43 pathology and C9orf72 hexanucleotide expansions. Epidemiological studies have revealed a lifetime risk of 1:350, with male predominance (1.5:1) and peak onset between 50 and 70 years. Disease progression varies widely, with a median survival of 2-4 years post-diagnosis, underscoring the urgency for early intervention. Approved therapies, including riluzole (glutamate modulation), edaravone (antioxidant), and tofersen (antisense oligonucleotide), offer modest survival benefits, while dextromethorphan/quinidine alleviates the pseudobulbar affect. Non-pharmacological treatment advances, such as non-invasive ventilation (NIV), prolong survival by 13 months and improve quality of life, particularly in bulb-involved patients. Multidisciplinary care-integrating physical therapy, respiratory support, nutritional management, and cognitive assessments-is critical to addressing motor and non-motor symptoms (e.g., dysphagia, spasticity, sleep disturbances). Emerging therapies show promise in preclinical models. However, challenges persist in translating genetic insights into universally effective treatments. Ethical considerations, including euthanasia and end-of-life decision-making, further highlight the need for patient-centered communication and palliative strategies.
Collapse
Affiliation(s)
| | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, E23071 Jaén, Spain; (M.G.-S.); (M.J.R.-E.)
| |
Collapse
|
4
|
Maranzano A, Gentile F, Passaretti M, Doretti A, Colombo E, Wall AK, Treddenti M, Patisso V, De Lorenzo A, Gendarini C, Cocuzza A, Maio AD, Pierro S, Poletti B, Cinnante CM, Morelli C, Messina S, Pereira JB, Hardiman O, Silani V, Verde F, Ticozzi N. Rate of change in upper and lower motor neuron burden is associated with survival in amyotrophic lateral sclerosis. J Neurol 2025; 272:315. [PMID: 40186067 DOI: 10.1007/s00415-025-13052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND We hypothesize that the rate of change in upper (ΔUMN) and lower (ΔLMN) motor neuron signs from symptom onset to first clinical assessment represent best predictors of survival and disease progression in amyotrophic lateral sclerosis (ALS) compared to singular quantification of UMN and LMN involvement. METHODS A retrospective inpatient cohort of 1000 ALS patients was evaluated. The burden of UMN and LMN signs was assessed using the Penn Upper Motor Neuron Score and Lower Motor Neuron Score, respectively. For 421 patients, we compute the ENCALS survival model. Univariate and regularized Cox regressions were conducted to estimate the effect of the aforementioned variables on survival. The ROC curve analysis was then employed to a training sub-cohort to identify a ΔLMN cut-off value discriminating ALS patients with prolonged vs short survival. This cut-off value was then cross validated on a test sub-cohort. A multinomial regression model was used to compare different ΔUMN and ΔLMN scores among ENCALS groups. RESULTS ΔUMN and ΔLMN showed a negative association with survival (ΔUMN: HR = 1.30; ΔLMN: HR = 4.22). A cut-off value of 0.22 for ΔLMN was identified to predict patients with estimated short vs prolonged survival. ENCALS groups characterized by shorter survival presented significantly higher ΔUMN and ΔLMN scores compared to those with longer survival. No significant association of PUMNS or LMNS gross scores with the above-mentioned variables was observed. CONCLUSION By reflecting the progressing degeneration of the two distinct motor neuron subpopulations, ΔUMN and ΔLMN might represent reliable and easily measurable clinical indexes to estimate survival in ALS.
Collapse
Affiliation(s)
- A Maranzano
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - F Gentile
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - M Passaretti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Human Neurosciences, University of Rome, SapienzaRome, Italy
| | - A Doretti
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - E Colombo
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - A K Wall
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Treddenti
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - V Patisso
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - A De Lorenzo
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - C Gendarini
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - A Cocuzza
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - A D Maio
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - S Pierro
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - B Poletti
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - C M Cinnante
- Section of Neuroradiology, Department of Radiology and Diagnostic Imaging, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - C Morelli
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - S Messina
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - J B Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - O Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - V Silani
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - F Verde
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - N Ticozzi
- Unit of Neurology, Department of Neurosciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Jiang J, Li X, Mi Y, Wang Y, Heng Y, Li Z, Deng M. Real-world evidence of riluzole on survival and ALSFRS change in a Chinese ALS cohort. Neurodegener Dis Manag 2025; 15:77-87. [PMID: 40183433 PMCID: PMC12118432 DOI: 10.1080/17582024.2025.2488235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
AIMS This study aimed to evaluate the effects of riluzole on survival and changes in ALS Functional Rating Scale (ALSFRS) among Chinese patients with Amyotrophic Lateral Sclerosis (ALS). PATIENTS & METHODS Propensity score matching was used to balance baseline variables between the riluzole group (n = 238) and control group (n = 454). Survival was analyzed using Kaplan - Meier curves and Cox regression, while multivariable linear regression assessed ALSFRS changes at 6 and 12 months. Subgroup analyses were conducted to identify potential responders. RESULTS Riluzole did not significantly improve survival (p = 0.478) or ALSFRS changes at 6 months (p = 0.380) or 12 months (p = 0.175). Subgroup analyses revealed no survival benefit in any subgroup, and further stratification showed inconsistent adverse effects on ALSFRS scores. CONCLUSIONS Riluzole neither prolonged survival nor slowed functional decline in Chinese ALS patients, with no subgroup demonstrating a better response.
Collapse
Affiliation(s)
- JingSi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - XiaoGang Li
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - YuXin Mi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - YiYing Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - YanXi Heng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - ZhiWen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University School of Public Health, Beijing, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Morrison AH, Jimenez JV, Hsu JY, Elman L, Choi PJ, Ackrivo J. Identifying Daytime Hypercapnia Using Transcutaneous Carbon Dioxide Monitoring in Patients With Amyotrophic Lateral Sclerosis. Muscle Nerve 2025; 71:611-619. [PMID: 39936179 PMCID: PMC11887530 DOI: 10.1002/mus.28366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION/AIMS Respiratory failure from hypoventilation is the most common cause of death in amyotrophic lateral sclerosis (ALS). However, ALS care rarely assesses hypercapnia, a physiologic measure of hypoventilation. We investigated the prevalence and clinical significance of daytime hypercapnia measured by transcutaneous carbon dioxide (tcCO2) monitoring in patients with ALS. METHODS This retrospective study included patients seen at two ALS clinics in the United States between 2012 and 2024 who had tcCO2 measured concurrently with pulmonary function tests (PFTs), which included forced vital capacity (FVC) and, at one site, maximum inspiratory pressure (MIP). We assessed the prevalence of hypercapnia (tcCO2 > 45 mmHg), the sensitivity and specificity of patient symptoms and PFTs for hypercapnia, and the relationship between hypercapnia and survival. RESULTS Daytime hypercapnia was present in 33/328 (10%) patients at baseline. Hypercapnia was associated with an increased rate of death (aHR 2.1, 95% CI 1.4-3.3). Orthopnea or dyspnea was 70% sensitive for hypercapnia (95% CI 51%-84%). Absolute value of MIP (|MIP|) < 60 cmH2O was 95% sensitive (95% CI 74%-100%) and 22% specific (95% CI 16%-30%), FVC < 50% predicted was 33% sensitive (95% CI 18%-52%) and 82% specific (95% CI 78%-87%), and FVC < 80% predicted was 85% sensitive (95% CI 68%-95%) and 31% specific (95% CI 26%-36%) for hypercapnia. DISCUSSION TcCO2 monitoring identified strengths and weaknesses of PFTs in identifying hypercapnia in ALS. We found high sensitivity of |MIP| < 60 cmH2O and FVC < 80% predicted and high specificity of FVC < 50% predicted. Prospective studies should investigate the optimal clinical role for tcCO2.
Collapse
Affiliation(s)
- Alexander H. Morrison
- Department of Neurology, The Neuroscience Research Institute, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jose Victor Jimenez
- Department of Internal MedicineYale New Haven HospitalNew HavenConnecticutUSA
| | - Jesse Y. Hsu
- Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lauren Elman
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Philip J. Choi
- Division of Pulmonary, and Critical Care and Sleep Medicine, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Jason Ackrivo
- Pulmonary, Allergy, and Critical Care Division, Department of MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Boll MC, Alcaraz-Zubeldia M, Rios C, González-Esquivel D, Montes S. A phase 2, double-blind, placebo-controlled trial of a valproate/lithium combination in ALS patients. Neurologia 2025; 40:32-40. [PMID: 36049647 DOI: 10.1016/j.nrleng.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Few treatments are currently available for amyotrophic lateral sclerosis (ALS). A combination of lithium carbonate and valproic acid (VPA-Li) was shown to inhibit motor neuron death and delay disease progression. METHODS Outpatients with a typical ALS presentation were enrolled in a randomized, placebo-controlled trial to assess the efficacy of orally administered VPA-Li. Changes in a functional scale score (ALSFRS-R) and survival rate were chosen as primary outcome variables. Secondary outcome variables included BMI, respiratory monitoring, quality of life, and a global impression of the treatment. RESULTS Out of 42 patients enrolled, 20 individuals receiving VPA-Li and 18 on placebo treatment were included in the final analysis. Forty-five percent of patients receiving VPA-Li completed the trial, whereas only 22.22% of patients in the placebo group attended the final visit 18 months later (P = 0.09). Major changes in the ALSFRS-R score were observed, including a decrease of 1.195 points/month in the placebo group (95% CI: 0.7869-1.6031) and of 0.5085 under VPA-Li treatment (95% CI: 0.2288-0.7882) between months 6 and 14. Adverse events included bad mouth taste, constipation, and anorexia. Survival rate, body weight, and quality of life were positive outcomes by the end of the trial despite a high sample reduction, especially in the placebo group. The inclusion of 212 subjects in each group would confirm these differences. CONCLUSIONS Combined VPA-Li treatment associated with slower ALS progression and better secondary outcomes. This dual treatment overcame the futility threshold and merits further investigation in ALS.
Collapse
Affiliation(s)
- M-C Boll
- Clinical Research Laboratory, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - M Alcaraz-Zubeldia
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - C Rios
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - D González-Esquivel
- Division of Pharmacology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - S Montes
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| |
Collapse
|
8
|
Orlova A, Malygin Y, Gofman A, Sotulenko S, Gandalian V, Kartashov I, Brylev L, Bolevich S, Nikolic Turnic T, Jakovljevic V. Survival Prognostic Factors of Non-Invasive Ventilation in Amyotrophic Lateral Sclerosis: A Systematic Review. Life (Basel) 2024; 14:1664. [PMID: 39768371 PMCID: PMC11727909 DOI: 10.3390/life14121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis is a neurodegenerative disease with high rates of disability and mortality. Non-invasive ventilation (NIV) is an effective method of treating patients, increasing life expectancy, but currently, predictors available to determine the best outcome of therapy in this category of patients are unknown. This systematic review aimed to determine the impact of prognostic factors on benefits from NIV application compared with non-NIV tools of treatment (invasive ventilation and standard care) in case of survival of ALS patients. METHOD We systematically sought relevant longitudinal cohort and case-control studies published in PubMed, CINAHL/EMBASE, Cochrane library, and Scopus. RESULTS We included seven prospective studies, published in 2010-2020, in the analysis. According to the evidence base available to date, NIV favors survival compared to non-NIV in patients with bulbar onset ALS. We obtained conflicting data on the significance of spinal onset and bulbar function. Survival depending on patient age, and also for spinal, cervical, and flail limb phenotypes during NIV therapy has not been sufficiently studied and needs further investigation. CONCLUSIONS The studies analyzed in this review allow us to state with confidence that NIV is effective in bulbar onset ALS, taking into account recommendations for duration of ventilation and the use of the full range of symptomatic therapy, including mechanically assisted coughing. The effectiveness of NIV on severe bulbar symptoms requires further research.
Collapse
Affiliation(s)
- Aleksandra Orlova
- Department of Pathological Physiology, Institute of Digital Biodesign and Modelling of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.O.); (I.K.); (S.B.); (V.J.)
| | - Yaroslav Malygin
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anna Gofman
- Institute of World Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.G.); (S.S.); (V.G.)
| | - Sofija Sotulenko
- Institute of World Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.G.); (S.S.); (V.G.)
| | - Veronika Gandalian
- Institute of World Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.G.); (S.S.); (V.G.)
| | - Ioan Kartashov
- Department of Pathological Physiology, Institute of Digital Biodesign and Modelling of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.O.); (I.K.); (S.B.); (V.J.)
| | - Lev Brylev
- Yas Clinic Managed by Abu Dhabi Stem Cell Center, Abu Dhabi, United Arab Emirates;
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 127006 Moscow, Russia
| | - Sergey Bolevich
- Department of Pathological Physiology, Institute of Digital Biodesign and Modelling of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.O.); (I.K.); (S.B.); (V.J.)
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- N.A. Semashko Public Health and Healthcare Department, F.F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Pathological Physiology, Institute of Digital Biodesign and Modelling of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.O.); (I.K.); (S.B.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Guazzo A, Atzeni M, Idi E, Trescato I, Tavazzi E, Longato E, Manera U, Chió A, Gromicho M, Alves I, de Carvalho M, Vettoretti M, Di Camillo B. Predicting clinical events characterizing the progression of amyotrophic lateral sclerosis via machine learning approaches using routine visits data: a feasibility study. BMC Med Inform Decis Mak 2024; 24:318. [PMID: 39472842 PMCID: PMC11523576 DOI: 10.1186/s12911-024-02719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in death within a short time span (3-5 years). One of the major challenges in treating ALS is its highly heterogeneous disease progression and the lack of effective prognostic tools to forecast it. The main aim of this study was, then, to test the feasibility of predicting relevant clinical outcomes that characterize the progression of ALS with a two-year prediction horizon via artificial intelligence techniques using routine visits data. METHODS Three classification problems were considered: predicting death (binary problem), predicting death or percutaneous endoscopic gastrostomy (PEG) (multiclass problem), and predicting death or non-invasive ventilation (NIV) (multiclass problem). Two supervised learning models, a logistic regression (LR) and a deep learning multilayer perceptron (MLP), were trained ensuring technical robustness and reproducibility. Moreover, to provide insights into model explainability and result interpretability, model coefficients for LR and Shapley values for both LR and MLP were considered to characterize the relationship between each variable and the outcome. RESULTS On the one hand, predicting death was successful as both models yielded F1 scores and accuracy well above 0.7. The model explainability analysis performed for this outcome allowed for the understanding of how different methodological approaches consider the input variables when performing the prediction. On the other hand, predicting death alongside PEG or NIV proved to be much more challenging (F1 scores and accuracy in the 0.4-0.6 interval). CONCLUSIONS In conclusion, predicting death due to ALS proved to be feasible. However, predicting PEG or NIV in a multiclass fashion proved to be unfeasible with these data, regardless of the complexity of the methodological approach. The observed results suggest a potential ceiling on the amount of information extractable from the database, e.g., due to the intrinsic difficulty of the prediction tasks at hand, or to the absence of crucial predictors that are, however, not currently collected during routine practice.
Collapse
Affiliation(s)
- Alessandro Guazzo
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Michele Atzeni
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Elena Idi
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Isotta Trescato
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Erica Tavazzi
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Enrico Longato
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Umberto Manera
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Adriano Chió
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Marta Gromicho
- Faculdade de Medicina, IMM J. L. Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Alves
- Faculdade de Medicina, IMM J. L. Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Mamede de Carvalho
- Faculdade de Medicina, IMM J. L. Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy.
- Department of Comparative Biomedicine and Food Science, University of Padova, Padua, Italy.
| |
Collapse
|
10
|
Georges M, Perez T, Rabec C, Jacquin L, Finet-Monnier A, Ramos C, Patout M, Attali V, Amador M, Gonzalez-Bermejo J, Salachas F, Morelot-Panzini C. [Proposals from a French expert panel for respiratory care in ALS patients]. Rev Mal Respir 2024; 41:620-637. [PMID: 39019674 DOI: 10.1016/j.rmr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/25/2022] [Indexed: 07/19/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive diaphragm weakness and deteriorating lung function. Bulbar involvement and cough weakness contribute to respiratory morbidity and mortality. ALS-related respiratory failure significantly affects quality of life and is the leading cause of death. Non-invasive ventilation (NIV), which is the main recognized treatment for alleviating the symptoms of respiratory failure, prolongs survival and improves quality of life. However, the optimal timing for the initiation of NIV is still a matter of debate. NIV is a complex intervention. Multiple factors influence the efficacy of NIV and patient adherence. The aim of this work was to develop practical evidence-based advices to standardize the respiratory care of ALS patients in French tertiary care centres. METHODS For each proposal, a French expert panel systematically searched an indexed bibliography and prepared a written literature review that was then shared and discussed. A combined draft was prepared by the chairman for further discussion. All of the proposals were unanimously approved by the expert panel. RESULTS The French expert panel updated the criteria for initiating NIV in ALS patients. The most recent criteria were established in 2005. Practical advice for NIV initiation were included and the value of each tool available for NIV monitoring was reviewed. A strategy to optimize NIV parameters was suggested. Revisions were also suggested for the use of mechanically assisted cough devices in ALS patients. CONCLUSION Our French expert panel proposes an evidence-based review to update the respiratory care recommendations for ALS patients in daily practice.
Collapse
Affiliation(s)
- M Georges
- Service des maladies respiratoires et des soins intensifs, centre de référence pour les maladies pulmonaires rares de l'adulte, hôpital universitaire de Dijon-Bourgogne, Dijon, France; Université de Bourgogne-Franche-Comté, Dijon, France; Centre des sciences du goût et de l'alimentation, UMR 6265, CNRS 1234, INRA, université de Bourgogne-Franche-Comté, Dijon, France.
| | - T Perez
- Service des maladies respiratoires, hôpital universitaire de Lille, Lille, France; Centre d'infection et d'immunité de Lille, Inserm U1019-UMR9017, université de Lille-Nord de France, Lille, France
| | - C Rabec
- Service des maladies respiratoires et des soins intensifs, centre de référence pour les maladies pulmonaires rares de l'adulte, hôpital universitaire de Dijon-Bourgogne, Dijon, France; Université de Bourgogne-Franche-Comté, Dijon, France
| | - L Jacquin
- Société ResMed SAS, Saint-Priest, France
| | - A Finet-Monnier
- Service des maladies neuromusculaires et de la SLA, hôpital universitaire de la Timone, Marseille, France
| | - C Ramos
- CRMR SLA-MNM, hôpital Pasteur 2, hôpital universitaire de Nice, Nice, France
| | - M Patout
- Département R3S, service des pathologies du sommeil, groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, France; Neurophysiologie respiratoire expérimentale et clinique, Inserm UMRS1158, Sorbonne université, Paris, France
| | - V Attali
- Département R3S, service des pathologies du sommeil, groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, France; Neurophysiologie respiratoire expérimentale et clinique, Inserm UMRS1158, Sorbonne université, Paris, France
| | - M Amador
- Service de neurologie, centre SLA de Paris, groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - J Gonzalez-Bermejo
- Neurophysiologie respiratoire expérimentale et clinique, Inserm UMRS1158, Sorbonne université, Paris, France; Département R3S, service de pneumologie, groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - F Salachas
- Service de neurologie, centre SLA de Paris, groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Morelot-Panzini
- Neurophysiologie respiratoire expérimentale et clinique, Inserm UMRS1158, Sorbonne université, Paris, France; Département R3S, service de pneumologie, groupe hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
11
|
Xu R, Wang X, Zhu S, Jiang B, Wan J, Ma J, Yu Y, Yu L, Fang Q, Hu C, Zhu M. Assessment of Cerebral White Matter Involvement in Amyotrophic Lateral Sclerosis Patients With Disease Progression and Cognitive Impairment by Fixel-Based Analysis and Neurite Orientation Dispersion and Density Imaging. J Magn Reson Imaging 2024; 60:900-908. [PMID: 38059522 DOI: 10.1002/jmri.29171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Previous studies using emerging diffusion MRI techniques have revealed damage to the white matter (WM) microstructure in amyotrophic lateral sclerosis (ALS), particularly the influence of crossed fibers, but there is a lack of subgroup analyses. PURPOSE To detect WM microstructural changes in ALS patients using fixel-based analysis (FBA) and neurite orientation dispersion and density imaging (NODDI) MRI. STUDY TYPE Prospective. POPULATION Thirty-six ALS patients (aged 60.50 ± 9.5 years) and 25 healthy controls (HCs) (aged 58.90 ± 8.1 years). FIELD STRENGTH/SEQUENCE 3 T; NODDI and FBA (b-values = 0, 1000, and 2500 seconds/mm2). ASSESSMENT Subgroups were performed according to progression rate and cognition, including fast and slow progression (FP/SP), ALS with and without cognitive impairment (ALS-ci/ALS-nci). Fiber density (FD), fiber-bundle cross-section (FC), combined fiber density and cross-section (FDC), neurite density index (NDI), orientation dispersion index (ODI), isotropic volume fraction (ISO), and fractional anisotropy (FA) were calculated and their correlation with clinical variables examined. STATISTICAL TESTING Chi-square test, Mann-Whitney U test, two-sample t test, partial correlation analysis, and false discovery rate (FDR) corrected. A P-value <0.05 was considered significant. RESULTS ALS patients had lower FD and FDC values predominantly in the corticospinal tract (CST) and corpus callosum (CC) regions, as well as lower NDI value in the CC, radial crown, and internal capsule compared to HCs. Subgroup analysis based on progression rate and cognitive function showed significant differences in FBA results. The FC in the right CST region was significantly lower in the FP than SP, and the FD in the CC region was significantly lower in the ALS-ci than ALS-nci. Furthermore, a negative correlation was found between the mean FC value and the rate of progression in ALS patients (r = -0.408). DATA CONCLUSION FBA is a powerful tool for detecting complex cerebral WM microstructural damage for evaluating ALS cognition and disease progression.
Collapse
Affiliation(s)
- Rui Xu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sijia Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Jiang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Wan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiali Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Chourpiliadis C, Seitz C, Lovik A, Joyce EE, Pan L, Hu Y, Kläppe U, Samuelsson K, Press R, Ingre C, Fang F. Lifestyle and medical conditions in relation to ALS risk and progression-an introduction to the Swedish ALSrisc Study. J Neurol 2024; 271:5447-5459. [PMID: 38878106 PMCID: PMC11319377 DOI: 10.1007/s00415-024-12496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND This study was an introduction to the Swedish ALSrisc Study and explored the association of lifestyle and medical conditions, with risk and progression of amyotrophic lateral sclerosis (ALS). METHODS We included 265 newly diagnosed ALS patients during 2016-2022 in Stockholm and 207 ALS-free siblings and partners of the patients as controls. Information on body mass index (BMI), smoking, and history of head injuries, diabetes mellitus, hypercholesterolemia, and hypertension was obtained through the Euro-MOTOR questionnaire at recruitment. Patients were followed from diagnosis until death, invasive ventilation, or November 30, 2022. RESULTS Higher BMI at recruitment was associated with lower risk for ALS (OR 0.89, 95%CI 0.83-0.95), especially among those diagnosed after 65 years. One unit increase in the average BMI during the 3 decades before diagnosis was associated with a lower risk for ALS (OR 0.94, 95%CI 0.89-0.99). Diabetes was associated with lower risk of ALS (OR 0.38, 95%CI 0.16-0.90), while hypercholesterolemia was associated with higher risk of ALS (OR 2.10, 95%CI 1.13-3.90). Higher BMI at diagnosis was associated with lower risk of death (HR 0.91, 95%CI 0.84-0.98), while the highest level of smoking exposure (in pack-years) (HR 1.90, 95%CI 1.20-3.00), hypercholesterolemia (HR 1.84, 95%CI 1.06-3.19), and hypertension (HR 1.76, 95%CI 1.03-3.01) were associated with higher risk of death, following ALS diagnosis. CONCLUSIONS Higher BMI and diabetes were associated with lower risk of ALS. Higher BMI was associated with lower risk of death, whereas smoking (especially in high pack-years), hypercholesterolemia, and hypertension were associated with higher risk of death after ALS diagnosis.
Collapse
Affiliation(s)
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anikó Lovik
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Emily E Joyce
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Rayomand Press
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Niccolai E, Pedone M, Martinelli I, Nannini G, Baldi S, Simonini C, Di Gloria L, Zucchi E, Ramazzotti M, Spezia PG, Maggi F, Quaranta G, Masucci L, Bartolucci G, Stingo FC, Mandrioli J, Amedei A. Amyotrophic lateral sclerosis stratification: unveiling patterns with virome, inflammation, and metabolism molecules. J Neurol 2024; 271:4310-4325. [PMID: 38644373 PMCID: PMC11233352 DOI: 10.1007/s00415-024-12348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an untreatable and clinically heterogeneous condition primarily affecting motor neurons. The ongoing quest for reliable biomarkers that mirror the disease status and progression has led to investigations that extend beyond motor neurons' pathology, encompassing broader systemic factors such as metabolism, immunity, and the microbiome. Our study contributes to this effort by examining the potential role of microbiome-related components, including viral elements, such as torque tenovirus (TTV), and various inflammatory factors, in ALS. In our analysis of serum samples from 100 ALS patients and 34 healthy controls (HC), we evaluated 14 cytokines, TTV DNA load, and 18 free fatty acids (FFA). We found that the evaluated variables are effective in differentiating ALS patients from healthy controls. In addition, our research identifies four unique patient clusters, each characterized by distinct biological profiles. Intriguingly, no correlations were found with site of onset, sex, progression rate, phenotype, or C9ORF72 expansion. A remarkable aspect of our findings is the discovery of a gender-specific relationship between levels of 2-ethylhexanoic acid and patient survival. In addition to contributing to the growing body of evidence suggesting altered peripheral immune responses in ALS, our exploratory research underscores metabolic diversity challenging conventional clinical classifications. If our exploratory findings are validated by further research, they could significantly impact disease understanding and patient care customization. Identifying groups based on biological profiles might aid in clustering patients with varying responses to treatments.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Pedone
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Ilaria Martinelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Simonini
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Leandro Di Gloria
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Zucchi
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pietro Giorgio Spezia
- Department of Translational Research, Retrovirus Center - University of Pisa, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - Gianluca Quaranta
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, Rome, Italy
| | - Luca Masucci
- Department of Laboratory and Infectious Sciences, A. Gemelli University Hospital IRCCS, Rome, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Francesco Claudio Stingo
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
14
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Chen S, Carter D, Brockenbrough PB, Cox S, Gwathmey K. Racial disparities in ALS diagnostic delay: a single center's experience and review of potential contributing factors. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:112-118. [PMID: 37909302 DOI: 10.1080/21678421.2023.2273361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Outcomes for amyotrophic lateral sclerosis (ALS) patients are improved with prompt diagnosis, earlier initiation of disease-modifying treatments, and participation in a multidisciplinary clinic. We studied diagnostic delay and disease severity at time of clinic presentation between Black and non-Hispanic Caucasian ALS patients. METHODS We performed a retrospective analysis of non-Hispanic Caucasian and Black ALS patients seen in the Virginia Commonwealth University Health System multidisciplinary ALS clinic between 2017 and 2023. Diagnostic delay, ALS Functional Rating Scale-Revised (ALSFRS-R) and upright forced vital capacity (FVC) scores at baseline appointment were collected. Patient's distance from clinic and affluency of residential neighborhood were evaluated. RESULTS We analyzed 172 non-Hispanic Caucasian and 33 Black ALS patients. Black patients had a 64% increase in diagnostic delay compared to non-Hispanic Caucasian patients. Black patients had a lower performance on ALSFRS-R (5.3 points, p < 0.001) and FVC (17.9 percentage points p < 0.001) at time of first clinic visit. Black patients lived closer to clinic, with higher proportion living in the city of Richmond, but in less affluent areas with lower median house income ($55,300 ± 22,600 vs $69,900 ± 23,700). DISCUSSION Our findings demonstrate a large racial difference in ALS diagnostic delay, and greater disease severity and lower respiratory function at time of diagnosis for Black ALS patients. Delay in diagnosis prolongs access to disease-modifying therapies, multidisciplinary care, durable medical equipment, and respiratory and nutritional support. Potential sources of these racial disparities include providers' implicit bias and structural racism.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Demetrius Carter
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Stephen Cox
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Kelly Gwathmey
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
16
|
Martinelli I, Zucchi E, Simonini C, Gianferrari G, Bedin R, Biral C, Ghezzi A, Fini N, Carra S, Mandrioli J. SerpinA1 levels in amyotrophic lateral sclerosis patients: An exploratory study. Eur J Neurol 2024; 31:e16054. [PMID: 37679868 PMCID: PMC11235621 DOI: 10.1111/ene.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND SerpinA1, a serine protease inhibitor, is involved in the modulation of microglial-mediated inflammation in neurodegenerative diseases. We explored SerpinA1 levels in cerebrospinal fluid (CSF) and serum of amyotrophic lateral sclerosis (ALS) patients to understand its potential role in the pathogenesis of the disease. METHODS SerpinA1, neurofilament light (NfL) and heavy (NfH) chain, and chitinase-3-like protein-1 (CHI3L1) were determined in CSF and serum of ALS patients (n = 110) and healthy controls (n = 10) (automated next-generation ELISA), and correlated with clinical parameters, after identifying three classes of progressors (fast, intermediate, slow). Biomarker levels were analyzed for diagnostic power and association with progression and survival. RESULTS SerpinA1serum was significantly decreased in ALS (median: 1032 μg/mL) compared with controls (1343 μg/mL) (p = 0.02). SerpinA1CSF was elevated only in fast progressors (8.6 μg/mL) compared with slow (4.43 μg/mL, p = 0.01) and intermediate (4.42 μg/mL, p = 0.03) progressors. Moreover, SerpinA1CSF correlated with neurofilament and CHI3L1 levels in CSF. Contrarily to SerpinA1CSF , neurofilament and CHI3L1 concentrations in CSF correlated with measures of disease progression in ALS, while SerpinA1serum mildly related with time to generalization (rho = 0.20, p = 0.04). In multivariate analysis, the ratio between serum and CSF SerpinA1 (SerpinA1 ratio) and NfHCSF were independently associated with survival. CONCLUSIONS Higher SerpinA1CSF levels are found in fast progressors, suggesting SerpinA1 is a component of the neuroinflammatory mechanisms acting upon fast-progressing forms of ALS. Both neurofilaments or CHI3L1CSF levels outperformed SerpinA1 at predicting disease progression rate in our cohort, and so the prognostic value of SerpinA1 alone as a measure remains inconclusive.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly
| | - Elisabetta Zucchi
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Neuroscience PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly
| | - Cecilia Simonini
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Roberta Bedin
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Chiara Biral
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nicola Fini
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Jessica Mandrioli
- Department of NeurosciencesAzienda Ospedaliero Universitaria di ModenaModenaItaly
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
17
|
Martinelli I, Ghezzi A, Zucchi E, Gianferrari G, Ferri L, Moglia C, Manera U, Solero L, Vasta R, Canosa A, Grassano M, Brunetti M, Mazzini L, De Marchi F, Simonini C, Fini N, Vinceti M, Pinti M, Chiò A, Calvo A, Mandrioli J. Predictors for progression in amyotrophic lateral sclerosis associated to SOD1 mutation: insight from two population-based registries. J Neurol 2023; 270:6081-6092. [PMID: 37668704 DOI: 10.1007/s00415-023-11963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Uncovering distinct features and trajectories of amyotrophic lateral sclerosis (ALS) associated with SOD1 mutations (SOD1-ALS) can provide valuable insights for patient' counseling and stratification for trials, and interventions timing. Our study aims to pinpoint distinct clinical characteristics of SOD1-ALS by delving into genotype-phenotype correlations and factors that potentially impact disease progression. METHODS This is a retrospective observational study of a SOD1-ALS cohort from two Italian registers situated in the regions of Emilia-Romagna, Piedmont and Valle d'Aosta. RESULTS Out of 2204 genotyped ALS patients, 2.5% carried SOD1 mutations, with a M:F ratio of 0.83. SOD1-ALS patients were younger, and more frequently reported a family history of ALS and/or FTD. SOD1-ALS had a longer survival compared to patients without ALS-associated gene mutations. However, here was considerable variability in survival across distinct SOD1 mutations, with an average survival of less than a year for the L39V, G42S, G73S, D91N mutations. Among SOD1-ALS, multivariate analysis showed that, alongside established clinical prognostic factors such as advanced age at onset and high progression rate at diagnosis, mutations located in exon 2 or within highly conserved gene positions predicted worse survival. Conversely, among comorbidities, cancer history was independently associated with longer survival. INTERPRETATION Within the context of an overall slower disease, SOD1-ALS exhibits some degree of heterogeneity linked to the considerable genetic diversity arising from the multitude of potential mutations sites and specific clinical prognostic factors, including cancer history. Revealing the factors that modulate the phenotypic heterogeneity of SOD1-ALS could prove advantageous in improving the efficacy of upcoming therapeutic approaches.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy.
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy.
| | - Giulia Gianferrari
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Ferri
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Moglia
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Umberto Manera
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Luca Solero
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Rosario Vasta
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
| | - Antonio Canosa
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maurizio Grassano
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maura Brunetti
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Letizia Mazzini
- Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- Neurology Unit, ALS Center, AOU Maggiore della Carità and University of Piemonte Orientale, Novara, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Science of Public Health, Research Centre in Environmental, Genetic and Nutritional Epidemiology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adriano Chiò
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Andrea Calvo
- Department of Neuroscience "Rita Levi Montalcini", ALS Centre, University of Torino, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Viale Pietro Giardini, 1355, 41126, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Li C, Lin J, Jiang Q, Yang T, Xiao Y, Huang J, Hou Y, Wei Q, Cui Y, Wang S, Zheng X, Ou R, Liu K, Chen X, Song W, Zhao B, Shang H. Genetic Modifiers of Age at Onset for Amyotrophic Lateral Sclerosis: A Genome-Wide Association Study. Ann Neurol 2023; 94:933-941. [PMID: 37528491 DOI: 10.1002/ana.26752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Age at onset (AAO) is an essential clinical feature associated with disease progression and mortality in amyotrophic lateral sclerosis (ALS). Identification of genetic variants and environmental risk factors influencing AAO of ALS could help better understand the disease's biological mechanism and provide clinical guidance. However, most genetic studies focused on the risk of ALS, while the genetic background of AAO is less explored. This study aimed to identify genetic and environmental determinants for AAO of ALS. METHODS We performed a genome-wide association analysis using a Cox proportional hazards model on AAO of ALS in 10,068 patients. We further conducted colocalization analysis and in-vitro functional exploration for the target variants, as well as Mendelian randomization analysis to identify risk factors influencing AAO of ALS. RESULTS The total heritability of AAO of ALS was ~0.16 (standard error [SE] = 0.03). One novel locus rs2046243 (CTIF) was significantly associated with earlier AAO by ~1.29 years (p = 1.68E-08, beta = 0.10, SE = 0.02). Functional exploration suggested this variant was associated with increased expression of CTIF in multiple tissues including the brain. Colocalization analysis detected a colocalization signal at the locus between AAO of ALS and expression of CTIF. Causal inference indicated higher education level was associated with later AAO. INTERPRETATION These findings improve the current knowledge of the genetic and environmental etiology of AAO of ALS, and provide a novel target CTIF for further research on ALS pathogenesis and potential therapeutic options to delay the disease onset. ANN NEUROL 2023;94:933-941.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Gwathmey KG, Corcia P, McDermott CJ, Genge A, Sennfält S, de Carvalho M, Ingre C. Diagnostic delay in amyotrophic lateral sclerosis. Eur J Neurol 2023; 30:2595-2601. [PMID: 37209406 DOI: 10.1111/ene.15874] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease, and the time from symptom onset to diagnosis remains long. With the advent of disease-modifying treatments, the need to identify and diagnose ALS in a timely fashion has never been greater. METHODS We reviewed the literature to define the severity of ALS diagnostic delay, the various factors that contribute to this delay (including patient and physician factors), and the role that site of symptom onset plays in a patient's diagnostic journey. RESULTS Diagnostic delay is influenced by general practitioners' lack of recognition of ALS due to disease rarity and heterogenous presentations. As a result, patients are referred to non-neurologists, have unnecessary diagnostic testing, and may ultimately be misdiagnosed. Patient factors include their illness behavior-which impacts diagnostic delay-and their site of symptom onset. Limb-onset patients have the greatest diagnostic delay because they are frequently misdiagnosed with degenerative spine disease or peripheral neuropathy. CONCLUSION Prompt ALS diagnosis results in more effective clinical management, with earlier access to disease-modifying therapies, multidisciplinary care, and, if desired, clinical trial involvement. Due to lack of commercially available ALS biomarkers, alternative strategies to identify and triage patients who likely have ALS must be employed. Several diagnostic tools have been developed to encourage general practitioners to consider ALS and make an urgent referral to ALS specialists, bypassing unnecessary referrals to non-neurologists and unnecessary diagnostic workup.
Collapse
Affiliation(s)
- Kelly G Gwathmey
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Philippe Corcia
- CRMR SLA, CHU Tours, Tours, France
- UMR1253 iBrain UMR, Université de Tours, INSERM, Tours, France
| | - Chris J McDermott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Angela Genge
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa-Norte, Lisbon, Portugal
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
De Marchi F, Mareschi K, Ferrero I, Cantello R, Fagioli F, Mazzini L. Effect of mesenchymal stromal cell transplantation on long-term survival in amyotrophic lateral sclerosis. Cytotherapy 2023; 25:798-802. [PMID: 36931995 DOI: 10.1016/j.jcyt.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND AIMS Thanks to their immunomodulatory, tissue-protective and regenerative properties, mesenchymal stromal cells (MSCs) are a promising approach for amyotrophic lateral sclerosis (ALS); however, trials are limited and few follow-up studies have been published. This post-hoc analysis aims to describe the potential long-term effects of MSCs in ALS, analyzing data from two phase 1 clinical trials in ALS patients conducted by our group in 2002 and 2006. METHODS We conducted two consecutive phase 1 prospective, open, pilot clinical trials, enrolling a total of 19 ALS patients. We followed patients for the duration of the disease. For each patient, we used the European Network to Cure ALS (ENCALS) survival prediction model to retrospectively calculate the expected survival at diagnosis. We then compared the predicted disease duration with the observed survival, analyzing patients at a single-patient level. RESULTS Using the ENCALS model, we predicted short survival in one patient, intermediate survival in three patients, long survival in three patients and very long survival in 12 patients. The difference between predicted and observed survival for the whole group was significant and demonstrated a mean predicted survival of 70.79 months (standard deviation [SD], 27.53) and a mean observed survival of 118.8 months (SD, 89.26) (P = 0.016). Based on the monthly ALS Functional Rating Scale-Revised progression rate (median, 0.64/month), we considered 10 of 19 patients slow progressors and nine of 19 patients fast progressors. Of the slow progressors, eight of 10 (80%) had significantly increased disease duration compared with predicted, and only two (20%) had decreased estimated disease duration. By contrast, five of nine (55%) fast progressors had increased disease duration, whereas four (45%) had decreased disease duration. To date, four patients are still alive. CONCLUSIONS The current study represents the first very long-term analysis of survival as an effect of MSC focal transplantation in the central nervous system of ALS patients, demonstrating that MSC transplantation could potentially slow down ALS progression and improve survival. Due to the interindividual variability in clinical course, at the current state of our knowledge, we cannot generalize the results, but these data provide new insights for planning the next generation of efficacy MSC clinical trials in ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Amyotrophic Lateral Sclerosis Center, Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Katia Mareschi
- Department of Public Health and Pediatrics, University of Turin, Torino, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Pediatric Onco-Hematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino, Italy
| | - Ivana Ferrero
- Department of Public Health and Pediatrics, University of Turin, Torino, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Pediatric Onco-Hematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino, Italy
| | - Roberto Cantello
- Amyotrophic Lateral Sclerosis Center, Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Franca Fagioli
- Department of Public Health and Pediatrics, University of Turin, Torino, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Pediatric Onco-Hematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino, Italy
| | - Letizia Mazzini
- Amyotrophic Lateral Sclerosis Center, Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
21
|
Yamashita S, Tawara N, Hara K, Ueda M. Gender differences in clinical features at the initial examination of late-onset amyotrophic lateral sclerosis. J Neurol Sci 2023; 451:120697. [PMID: 37295193 DOI: 10.1016/j.jns.2023.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that mainly affects motor neurons in the brain and spinal cord. With the advent of aging societies, the proportion of elderly patients with ALS is expected to increase. METHODS We retrospectively compared the clinical characteristics at the initial examination of patients with onset of ALS at age 74 years or younger (early onset) and those aged 75 years or older at onset (late-onset) at a single regional ALS diagnostic center in Japan. RESULTS The phenotype of late-onset ALS differed between males and females, with late-onset females having more bulbar-onset ALS and significantly lower body mass index, late-onset males having more frequent bulbar and respiratory symptoms at the initial examination, and significantly lower forced vital capacity at the initial examination in both groups compared to early onset patients. CONCLUSION For late-onset patients, maintenance of skeletal muscle mass by early intervention for bulbar and respiratory symptoms may be useful for prolonging survival; however, a prospective analysis is warranted.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Japan.
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kentaro Hara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Manera U, Grassano M, Matteoni E, Bombaci A, Vasta R, Palumbo F, Torrieri MC, Cugnasco P, Moglia C, Canosa A, Chiò A, Calvo A. Serum chloride as a respiratory failure marker in amyotrophic lateral sclerosis. Front Aging Neurosci 2023; 15:1188827. [PMID: 37293667 PMCID: PMC10244551 DOI: 10.3389/fnagi.2023.1188827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
Respiratory failure is the most common cause of death in patients with amyotrophic lateral sclerosis (ALS) and occurs with great variability among patients according to different phenotypic features. Early predictors of respiratory failure in ALS are important to start non-invasive ventilation (NIV). Venous serum chloride values correlate with carbonate (HCO3-) blood levels and reflect metabolic compensation of respiratory acidosis. Despite its wide availability and low cost, few data on serum chloride as a prognostic marker exist in ALS literature. In the present study, we evaluated serum chloride values at diagnosis as prognostic biomarkers for overall survival and NIV adaptation in a retrospective center-based cohort of ALS patients. We collected all ALS patients with serum chloride assessment at diagnosis, identified through the Piemonte and Valle d'Aosta Register for ALS, evaluating the correlations among serum chloride, clinical features, and other serum biomarkers. Thereafter, time-to-event analysis was modeled to predict overall survival and NIV start. We found a significant correlation between serum chloride and inflammatory status markers, serum sodium, forced vital capacity (FVC), ALS functional rating scale-revised (ALSFRS-R) item 10 and 11, age at diagnosis, and weight loss. Time-to-event analysis confirmed both in univariate analysis and after multiple confounders' adjustment that serum chloride value at diagnosis significantly influenced survival and time to NIV start. According to our analysis, based on a large ALS cohort, we found that serum chloride analyzed at diagnosis is a low-cost marker of impending respiratory decompensation. In our opinion, it should be added among the serum prognostic biomarkers that are able to stratify patients into different prognostic categories even when performed in the early phases of the disease.
Collapse
Affiliation(s)
- Umberto Manera
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maurizio Grassano
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| | - Enrico Matteoni
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Bombaci
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| | - Rosario Vasta
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesca Palumbo
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria Claudia Torrieri
- Neurology Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Paolo Cugnasco
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| | - Cristina Moglia
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Antonio Canosa
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, Rome, Italy
| | - Adriano Chiò
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, Rome, Italy
| | - Andrea Calvo
- “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
- SC Neurologia 1U, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
23
|
Segura T, Medrano IH, Collazo S, Maté C, Sguera C, Del Rio-Bermudez C, Casero H, Salcedo I, García-García J, Alcahut-Rodríguez C, Taberna M. Symptoms timeline and outcomes in amyotrophic lateral sclerosis using artificial intelligence. Sci Rep 2023; 13:702. [PMID: 36639403 PMCID: PMC9839769 DOI: 10.1038/s41598-023-27863-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative motor neuron disease. Although an early diagnosis is crucial to provide adequate care and improve survival, patients with ALS experience a significant diagnostic delay. This study aimed to use real-world data to describe the clinical profile and timing between symptom onset, diagnosis, and relevant outcomes in ALS. Retrospective and multicenter study in 5 representative hospitals and Primary Care services in the SESCAM Healthcare Network (Castilla-La Mancha, Spain). Using Natural Language Processing (NLP), the clinical information in electronic health records of all patients with ALS was extracted between January 2014 and December 2018. From a source population of all individuals attended in the participating hospitals, 250 ALS patients were identified (61.6% male, mean age 64.7 years). Of these, 64% had spinal and 36% bulbar ALS. For most defining symptoms, including dyspnea, dysarthria, dysphagia and fasciculations, the overall diagnostic delay from symptom onset was 11 (6-18) months. Prior to diagnosis, only 38.8% of patients had visited the neurologist. In a median post-diagnosis follow-up of 25 months, 52% underwent gastrostomy, 64% non-invasive ventilation, 16.4% tracheostomy, and 87.6% riluzole treatment; these were more commonly reported (all Ps < 0.05) and showed greater probability of occurrence (all Ps < 0.03) in bulbar ALS. Our results highlight the diagnostic delay in ALS and revealed differences in the clinical characteristics and occurrence of major disease-specific events across ALS subtypes. NLP holds great promise for its application in the wider context of rare neurological diseases.
Collapse
Affiliation(s)
- Tomás Segura
- University Hospital of Albacete, Albacete, Spain.
| | | | | | | | - Carlo Sguera
- Savana Research, Madrid, Spain.,UC3M-Santander Big Data Institute, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Molecular subtypes of ALS are associated with differences in patient prognosis. Nat Commun 2023; 14:95. [PMID: 36609402 PMCID: PMC9822908 DOI: 10.1038/s41467-022-35494-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with poorly understood clinical heterogeneity, underscored by significant differences in patient age at onset, symptom progression, therapeutic response, disease duration, and comorbidity presentation. We perform a patient stratification analysis to better understand the variability in ALS pathology, utilizing postmortem frontal and motor cortex transcriptomes derived from 208 patients. Building on the emerging role of transposable element (TE) expression in ALS, we consider locus-specific TEs as distinct molecular features during stratification. Here, we identify three unique molecular subtypes in this ALS cohort, with significant differences in patient survival. These results suggest independent disease mechanisms drive some of the clinical heterogeneity in ALS.
Collapse
|
25
|
Meanti R, Bresciani E, Rizzi L, Coco S, Zambelli V, Dimitroulas A, Molteni L, Omeljaniuk RJ, Locatelli V, Torsello A. Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:2376-2394. [PMID: 36111771 PMCID: PMC10616926 DOI: 10.2174/1570159x20666220915103613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Anna Dimitroulas
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, United Kingdom
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Robert J. Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| |
Collapse
|
26
|
Georges M, Perez T, Rabec C, Jacquin L, Finet-Monnier A, Ramos C, Patout M, Attali V, Amador M, Gonzalez-Bermejo J, Salachas F, Morelot-Panzini C. Proposals from a French expert panel for respiratory care in ALS patients. Respir Med Res 2022; 81:100901. [PMID: 35378353 DOI: 10.1016/j.resmer.2022.100901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive diaphragm weakness and deteriorating lung function. Bulbar involvement and cough weakness contribute to respiratory morbidity and mortality. ALS-related respiratory failure significantly affects quality of life and is the leading cause of death. Non-invasive ventilation (NIV), which is the main recognized treatment for alleviating the symptoms of respiratory failure, prolongs survival and improves quality of life. However, the optimal timing for the initiation of NIV is still a matter of debate. NIV is a complex intervention. Multiple factors influence the efficacy of NIV and patient adherence. The aim of this work was to develop practical evidence-based advices to standardize the respiratory care of ALS patients in French tertiary care centres. METHODS For each proposal, a French expert panel systematically searched an indexed bibliography and prepared a written literature review that was then shared and discussed. A combined draft was prepared by the chairman for further discussion. All of the proposals were unanimously approved by the expert panel. RESULTS The French expert panel updated the criteria for initiating NIV in ALS patients. The most recent criteria were established in 2005. Practical advice for NIV initiation were included and the value of each tool available for NIV monitoring was reviewed. A strategy to optimize NIV parameters was suggested. Revisions were also suggested for the use of mechanically assisted cough devices in ALS patients. CONCLUSION Our French expert panel proposes an evidence-based review to update the respiratory care recommendations for ALS patients in daily practice.
Collapse
Affiliation(s)
- M Georges
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon France; Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS 1234 INRA, University of Bourgogne Franche-Comté, Dijon, France.
| | - T Perez
- Department of Respiratory Diseases, University Hospital of Lille, Lille, France; Centre for Infection and Immunity of Lille, INSERM U1019-UMR9017, University of Lille Nord de France, Lille, France
| | - C Rabec
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon France
| | - L Jacquin
- Clinical Training Manager for ResMed SAS company, Saint-Priest, France
| | - A Finet-Monnier
- Department of Neuromuscular Disorders and ALS, University Hospital of Timone, Marseille, France
| | - C Ramos
- CRMR SLA-MNM, Hôpital Pasteur 2, University Hospital of Nice, Nice, France
| | - M Patout
- Service des Pathologies du Sommeil (Département R3S), Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France; Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Sorbonne Université, Paris, France
| | - V Attali
- Service des Pathologies du Sommeil (Département R3S), Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France; Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Sorbonne Université, Paris, France
| | - M Amador
- Neurology Department, Paris ALS center, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - J Gonzalez-Bermejo
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Sorbonne Université, Paris, France; Service de Pneumologie (Département R3S), Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - F Salachas
- Neurology Department, Paris ALS center, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Morelot-Panzini
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Sorbonne Université, Paris, France; Service de Pneumologie (Département R3S), Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
27
|
Gromicho M, Leão T, Oliveira Santos M, Pinto S, Carvalho AM, Madeira SC, de Carvalho M. Dynamic Bayesian Networks for stratification of disease progression in Amyotrophic Lateral Sclerosis. Eur J Neurol 2022; 29:2201-2210. [DOI: 10.1111/ene.15357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Marta Gromicho
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Tiago Leão
- Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
| | - Miguel Oliveira Santos
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Department of Neurosciences and Mental Health Centro Hospitalar Universitário de Lisboa‐Norte Lisbon Portugal
| | - Susana Pinto
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Alexandra M. Carvalho
- Instituto de Telecomunicações and Lisbon ELLIS Unit (LUMLIS) Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
| | - Sara C. Madeira
- LASIGE Faculdade de Ciências Universidade de Lisboa Lisbon Portugal
| | - Mamede de Carvalho
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Department of Neurosciences and Mental Health Centro Hospitalar Universitário de Lisboa‐Norte Lisbon Portugal
| |
Collapse
|
28
|
Tavazzi E, Daberdaku S, Zandonà A, Vasta R, Nefussy B, Lunetta C, Mora G, Mandrioli J, Grisan E, Tarlarini C, Calvo A, Moglia C, Drory V, Gotkine M, Chiò A, Di Camillo B. Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression. J Neurol 2022; 269:3858-3878. [PMID: 35266043 PMCID: PMC9217910 DOI: 10.1007/s00415-022-11022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022]
Abstract
Objective To employ Artificial Intelligence to model, predict and simulate the amyotrophic lateral sclerosis (ALS) progression over time in terms of variable interactions, functional impairments, and survival. Methods We employed demographic and clinical variables, including functional scores and the utilisation of support interventions, of 3940 ALS patients from four Italian and two Israeli registers to develop a new approach based on Dynamic Bayesian Networks (DBNs) that models the ALS evolution over time, in two distinct scenarios of variable availability. The method allows to simulate patients’ disease trajectories and predict the probability of functional impairment and survival at different time points. Results DBNs explicitly represent the relationships between the variables and the pathways along which they influence the disease progression. Several notable inter-dependencies were identified and validated by comparison with literature. Moreover, the implemented tool allows the assessment of the effect of different markers on the disease course, reproducing the probabilistically expected clinical progressions. The tool shows high concordance in terms of predicted and real prognosis, assessed as time to functional impairments and survival (integral of the AU-ROC in the first 36 months between 0.80–0.93 and 0.84–0.89 for the two scenarios, respectively). Conclusions Provided only with measurements commonly collected during the first visit, our models can predict time to the loss of independence in walking, breathing, swallowing, communicating, and survival and it can be used to generate in silico patient cohorts with specific characteristics. Our tool provides a comprehensive framework to support physicians in treatment planning and clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11022-0.
Collapse
Affiliation(s)
- Erica Tavazzi
- Department of Information Engineering, University of Padova, Padua, Italy
| | | | - Alessandro Zandonà
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Rosario Vasta
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | | | | | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | | | - Enrico Grisan
- Department of Information Engineering, University of Padova, Padua, Italy
- School of Engineering, London South Bank University, London, UK
| | | | - Andrea Calvo
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Cristina Moglia
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Vivian Drory
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marc Gotkine
- Hadassah University Hospital Medical Center, Jerusalem, Israel
| | - Adriano Chiò
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy.
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Gradenigo 6/B, 35131, Padua, Italy.
| |
Collapse
|
29
|
Riva N, Gentile F, Cerri F, Gallia F, Podini P, Dina G, Falzone YM, Fazio R, Lunetta C, Calvo A, Logroscino G, Lauria G, Corbo M, Iannaccone S, Chiò A, Lazzerini A, Nobile-Orazio E, Filippi M, Quattrini A. Phosphorylated TDP-43 aggregates in peripheral motor nerves of patients with amyotrophic lateral sclerosis. Brain 2022; 145:276-284. [PMID: 35076694 PMCID: PMC8967102 DOI: 10.1093/brain/awab285] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/27/2022] Open
Abstract
Phosphorylated TDP-43 (pTDP-43) aggregates in the cytoplasm of motor neurons and neuroglia in the brain are one of the pathological hallmarks of amyotrophic lateral sclerosis. Although the axons exceed the total volume of motor neuron soma by several orders of magnitude, systematic studies investigating the presence and distribution of pTDP-43 aggregates within motor nerves are still lacking. The aim of this study is to define the TDP-43/pTDP-43 pathology in diagnostic motor nerve biopsies performed on a large cohort of patients presenting with a lower motor neuron syndrome and to assess whether this might be a discriminating tissue biomarker for amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases. We retrospectively evaluated 102 lower motor neuron syndrome patients referred to our centre for a diagnostic motor nerve biopsy. Histopathological criteria of motor neuron disease and motor neuropathy were applied by two independent evaluators, who were blind to clinical data. TDP-43 and pTDP-43 were evaluated by immunohistochemistry, and results compared to final clinical diagnosis. We detected significant differences between amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases in pTDP-43 expression in myelinated fibres: axonal accumulation was detected in 98.2% of patients with amyotrophic lateral sclerosis versus 30.4% of non-amyotrophic lateral sclerosis samples (P < 0.0001), while concomitant positive staining in Schwan cell cytoplasm was found in 70.2% of patients with amyotrophic lateral sclerosis versus 17.4% of patients who did not have amyotrophic lateral sclerosis (P < 0.001). Importantly, we were also able to detect pTDP-43 aggregates in amyotrophic lateral sclerosis cases displaying normal features at standard histopathological analysis. Our findings demonstrated that a specific pTDP-43 signature is present in the peripheral nervous system of patients with amyotrophic lateral sclerosis, and could be exploited as a specific, accessible tissue biomarker. The detection of pTDP-43 aggregates within motor nerves of living patients with amyotrophic lateral sclerosis, occurring before axonal degeneration, suggests that this is an early event that may contribute to amyotrophic lateral sclerosis pathogenesis.
Collapse
Affiliation(s)
- Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Cerri
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesca Gallia
- Neuromuscular and Neuroimmunology Service, Department of Medical Biotechnology and Translational Medicine, Humanitas Clinical and Research Institute, Milan University, 20089 Rozzano, Milan, Italy
| | - Paola Podini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgia Dina
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Raffaella Fazio
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | | | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Disease Center, IRCCS Foundation ‘Carlo Besta’ Neurological Institute, 20133, Milan, Italy
- Department of Biomedical and Clinical and Sciences ‘Luigi Sacco’, University of Milan, 20157, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144, Milan, Italy
| | - Sandro Iannaccone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Alberto Lazzerini
- Hand Surgery Department, IRCCS Orthopedic Institute Galeazzi, 20161, Milan, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, Department of Medical Biotechnology and Translational Medicine, Humanitas Clinical and Research Institute, Milan University, 20089 Rozzano, Milan, Italy
| | - Massimo Filippi
- Neurology Unit and Neurorehabilitation Unit, San Raffaele Scientific Institute, 20132, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
30
|
Cividini C, Basaia S, Spinelli EG, Canu E, Castelnovo V, Riva N, Cecchetti G, Caso F, Magnani G, Falini A, Filippi M, Agosta F. Amyotrophic Lateral Sclerosis-Frontotemporal Dementia: Shared and Divergent Neural Correlates Across the Clinical Spectrum. Neurology 2022; 98:e402-e415. [PMID: 34853179 PMCID: PMC8793105 DOI: 10.1212/wnl.0000000000013123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES A significant overlap between amyotrophic lateral sclerosis (ALS) and behavioral variant of frontotemporal dementia (bvFTD) has been observed at clinical, genetic, and pathologic levels. Within this continuum of presentations, the presence of mild cognitive or behavioral symptoms in patients with ALS has been consistently reported, although it is unclear whether this is to be considered a distinct phenotype or rather a natural evolution of ALS. Here, we used mathematical modeling of MRI connectomic data to decipher common and divergent neural correlates across the ALS-frontotemporal dementia (FTD) spectrum. METHODS We included 83 patients with ALS, 35 patients with bvFTD, and 61 healthy controls, who underwent clinical, cognitive, and MRI assessments. Patients with ALS were classified according to the revised Strong criteria into 54 ALS with only motor deficits (ALS-cn), 21 ALS with cognitive or behavioral involvement (ALS-ci/bi), and 8 ALS with bvFTD (ALS-FTD). First, we assessed the functional and structural connectivity patterns across the ALS-FTD spectrum. Second, we investigated whether and where MRI connectivity alterations of patients with ALS with any degree of cognitive impairment (i.e., ALS-ci/bi and ALS-FTD) resembled more the pattern of damage of one (ALS-cn) or the other end (bvFTD) of the spectrum, moving from group-level to single-subject analysis. RESULTS As compared with controls, extensive structural and functional disruption of the frontotemporal and parietal networks characterized bvFTD (bvFTD-like pattern), while a more focal structural damage within the sensorimotor-basal ganglia areas characterized ALS-cn (ALS-cn-like pattern). ALS-ci/bi patients demonstrated an ALS-cn-like pattern of structural damage, diverging from ALS-cn with similar motor impairment for the presence of enhanced functional connectivity within sensorimotor areas and decreased functional connectivity within the bvFTD-like pattern. On the other hand, patients with ALS-FTD resembled both structurally and functionally the bvFTD-like pattern of damage with, in addition, the structural ALS-cn-like damage in the motor areas. DISCUSSION Our findings suggest a maladaptive role of functional rearrangements in ALS-ci/bi concomitantly with similar structural alterations compared to ALS-cn, supporting the hypothesis that ALS-ci/bi might be considered as a phenotypic variant of ALS, rather than a consequence of disease worsening.
Collapse
Affiliation(s)
- Camilla Cividini
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Silvia Basaia
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Edoardo G Spinelli
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Elisa Canu
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Veronica Castelnovo
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Nilo Riva
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Giordano Cecchetti
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Francesca Caso
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Giuseppe Magnani
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Andrea Falini
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy
| | - Federica Agosta
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., S.B., E.G.S., E.C., V.C., G.C., M.F., F.A.), Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (G.C., F.C., G.M., M.F., F.A.), Neuroradiology Unit (A.F.), CERMAC (A.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (C.C., E.G.S., V.C., G.C., A.F., M.F., F.A.), Milan, Italy.
| |
Collapse
|
31
|
Cattaneo M, Jesus P, Lizio A, Fayemendy P, Guanziroli N, Corradi E, Sansone V, Leocani L, Filippi M, Riva N, Corcia P, Couratier P, Lunetta C. The hypometabolic state: a good predictor of a better prognosis in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:41-47. [PMID: 34353859 DOI: 10.1136/jnnp-2021-326184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Malnutrition and weight loss are negative prognostic factors for survival in patients with amyotrophic lateral sclerosis (ALS). However, energy expenditure at rest (REE) is still not included in clinical practice, and no data are available concerning hypometabolic state in ALS. OBJECTIVE To evaluate in a referral cohort of patients with ALS the prevalence of hypometabolic state as compared with normometabolic and hypermetabolic states, and to correlate it with clinical phenotype, rate of progression and survival. DESIGN We conducted a retrospective study examining REE measured by indirect calorimetry in patients with ALS referred to Milan, Limoges and Tours referral centres between January 2011 and December 2017. Hypometabolism and hypermetabolism states were defined when REE difference between measured and predictive values was ≤-10% and ≥10%, respectively. We evaluated the relationship between these metabolic alterations and measures of body composition, clinical characteristics and survival. RESULTS Eight hundred forty-seven patients with ALS were recruited. The median age at onset was 63.79 years (IQR 55.00-71.17). The male/female ratio was 1.26 (M/F: 472/375). Ten per cent of patients with ALS were hypometabolic whereas 40% were hypermetabolic. Hypometabolism was significantly associated with later need for gastrostomy, non-invasive ventilation and tracheostomy placement. Furthermore, hypometabolic patients with ALS significantly outlived normometabolic (HR=1.901 (95% CI 1.080 to 3.345), p=0.0259) and hypermetabolic (HR=2.138 (95% CI 1.154 to 3.958), p=0.0157) patients. CONCLUSION Hypometabolism in ALS is not uncommon and is associated with slower disease progression and better survival than normometabolic and hypermetabolic subjects. Indirect calorimetry should be performed at least at time of diagnosis because alterations in metabolism are correlated with prognosis.
Collapse
Affiliation(s)
- Marina Cattaneo
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Pierre Jesus
- Nutrition Unit, University Hospital Centre of Limoges, Limoges, France.,Inserm UMR 1094, Tropical Neuroepidemiology, University of Limoges Medical Faculty, Limoges, France
| | - Andrea Lizio
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy
| | - Philippe Fayemendy
- Inserm UMR 1094, Tropical Neuroepidemiology, University of Limoges Medical Faculty, Limoges, France.,Nutrition Unit, Limoges, France
| | | | - Ettore Corradi
- ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Valeria Sansone
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy.,Department of Biomedical Sciences of Health, University of Milan, Milano, Italy
| | - Letizia Leocani
- Neurorehabilitation Unit, San Raffaele Hospital, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Vita-Salute San Raffaele University, Milano, Italy.,Neurology Unit, San Raffaele Hospital, Milano, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, San Raffaele Hospital, Milano, Italy.,Neurology Unit, San Raffaele Hospital, Milano, Italy
| | - Philippe Corcia
- ALS Center, University Hospital of Tours, Tours, France.,Inserm Unit 1253, iBrain, Tours, France
| | - Philippe Couratier
- Inserm UMR 1094, Tropical Neuroepidemiology, University of Limoges Medical Faculty, Limoges, France.,Centre de reference maladies rares SLA et autres maladies du neurone moteur, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Christian Lunetta
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy
| |
Collapse
|
32
|
Bianchi E, Pupillo E, De Feudis A, Enia G, Vitelli E, Beghi E. Trends in survival of ALS from a population-based registry. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:344-352. [PMID: 34818115 DOI: 10.1080/21678421.2021.2004167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objective: To assess survival of ALS patients in general and in selected demographic and clinical subgroups comparing two periods (1998-2000 vs. 2008-2010). Methods: Newly diagnosed adults resident of Lombardy, Northern Italy from a population-based registry were included. Data were collected on age at diagnosis, sex, site of onset, diagnostic delay, and El-Escorial diagnostic category. Patients were followed until death or last observation. Survival was evaluated using Kaplan-Meier curves and Cox's proportional hazards models. Results: In 2008-2010 (267 patients), median survival was 2.4 years and 1-year, 2-year, 3-year and 5-year survival rates were 79%, 56%, 41% and 24%. Longer survival was associated with male sex, younger age, spinal onset, and longer diagnostic delay. Multivariable analysis confirmed higher death in 65-69yr (HR 2.8; 95% CI 1.4-5.6), 70-74yr (HR 3.2; 95% CI 1.6-6.3) and 75 + yr (HR 6.9; 95% CI 3.5-13.8) categories, compared to ≤49yr, in females (HR 1.4; 95% CI 1.02-1.8), compared to males, and in patients diagnosed after 6-12 months (HR 1.9; 95% CI 1.4-2.7), compared with longer diagnostic delay. In 1998-2000 (235 patients), median survival was 2.2 years. The 1-year, 2-year, 3-year and 5-year survival rates were 77%, 53%, 38% and 20%. When adjusting for demographic and clinical variables, the HR for death in 2008-2010 versus 1998-2000 was 0.80 (95% CI 0.66-0.98). A significant increase of survival in 2008-2010 was found only in patients aged 50-59yr and 70-74yr at diagnosis. Conclusions: Survival of ALS has increased over time in the last decades, especially in middle aged and elderly patients. The benefits of comprehensive care in selected age groups might explain our findings.
Collapse
Affiliation(s)
- Elisa Bianchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | | - Antonio De Feudis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Gabriele Enia
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Eugenio Vitelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ettore Beghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
33
|
Prell T, Vlad B, Gaur N, Stubendorff B, Grosskreutz J. Blood-Brain Barrier Disruption Is Not Associated With Disease Aggressiveness in Amyotrophic Lateral Sclerosis. Front Neurosci 2021; 15:656456. [PMID: 34776835 PMCID: PMC8586537 DOI: 10.3389/fnins.2021.656456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of the fatal neurodegenerative condition amyotrophic lateral sclerosis (ALS) remains to be fully understood. Blood–brain barrier damage (BBBD) has been implicated as an exacerbating factor in several neurodegenerative conditions, including ALS. Therefore, this cross-sectional study used the novel D50 progression model to assess the clinical relevance of BBBD within a cohort of individuals with either ALS (n = 160) or ALS mimicking conditions (n = 31). Routine laboratory parameters in cerebrospinal fluid (CSF) and blood were measured, and the ratio of CSF to serum albumin levels (Qalb) was used as a proxy measure of BBBD. In the univariate analyses, Qalb levels correlated weakly with disease aggressiveness (as indicated by individual D50 values) and physical function (as measured by ALS Functional Rating Scale). However, after adjustment for cofactors in the elastic net regularization, only having limb-onset disease was associated with BBBD. The results reported here emphasize the clinical heterogeneity of ALS and the need for additional longitudinal and multi-modal studies to fully clarify the extent and effect of BBBD in ALS.
Collapse
Affiliation(s)
- Tino Prell
- Department of Geriatrics, Halle University Hospital, Jena, Germany
| | - Benjamin Vlad
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nayana Gaur
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Julian Grosskreutz
- Department of Neurology, Jena University Hospital, Jena, Germany.,Precision Neurology, University of Lüebeck, Lüebeck, Germany
| |
Collapse
|
34
|
Shoesmith C, Abrahao A, Benstead T, Chum M, Dupre N, Izenberg A, Johnston W, Kalra S, Leddin D, O'Connell C, Schellenberg K, Tandon A, Zinman L. Canadian best practice recommendations for the management of amyotrophic lateral sclerosis. CMAJ 2021; 192:E1453-E1468. [PMID: 33199452 DOI: 10.1503/cmaj.191721] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Christen Shoesmith
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask.
| | - Agessandro Abrahao
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Tim Benstead
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Marvin Chum
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Nicolas Dupre
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Aaron Izenberg
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Wendy Johnston
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Sanjay Kalra
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Desmond Leddin
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Colleen O'Connell
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Kerri Schellenberg
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Anu Tandon
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| | - Lorne Zinman
- London Health Sciences Centre (Shoesmith), London, Ont.; Sunnybrook Health Sciences Centre (Abrahao, Izenberg, Tandon, Zinman), Toronto, Ont.; Dalhousie University (Benstead, Leddin), Halifax, NS; McMaster University (Chum), Hamilton, Ont.; CHU de Québec-Université Laval (Dupre), Québec, Que.; University of Alberta (Johnston, Kalra), Edmonton, Alta.; Stan Cassidy Centre for Rehabilitation (O'Connell), Fredericton, NB; University of Saskatchewan (Schellenberg), Saskatoon, Sask
| |
Collapse
|
35
|
Li Y, Sun B, Wang Z, He Z, Yang F, Wang H, Cui F, Chen Z, Ling L, Wang C, Huang X. Mutation Screening of the GLE1 Gene in a Large Chinese Cohort of Amyotrophic Lateral Sclerosis Patients. Front Neurosci 2021; 15:595775. [PMID: 34025336 PMCID: PMC8131544 DOI: 10.3389/fnins.2021.595775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease involving the upper and lower motor neurons of the spinal cord, brainstem, and cerebral cortex. At least 30 genes have been implicated in familial ALS (fALS) and sporadic ALS (sALS). Kaneb et al. (2015) first carried out a large-scale sequencing study in ALS patients and identified two loss-of-function (LOF) variants in the GLE1 gene. The LOF mutation-induced disruption of RNA metabolism through the haploinsufficiency mechanism is implicated in ALS pathogenesis. A total of 628 ALS patients and 522 individuals without neurodegenerative disorders were enrolled in this study to explore the GLE1 gene contribution to ALS in the Chinese population. All 16 exons and the flanking intron of GLE1 were screened by Sanger sequencing. In total, we identified seven rare GLE1 coding variants, including one novel nonsense mutation and six rare missense mutations in 628 ALS patients. The frequency of GLE1 LOF mutations was 0.16% (1/628) among Chinese sALS patients, implying that it is an uncommon genetic determinant of ALS in Chinese patients. Additionally, the rare missense variants in the hCG1-binding domain of GLE1 impairing the distribution of the hGle1B isoform at the nuclear pore complex (NPC) region may be involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Yanran Li
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Sun
- Geriatric Neurological Department of the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhengqing He
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fang Cui
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Chen
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li Ling
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xusheng Huang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Costello E, Rooney J, Pinto-Grau M, Burke T, Elamin M, Bede P, McMackin R, Dukic S, Vajda A, Heverin M, Hardiman O, Pender N. Cognitive reserve in amyotrophic lateral sclerosis (ALS): a population-based longitudinal study. J Neurol Neurosurg Psychiatry 2021; 92:460-465. [PMID: 33563807 DOI: 10.1136/jnnp-2020-324992] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is often associated with cognitive and/or behavioural impairment. Cognitive reserve (CR) may play a protective role in offsetting cognitive impairment. This study examined the relationship between CR and longitudinal change in cognition in an Irish ALS cohort. METHODS Longitudinal neuropsychological assessment was carried out on 189 patients over 16 months using the Edinburgh cognitive and behavioural ALS screen (ECAS) and an additional battery of neuropsychological tests. CR was measured by combining education, occupation and physical activity data. Joint longitudinal and time-to-event models were fitted to investigate the associations between CR, performance at baseline and decline over time while controlling for non-random drop-out. RESULTS CR was a significant predictor of baseline neuropsychological performance, with high CR patients performing better than those with medium or low CR. Better cognitive performance in high CR individuals was maintained longitudinally for ECAS, social cognition, executive functioning and confrontational naming. Patients displayed little cognitive decline over the course of the study, despite controlling for non-random drop-out. CONCLUSIONS These findings suggest that CR plays a role in the presentation of cognitive impairment at diagnosis but is not protective against cognitive decline. However, further research is needed to examine the interaction between CR and other objective correlates of cognitive impairment in ALS.
Collapse
Affiliation(s)
- Emmet Costello
- Department of Psychology, Beaumont Hospital, Dublin 9, Ireland .,Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - James Rooney
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Institute and Clinic for Occupational, Social- and Environmental Medicine, University Hospital, Munich, Germany
| | - Marta Pinto-Grau
- Department of Psychology, Beaumont Hospital, Dublin 9, Ireland.,Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Tom Burke
- Department of Psychology, Beaumont Hospital, Dublin 9, Ireland.,Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Marwa Elamin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Peter Bede
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Roisin McMackin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Stefan Dukic
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland.,Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Alice Vajda
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Niall Pender
- Department of Psychology, Beaumont Hospital, Dublin 9, Ireland.,Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| |
Collapse
|
37
|
Engel M, Glatz C, Helmle C, Young P, Dräger B, Boentert M. Respiratory parameters on diagnostic sleep studies predict survival in patients with amyotrophic lateral sclerosis. J Neurol 2021; 268:4321-4331. [PMID: 33880611 PMCID: PMC8505303 DOI: 10.1007/s00415-021-10563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE In amyotrophic lateral sclerosis (ALS), respiratory muscle involvement and sleep-disordered breathing relate to worse prognosis. The present study investigated whether respiratory outcomes on first-ever sleep studies predict survival in patients with ALS, specifically taking into account subsequent initiation of non-invasive ventilation (NIV). METHODS From patients with ALS, baseline sleep study records, transcutaneous capnometry, early morning blood gas analysis, survival data and clinical disease characteristics were retrospectively analyzed. Patients were stratified according to whether enduring NIV was consecutively established ("NIV(+)") or not ("NIV(-)"). RESULTS Among the study cohort (n = 158, 72 female, 51 with bulbar onset ALS, 105 deceased) sleep-disordered breathing was present at baseline evaluation in 97 patients. Early morning base excess (EMBE) > 2 mmol/l predicted nocturnal hypercapnia. Ninety-five patients were NIV(+) and 63 were NIV(-). Survival from baseline sleep studies was significantly reduced in NIV(-) but not in NIV(+) patients with nocturnal CO2 tension ≥ 50 mmHg, apnea hypopnea index ≥ 5/h, and EMBE > 2 mmol/l. Hazard ratio for EMBE > 2 mmol/l was increased in NIV(-) patients only, and EMBE independently predicted survival in both NIV(-) and NIV(+) patients. Furthermore, EMBE on baseline sleep studies was the only predictor for survival from symptom onset, and hazard ratio for shorter survival was markedly higher in the NIV(-) than the NIV(+) group (2.85, p = 0.005, vs. 1.71, p = 0.042). INTERPRETATION In patients with ALS, EMBE > 2 mmol/l predicts nocturnal hypercapnia and shorter survival. Negative effects of sleep-disordered breathing on survival are statistically abolished by sustained NIV.
Collapse
Affiliation(s)
- Markus Engel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Christian Glatz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Cornelia Helmle
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Peter Young
- Department of Neurology, Medical Park Reithofpark, Bad Feilnbach, Germany
| | - Bianca Dräger
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.,Department of Medicine, UKM Marienhospital Steinfurt, Steinfurt, Germany
| | - Matthias Boentert
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany. .,Department of Medicine, UKM Marienhospital Steinfurt, Steinfurt, Germany.
| |
Collapse
|
38
|
Steinbach R, Prell T, Gaur N, Roediger A, Gaser C, Mayer TE, Witte OW, Grosskreutz J. Patterns of grey and white matter changes differ between bulbar and limb onset amyotrophic lateral sclerosis. Neuroimage Clin 2021; 30:102674. [PMID: 33901988 PMCID: PMC8099783 DOI: 10.1016/j.nicl.2021.102674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by a high heterogeneity in patients' disease course. Patients with bulbar onset of symptoms (b-ALS) have a poorer prognosis than patients with limb onset (l-ALS). However, neuroimaging correlates of the assumed biological difference between b-ALS and l-ALS may have been obfuscated by patients' diversity in the disease course. We conducted Voxel-Based-Morphometry (VBM) and Tract-Based-Spatial-Statistics (TBSS) in a group of 76 ALS patients without clinically relevant cognitive deficits. The subgroups of 26 b-ALS and 52 l-ALS patients did not differ in terms of disease Phase or disease aggressiveness according to the D50 progression model. VBM analyses showed widespread ALS-related changes in grey and white matter, that were more pronounced for b-ALS. TBSS analyses revealed that b-ALS was predominantly characterized by frontal fractional anisotropy decreases. This demonstrates a higher degree of neurodegenerative burden for the group of b-ALS patients in comparison to l-ALS. Correspondingly, higher bulbar symptom burden was associated with right-temporal and inferior-frontal grey matter density decreases as well as fractional anisotropy decreases in inter-hemispheric and long association tracts. Contrasts between patients in Phase I and Phase II further revealed that b-ALS was characterized by an early cortical pathology and showed a spread only outside primary motor regions to frontal and temporal areas. In contrast, l-ALS showed ongoing structural integrity loss within primary motor-regions until Phase II. We therefore provide a strong rationale to treat both onset types of disease separately in ALS studies.
Collapse
Affiliation(s)
- Robert Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena
| | - Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Christian Gaser
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Thomas E Mayer
- Department of Neuroradiology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena
| |
Collapse
|
39
|
Clinical Determinants of Disease Progression in Amyotrophic Lateral Sclerosis-A Retrospective Cohort Study. J Clin Med 2021; 10:jcm10081623. [PMID: 33921250 PMCID: PMC8069893 DOI: 10.3390/jcm10081623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is ultimately fatal but characterized by substantial phenotypic heterogeneity, which is known to impact long-term course and survival. This study investigated clinical determinants of disease progression and outcome in a large cohort of patients with ALS. Methods: Retrospective analysis included comprehensive data from 625 patients who attended a tertiary ALS centre at least twice. Patients were stratified according to five distinct clinical phenotypes: classical ALS; bulbar ALS; ALS with frontotemporal dementia (ALS-FTD); upper motor neuron predominant (UMNP); and lower motor neuron predominant (LMNP). Results: This study confirmed higher age at symptom onset, shorter latency to diagnosis and more rapid decline in the revised ALS Functional Rating Scale sum score as predictors of poor prognosis. Hazard ratios for shorter survival were higher in patients with ALS-FTD versus classical ALS, and in patients with versus without chronic obstructive pulmonary disease (COPD). Mean survival was longest in the UMNP phenotype group. Conclusions: This study confirmed established predictors of shorter survival in ALS and showed that concomitant COPD in particular relates to poor outcome.
Collapse
|
40
|
Muscle Function Differences between Patients with Bulbar and Spinal Onset Amyotrophic Lateral Sclerosis. Does It Depend on Peripheral Glucose? J Clin Med 2021; 10:jcm10081582. [PMID: 33918552 PMCID: PMC8069029 DOI: 10.3390/jcm10081582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One of the pathogenic mechanisms of ALS disease is perturbed energy metabolism particularly glucose metabolism. Given the substantial difference in the severity and the prognosis of the disease, depending on whether it has a bulbar or spinal onset, the aim of the study was to determine metabolic differences between both types of ALS, as well as the possible relationship with muscle function. MATERIALS AND METHODS A descriptive, analytical, quantitative, and transversal study was carried out in hospitals and Primary Care centers in the region of Valencia, Spain. Fasting glucose and alkaline phosphatase (AP) levels in venous blood, muscle percentage, fat percentage, muscle strength (MRC scale), and functional capacity (Barthel Index) were measured in 31 patients diagnosed with ALS (20 with spinal onset ALS and 11 with bulbar onset ALS). A healthy control of 29 people was included. RESULTS No significant differences were observed in blood AP and glucose levels between spinal onset and bulbar onset ALS patients. However, a significant positive correlation was observed between the mean values of both substances in patients with spinal onset ALS. Moreover, a lower percentage of muscle mass and a higher percentage of fat mass were also seen in spinal ALS patients, who also presented lower muscle strength and lower functional capacity. CONCLUSION The results of this study seem to point to a possible difference in the peripheral use of glucose between patients with bulbar onset ALS and spinal onset ALS, who appear to have possible insulin resistance. These metabolic differences could explain the lower muscle percentage and lower muscular function in spinal onset ALS patients, although further studies are required.
Collapse
|
41
|
Vasta R, D'Ovidio F, Logroscino G, Chiò A. The links between diabetes mellitus and amyotrophic lateral sclerosis. Neurol Sci 2021; 42:1377-1387. [PMID: 33544228 PMCID: PMC7955983 DOI: 10.1007/s10072-021-05099-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
ALS etiology and prognostic factors are mostly unknown. Metabolic diseases and especially diabetes mellitus (DM) have been variously related to ALS. However, pieces of evidence have been variegated and often conflicting so far. This review aims to give an overview of recent contributions focusing on the relationship between DM and ALS. DM seems to reduce the risk of developing ALS if diagnosed at a younger age; conversely, when diagnosed at an older age, DM seems protective against ALS. Such a relationship was not confirmed in Asian countries where DM increases the risk of ALS independently of the age of onset. Interestingly, DM does not affect ALS prognosis, possibly weakening the potential causal relationship between the two diseases. However, since most studies are observational, it is difficult to state the exact nature of such a relationship and several hypotheses have been made. A recent study using Mendelian randomization suggested that DM is indeed protective against ALS in the European population. However, these analyses are not without limits and further evidence is needed. DM is usually the core of a larger metabolic syndrome. Thus, other metabolic changes such as dyslipidemia, body mass index, and cardiovascular diseases should be collectively considered. Finally, hypermetabolism usually found in ALS patients should be considered too since all these metabolic changes could be compensation (or the cause) of the higher energy expenditure.
Collapse
Affiliation(s)
- Rosario Vasta
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.
| | - Fabrizio D'Ovidio
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Italy
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Chiò
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
42
|
Ferraro PM, Cabona C, Meo G, Rolla-Bigliani C, Castellan L, Pardini M, Inglese M, Caponnetto C, Roccatagliata L. Age at symptom onset influences cortical thinning distribution and survival in amyotrophic lateral sclerosis. Neuroradiology 2021; 63:1481-1487. [PMID: 33660067 DOI: 10.1007/s00234-021-02681-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The lifetime risk of developing amyotrophic lateral sclerosis (ALS) increases in the elderly, and greater age at symptom onset has been identified as a negative prognostic factor in the disease. However, the underlying neurobiological mechanisms are still poorly investigated. We hypothesized that older age at symptom onset would have been associated with greater extra-motor cortical damage contributing to worse prognosis, so we explored the relationship between age at symptom onset, cortical thinning (CT) distribution, and clinical markers of disease progression. METHODS We included 26 ALS patients and 29 healthy controls with T1-weighted magnetic resonance imaging (MRI). FreeSurfer 6.0 was used to identify regions of cortical atrophy (CA) in ALS, and to relate age at symptom onset to CT distribution. Linear regression analyses were then used to investigate whether MRI metrics of age-related damage were predictive of clinical progression. MRI results were corrected using the Monte Carlo simulation method, and regression analyses were further corrected for disease duration. RESULTS ALS patients exhibited significant CA mainly encompassing motor regions, but also involving the cuneus bilaterally and the right superior parietal cortex (p < 0.05). Older age at symptom onset was selectively associated with greater extra-motor (frontotemporal) CT, including pars opercularis bilaterally, left middle temporal, and parahippocampal cortices (p < 0.05), and CT of these regions was predictive of shorter survival (p = 0.004, p = 0.03). CONCLUSION More severe frontotemporal CT contributes to shorter survival in older ALS patients. These findings have the potential to unravel the neurobiological mechanisms linking older age at symptom onset to worse prognosis in ALS.
Collapse
Affiliation(s)
- Pilar M Ferraro
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Corrado Cabona
- Department of Neurophysiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Meo
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Lucio Castellan
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Claudia Caponnetto
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
43
|
Ackrivo J, Hsu JY, Hansen-Flaschen J, Elman L, Kawut SM. Noninvasive Ventilation Use Is Associated with Better Survival in Amyotrophic Lateral Sclerosis. Ann Am Thorac Soc 2021; 18:486-494. [PMID: 32946280 PMCID: PMC7919153 DOI: 10.1513/annalsats.202002-169oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Rationale: Noninvasive ventilation (NIV) is standard of care in amyotrophic lateral sclerosis (ALS), yet few data exist regarding its benefits.Objectives: We sought to identify whether the use of NIV was associated with survival in ALS.Methods: This was a single-center retrospective cohort study of 452 patients with ALS seen between 2006 and 2015. We matched one or more NIV subjects (prescribed NIV) to non-NIV subjects (never prescribed NIV) without replacement. The outcome was time from NIV prescription date (NIV subjects) or matched date (non-NIV subjects) until death. We performed a multivariable Cox proportional hazards model with NIV hourly usage as a time-varying covariate and stratified by matched groups.Results: After creating 180 matched groups and adjusting for age, body mass index, ALS Functional Rating Scale Revised dyspnea score, and hourly NIV use, NIV was associated with a 26% reduction in the rate of death compared with non-NIV subjects (hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.57-0.98; P = 0.04). Among those with limb-onset ALS, NIV subjects had a 37% lower rate of death compared with non-NIV subjects (HR, 0.63; 95% CI, 0.45-0.87; P = 0.006). Among NIV subjects, we found that NIV use for an average of ≥4 h/d was associated with improved survival.Conclusions: NIV use was associated with significantly better survival in ALS after matching and adjusting for confounders. Increasing duration of daily NIV use was associated with longer survival. Randomized clinical trials should be performed to identify ideal thresholds for improving survival and optimizing adherence in ALS.
Collapse
Affiliation(s)
| | - Jesse Y Hsu
- Department of Biostatistics, Epidemiology and Informatics
- Center for Clinical Epidemiology and Biostatistics, and
| | | | - Lauren Elman
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M Kawut
- Department of Medicine
- Center for Clinical Epidemiology and Biostatistics, and
| |
Collapse
|
44
|
Steinbach R, Gaur N, Roediger A, Mayer TE, Witte OW, Prell T, Grosskreutz J. Disease aggressiveness signatures of amyotrophic lateral sclerosis in white matter tracts revealed by the D50 disease progression model. Hum Brain Mapp 2021; 42:737-752. [PMID: 33103324 PMCID: PMC7814763 DOI: 10.1002/hbm.25258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous neuroimaging studies in amyotrophic lateral sclerosis (ALS) have reported links between structural changes and clinical data; however phenotypic and disease course heterogeneity have occluded robust associations. The present study used the novel D50 model, which distinguishes between disease accumulation and aggressiveness, to probe correlations with measures of diffusion tensor imaging (DTI). DTI scans of 145 ALS patients and 69 controls were analyzed using tract-based-spatial-statistics of fractional anisotropy (FA), mean- (MD), radial (RD), and axial diffusivity (AD) maps. Intergroup contrasts were calculated between patients and controls, and between ALS subgroups: based on (a) the individual disease covered (Phase I vs. II) or b) patients' disease aggressiveness (D50 value). Regression analyses were used to probe correlations with model-derived parameters. Case-control comparisons revealed widespread ALS-related white matter pathology with decreased FA and increased MD/RD. These affected pathways showed also correlations with the accumulated disease for increased MD/RD, driven by the subgroup of Phase I patients. No significant differences were noted between patients in Phase I and II for any of the contrasts. Patients with high disease aggressiveness (D50 < 30 months) displayed increased AD/MD in bifrontal and biparietal pathways, which was corroborated by significant voxel-wise regressions with D50. Application of the D50 model revealed associations between DTI measures and ALS pathology in Phase I, representing individual disease accumulation early in disease. Patients' overall disease aggressiveness correlated robustly with the extent of DTI changes. We recommend the D50 model for studies developing/validating neuroimaging or other biomarkers for ALS.
Collapse
Affiliation(s)
- Robert Steinbach
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Nayana Gaur
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | | | - Thomas E. Mayer
- Department of NeuroradiologyJena University HospitalJenaGermany
| | - Otto W. Witte
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| | - Tino Prell
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| | - Julian Grosskreutz
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| |
Collapse
|
45
|
Falzone YM, Russo T, Domi T, Pozzi L, Quattrini A, Filippi M, Riva N. Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives. Neural Regen Res 2021; 16:1985-1991. [PMID: 33642372 PMCID: PMC8343335 DOI: 10.4103/1673-5374.308072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Motor neuron disease includes a heterogeneous group of relentless progressive neurological disorders defined and characterized by the degeneration of motor neurons. Amyotrophic lateral sclerosis is the most common and aggressive form of motor neuron disease with no effective treatment so far. Unfortunately, diagnostic and prognostic biomarkers are lacking in clinical practice. Neurofilaments are fundamental structural components of the axons and neurofilament light chain and phosphorylated neurofilament heavy chain can be measured in both cerebrospinal fluid and serum. Neurofilament light chain and phosphorylated neurofilament heavy chain levels are elevated in amyotrophic lateral sclerosis, reflecting the extensive damage of motor neurons and axons. Hence, neurofilaments are now increasingly recognized as the most promising candidate biomarker in amyotrophic lateral sclerosis. The potential usefulness of neurofilaments regards various aspects, including diagnosis, prognosis, patient stratification in clinical trials and evaluation of treatment response. In this review paper, we review the body of literature about neurofilaments measurement in amyotrophic lateral sclerosis. We also discuss the open issues concerning the use of neurofilaments clinical practice, as no overall guideline exists to date; finally, we address the most recent evidence and future perspectives.
Collapse
Affiliation(s)
- Yuri Matteo Falzone
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit; Neurophysiology Unit, IRCCS San Raffaele Scientific Institute; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Rafaele University, Milan, Italy
| | - Nilo Riva
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Cappella M, Pradat PF, Querin G, Biferi MG. Beyond the Traditional Clinical Trials for Amyotrophic Lateral Sclerosis and The Future Impact of Gene Therapy. J Neuromuscul Dis 2021; 8:25-38. [PMID: 33074186 PMCID: PMC7902976 DOI: 10.3233/jnd-200531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.
Collapse
Affiliation(s)
- Marisa Cappella
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| | - Pierre-François Pradat
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| | - Giorgia Querin
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France.,Association Institut de Myologie, Plateforme Essais Cliniques Adultes, Paris, France.,APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maria Grazia Biferi
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| |
Collapse
|
47
|
Davis DA, Cox PA, Banack SA, Lecusay PD, Garamszegi SP, Hagan MJ, Powell JT, Metcalf JS, Palmour RM, Beierschmitt A, Bradley WG, Mash DC. l-Serine Reduces Spinal Cord Pathology in a Vervet Model of Preclinical ALS/MND. J Neuropathol Exp Neurol 2020; 79:393-406. [PMID: 32077471 PMCID: PMC7092359 DOI: 10.1093/jnen/nlaa002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The early neuropathological features of amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) are protein aggregates in motor neurons and microglial activation. Similar pathology characterizes Guamanian ALS/Parkinsonism dementia complex, which may be triggered by the cyanotoxin β-N-methylamino-l-alanine (BMAA). We report here the occurrence of ALS/MND-type pathological changes in vervets (Chlorocebus sabaeus; n = 8) fed oral doses of a dry powder of BMAA HCl salt (210 mg/kg/day) for 140 days. Spinal cords and brains from toxin-exposed vervets were compared to controls fed rice flour (210 mg/kg/day) and to vervets coadministered equal amounts of BMAA and l-serine (210 mg/kg/day). Immunohistochemistry and quantitative image analysis were used to examine markers of ALS/MND and glial activation. UHPLC-MS/MS was used to confirm BMAA exposures in dosed vervets. Motor neuron degeneration was demonstrated in BMAA-dosed vervets by TDP-43+ proteinopathy in anterior horn cells, by reactive astrogliosis, by activated microglia, and by damage to myelinated axons in the lateral corticospinal tracts. Vervets dosed with BMAA + l-serine displayed reduced neuropathological changes. This study demonstrates that chronic dietary exposure to BMAA causes ALS/MND-type pathological changes in the vervet and coadministration of l-serine reduces the amount of reactive gliosis and the number of protein inclusions in motor neurons.
Collapse
Affiliation(s)
- David A Davis
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Paul Alan Cox
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida.,Brain Chemistry Labs, Jackson Hole, Wyoming
| | - Sandra Anne Banack
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida.,Brain Chemistry Labs, Jackson Hole, Wyoming
| | | | | | - Matthew J Hagan
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | | | - Roberta M Palmour
- Behavioural Science Foundation, St. Kitts and Nevis, West Indies.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Amy Beierschmitt
- Behavioural Science Foundation, St. Kitts and Nevis, West Indies.,Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies
| | - Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| |
Collapse
|
48
|
Xiao L, Yuan Z, Jin S, Wang T, Huang S, Zeng P. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet 2020; 11:587243. [PMID: 33329728 PMCID: PMC7714931 DOI: 10.3389/fgene.2020.587243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple causal genes associated with amyotrophic lateral sclerosis (ALS); however, the genetic architecture of ALS remains completely unknown and a large number of causal genes have yet been discovered. To full such gap in part, we implemented an integrative analysis of transcriptome-wide association study (TWAS) for ALS to prioritize causal genes with summary statistics from 80,610 European individuals and employed 13 GTEx brain tissues as reference transcriptome panels. The summary-level TWAS analysis with single brain tissue was first undertaken and then a flexible p-value combination strategy, called summary data-based Cauchy Aggregation TWAS (SCAT), was proposed to pool association signals from single-tissue TWAS analysis while protecting against highly positive correlation among tests. Extensive simulations demonstrated SCAT can produce well-calibrated p-value for the control of type I error and was often much more powerful to identify association signals across various scenarios compared with single-tissue TWAS analysis. Using SCAT, we replicated three ALS-associated genes (i.e., ATXN3, SCFD1, and C9orf72) identified in previous GWASs and discovered additional five genes (i.e., SLC9A8, FAM66D, TRIP11, JUP, and RP11-529H20.6) which were not reported before. Furthermore, we discovered the five associations were largely driven by genes themselves and thus might be new genes which were likely related to the risk of ALS. However, further investigations are warranted to verify these results and untangle the pathophysiological function of the genes in developing ALS.
Collapse
Affiliation(s)
- Lishun Xiao
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siyi Jin
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
49
|
Gentile F, Doneddu PE, Riva N, Nobile-Orazio E, Quattrini A. Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. Int J Mol Sci 2020; 21:E7471. [PMID: 33050475 PMCID: PMC7590163 DOI: 10.3390/ijms21207471] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence gives support for the idea that extra-neuronal factors may affect brain physiology and its predisposition to neurodegenerative diseases. Epidemiological and experimental studies show that nutrition and metabolic disorders such as obesity and type 2 diabetes increase the risk of Alzheimer's and Parkinson's diseases after midlife, while the relationship with amyotrophic lateral sclerosis is uncertain, but suggests a protective effect of features of metabolic syndrome. The microbiota has recently emerged as a novel factor engaging strong interactions with neurons and glia, deeply affecting their function and behavior in these diseases. In particular, recent evidence suggested that gut microbes are involved in the seeding of prion-like proteins and their spreading to the central nervous system. Here, we present a comprehensive review of the impact of metabolism, diet and microbiota in neurodegeneration, by affecting simultaneously several aspects of health regarding energy metabolism, immune system and neuronal function. Advancing technologies may allow researchers in the future to improve investigations in these fields, allowing the buildup of population-based preventive interventions and development of targeted therapeutics to halt progressive neurologic disability.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
| | - Pietro Emiliano Doneddu
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
| | - Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
- Department of Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
| |
Collapse
|
50
|
The 6-min walk test as a new outcome measure in Amyotrophic lateral sclerosis. Sci Rep 2020; 10:15580. [PMID: 32968168 PMCID: PMC7511965 DOI: 10.1038/s41598-020-72578-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
One of the issues highlighted in amyotrophic lateral sclerosis (ALS) clinical trials is the lack of appropriate outcome measures. The aim of this multicentric study was to evaluate the 6-min walk test (6MWT) as tool to monitor the natural history of a cohort of ALS patients followed up over a 6-month interval. Forty-four ambulant patients were assessed at baseline and after 1, 3 and 6 months. Eight out of forty-four lost the ability to walk before the end of the study. The 6MWT and the objective measures linked to motor function, such as 10 m walking test (10MWT) and Time-up and go (TUG), the ALSFRS-R and the ALSFRS-R items 7–9 showed a good responsiveness to change over the 6-month interval. There was a strong correlation between 6 and 10MWT, TUG, ALSFRS-R, ALSFRS-R items 7–9 and FVC% at baseline. There was no correlation with Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and Modified Borg Scale (MBS). The Δ of 6MWT from T0 to T6 significantly correlated with the Δs of 10MWT and TUG. There was no correlation with the Δs of ALSFRS-R, ALSFRS-R items 7 9, ECAS, MBS and FVC%. The discordance between changes of the 6MWT and ALSFRS-R at 6 month highlights the different content validity among these instruments. The concordance among 6MWT, 10MWT and TUG indicates that the 6MWT is an objective, sensitive and robust tool to measure motor performances in a longitudinal setting. The main limitations of our study were the small sample size and the high percentage of patients (18%) lost at follow-up. Therefore, further studies on larger cohorts, and exploring the relation between 6MWT and need of ventilator support or survival could strengthen our results.
Collapse
|