1
|
Chakraborty D, Borthakur S, Sarkar R, Singh MD. Gender disparities in myotonic dystrophy 1. Life Sci 2025; 373:123659. [PMID: 40280297 DOI: 10.1016/j.lfs.2025.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Myotonic Dystrophy Type 1 (DM1) is a complex, inherited disorder characterized by significant clinical heterogeneity, affecting multiple organ systems with varying severity and age of onset. It is a multisystemic disorder with a wide range of clinical presentations that lead to symptoms and complications associated with various body systems. Predicting the overall phenotype and prognosis is challenging due to the lack of a single determining factor, complicating medical management and clinical trials. While extensive research has explored the genetic and molecular mechanisms of DM1, the influence of gender on disease manifestations, progression, and outcomes remains elusive. Emerging evidence suggests that male patients often experience greater morbidity and mortality with severe muscular, cardiac, central nervous system, and respiratory impairments, while females are more prone to ophthalmological, gastrointestinal, and endocrine complications. Potential gender-based differences in inheritance patterns also require further investigation. Despite these disparities, gender-specific considerations are largely absent in clinical management and research, limiting the development of targeted therapeutic strategies. This review provides a comprehensive analysis of gender-related differences in DM1, emphasizing their implications for disease prognosis, diagnosis, and treatment. Recognizing gender as a crucial factor in DM1 research and clinical practice could improve patient outcomes and more personalized therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Ritu Sarkar
- National Brain Research Centre, Gurgaon, Haryana, India
| | | |
Collapse
|
2
|
Cupelli M, Ginjupalli VKM, Reisqs JB, Sleiman Y, El-Sherif N, Gourdon G, Puymirat J, Chahine M, Boutjdir M. Calcium handling abnormalities increase arrhythmia susceptibility in DMSXL myotonic dystrophy type 1 mice. Biomed Pharmacother 2024; 180:117562. [PMID: 39423753 DOI: 10.1016/j.biopha.2024.117562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a multiorgan disorder with significant cardiac involvement. ECG abnormalities, including arrhythmias, occur in 80 % of DM1 patients and are the second-most common cause of death after respiratory complications; however, the mechanisms underlying the arrhythmogenesis remain unclear. The objective of this study was to investigate the basis of the electrophysiological abnormalities in DM1 using the DMSXL mouse model. METHODS ECG parameters were evaluated at baseline and post flecainide challenge. Calcium transient and action potential parameters were evaluated in Langendorff-perfused hearts using fluorescence optical mapping. Calcium transient/sparks were evaluated in ventricular myocytes via confocal microscopy. Protein and mRNA levels for calcium handling proteins were evaluated using western blot and RT-qPCR, respectively. RESULTS DMSXL mice showed arrhythmic events on ECG including premature ventricular contractions and sinus block. DMSXL mice showed increased calcium transient time to peak without any change to voltage parameters. Calcium alternans and both sustained and non-sustained ventricular tachyarrhythmias were readily inducible in DMSXL mice. The confocal experiments also showed calcium transient alternans and increased frequency of calcium sparks in DMSXL cardiomyocytes. These calcium abnormalities were correlated with increased RyR2 phosphorylation without changes to the other calcium handling proteins. CONCLUSIONS The DMSXL mouse model of DM1 exhibited enhanced arrhythmogenicity associated with abnormal intracellular calcium handling due to hyperphosphorylation of RyR2, pointing to RyR2 as a potential new therapeutic target in DM1 treatment.
Collapse
Affiliation(s)
- Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA
| | - Vamsi Krishna Murthy Ginjupalli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA
| | - Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA
| | - Nabil El-Sherif
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA
| | - Geneviève Gourdon
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Québec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; CERVO Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA; Department of Medicine, NYU Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Fionda L, Leonardi L, Tufano L, Lauletta A, Morino S, Merlonghi G, Costanzo R, Rossini E, Forcina F, Marando D, Sarzi Amadè D, Bucci E, Salvetti M, Antonini G, Garibaldi M. Muscle MRI as a biomarker of disease activity and progression in myotonic dystrophy type 1: a longitudinal study. J Neurol 2024; 271:5864-5874. [PMID: 38972019 PMCID: PMC11377679 DOI: 10.1007/s00415-024-12544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease characterized by myotonia and progressive muscular weakness and atrophy. The aim of this study was to investigate the usefulness of longitudinal muscle MRI in detecting disease activity and progression in DM1, and to better characterize muscle edema, fat replacement and atrophy overtime. MATERIALS AND METHODS This is a prospective, observational, longitudinal study including 25 DM1 patients that performed at least two muscle MRIs. Demographic and genetic characteristics were recorded. Muscular Impairment Rating Scale (MIRS) and MRC score were performed within 3 months from MRIs at baseline (BL) and at follow-up (FU). We analysed 32 muscles of lower body (LB) and 17 muscles of upper body (UB) by T1 and STIR sequences. T1-, STIR- and atrophy scores and their variations were evaluated. Correlations between MRIs' scores and demographic, clinical and genetic characteristics were analysed. RESULTS Eighty (80%) of patients showed fat replacement progression at FU. The median T1 score progression (ΔT1-score) was 1.3% per year in LB and 0.5% per year in UB. The rate of fat replacement progression was not homogenous, stratifying patients from non-progressors to fast progressors (> 3% ΔT1-score per year). Half of the STIR-positive muscles at BL showed T1-score progression at FU. Two patients with normal MRI at baseline only showed STIR-positive muscle at FU, marking the disease activity onset. STIR positivity at baseline correlated with fat replacement progression (ΔT1-score; p < 0.0001) and clinical worsening at FU (ΔMRC-score; p < 0.0001). Sixty-five (65%) of patients showed STIR- and fat replacement-independent muscle atrophy progression, more evident in UB. CONCLUSIONS Muscle MRI represents a sensitive biomarker of disease activity, severity, and progression in DM1. STIR alterations precede fat replacement and identify patients with a higher risk of disease progression, while T1-sequences reveal atrophy and fat replacement progression before clinical worsening.
Collapse
Affiliation(s)
- Laura Fionda
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy.
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy.
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Laura Tufano
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Antonio Lauletta
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Gioia Merlonghi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Rocco Costanzo
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Elena Rossini
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Francesca Forcina
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Demetrio Marando
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - David Sarzi Amadè
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Giovanni Antonini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
4
|
Russo V, Antonini G, Massa R, Casali C, Mauriello A, Martino AM, Marconi R, Garibaldi M, Franciosa P, Zecchin M, Gaudio C, D’Andrea A, Strano S. Comprehensive Cardiovascular Management of Myotonic Dystrophy Type 1 Patients: A Report from the Italian Neuro-Cardiology Network. J Cardiovasc Dev Dis 2024; 11:63. [PMID: 38392277 PMCID: PMC10889677 DOI: 10.3390/jcdd11020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Myotonic dystrophy is a hereditary disorder with systemic involvement. The Italian Neuro-Cardiology Network-"Rete delle Neurocardiologie" (INCN-RNC) is a unique collaborative experience involving neurology units combined with cardio-arrhythmology units. The INCN facilitates the creation of integrated neuro-cardiac teams in Neuromuscular Disease Centers for the management of cardiovascular involvement in the treatment of myotonic dystrophy type 1 (MD1).
Collapse
Affiliation(s)
- Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli”—“Monaldi” Hospital, 80126 Naples, Italy;
| | - Giovanni Antonini
- Neuromuscular Disease Centre, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, “Sant’Andrea” Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (G.A.); (M.G.)
| | - Roberto Massa
- Neuromuscular Diseases Unit, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00196 Rome, Italy;
| | - Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli”—“Monaldi” Hospital, 80126 Naples, Italy;
- Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
| | | | - Roberto Marconi
- Unit of Neurology, Cardio-Thoracic-Neuro-Vascular Department, “Misericordia” Hospital, 58100 Grosseto, Italy;
| | - Matteo Garibaldi
- Neuromuscular Disease Centre, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, “Sant’Andrea” Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (G.A.); (M.G.)
| | - Pasquale Franciosa
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, 00196 Rome, Italy; (P.F.); (C.G.); (S.S.)
| | - Massimo Zecchin
- Cardiothoracovascular Department, “Cattinara” Hospital, ASUGI and University of Trieste, 34149 Trieste, Italy;
| | - Carlo Gaudio
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, 00196 Rome, Italy; (P.F.); (C.G.); (S.S.)
| | - Antonello D’Andrea
- Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
| | - Stefano Strano
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, 00196 Rome, Italy; (P.F.); (C.G.); (S.S.)
| |
Collapse
|
5
|
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022; 43:3997-4126. [PMID: 36017572 DOI: 10.1093/eurheartj/ehac262] [Citation(s) in RCA: 1317] [Impact Index Per Article: 439.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
6
|
Gossios TD, Providencia R, Creta A, Segal OR, Nikolenko N, Turner C, Lopes LR, Wahbi K, Savvatis K. An overview of heart rhythm disorders and management in myotonic dystrophy type 1. Heart Rhythm 2021; 19:497-504. [PMID: 34843968 DOI: 10.1016/j.hrthm.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult form of muscular dystrophy, presenting with a constellation of systemic findings secondary to a CTG triplet expansion of the noncoding region of the DMPK gene. Cardiac involvement is frequent, with conduction disease and supraventricular and ventricular arrhythmias being the most prevalent cardiac manifestations, often developing from a young age. The development of cardiac arrhythmias has been linked to increased morbidity and mortality, with sudden cardiac death well described. Strategies to mitigate risk of arrhythmic death have been developed. In this review, we outline the current knowledge on the pathophysiology of rhythm abnormalities in patients with myotonic dystrophy and summarize available knowledge on arrhythmic risk stratification. We also review management strategies from an electrophysiological perspective, attempting to underline the substantial unmet need to address residual arrhythmic risks for this population.
Collapse
Affiliation(s)
- Thomas D Gossios
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom.
| | - Rui Providencia
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Antonio Creta
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Oliver R Segal
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Luis R Lopes
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London Hospital, London, United Kingdom
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
| | - Konstantinos Savvatis
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
7
|
Garibaldi M, Nicoletti T, Bucci E, Fionda L, Leonardi L, Morino S, Tufano L, Alfieri G, Lauletta A, Merlonghi G, Perna A, Rossi S, Ricci E, Tartaglione T, Petrucci A, Pennisi EM, Salvetti M, Cutter G, Díaz-Manera J, Silvestri G, Antonini G. Muscle MRI in Myotonic Dystrophy type 1 (DM1): refining muscle involvement and implications for clinical trials. Eur J Neurol 2021; 29:843-854. [PMID: 34753219 PMCID: PMC9299773 DOI: 10.1111/ene.15174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only few studies reported muscle imaging data on small cohorts of patients with Myotonic dystrophy type 1 (DM1). We aimed to investigate the muscle involvement in a large cohort of patients, to refine the pattern of muscle involvement, to better understand the pathophysiological mechanisms of muscle weakness and to identify potential imaging biomarkers for disease activity and severity. METHODS 134 DM1 patients underwent a cross-sectional muscle MRI study. STIR and T1- sequences in lower and upper body were analysed. Fat replacement, muscle atrophy and STIR positivity were evaluated using three different scales. Correlations between MRI scores, clinical features and genetic background were investigated. RESULTS The most frequent pattern of muscle involvement in T1 consisted of fat replacement of the tongue, sternocleidomastoideus, paraspinalis, gluteus minimus, distal quadriceps and gastrocnemius medialis. Degree of fat replacement at MRI correlated with clinical severity and disease duration, but not with CTG expansion. Fat replacement was also detected in milder/asymptomatic patients. More than 80% of patients had STIR positive signal in muscles. Most DM1 patients also showed a variable degree of muscle atrophy regardless MRI signs of fat replacement. A subset of patients (20%) showed a "marbled" muscle appearance. CONCLUSIONS muscle MRI is a sensitive biomarker of disease severity also for the milder spectrum of disease. STIR hyperintensty seems to precede fat replacement in T1. Beyond fat replacement, STIR positivity, muscle atrophy and "marbled" appearance suggest further mechanisms of muscle wasting and weakness in DM1, representing additional outcome measures and therapeutical targets for forthcoming clinical trials.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Tommaso Nicoletti
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Alessia Perna
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Salvatore Rossi
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Enzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167, Rome, Italy
| | - Antonio Petrucci
- Neurology Unit, San Camillo-Forlanini Hospital, 00152, Rome, Italy
| | | | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, Italy
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Hospitals NHS Foundation Trust, NE1 3BZ, Newcastle upon Tyne, United Kingdom.,Neuromuscular Disorders Unit. Neurology Department, Universitat Autònoma de Barcelona. Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, UK.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 08041, Spain
| | - Gabriella Silvestri
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| |
Collapse
|
8
|
Cardiac Pathology in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:ijms222111874. [PMID: 34769305 PMCID: PMC8584352 DOI: 10.3390/ijms222111874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children, is a multi-systemic disorder affecting skeletal, cardiac, and smooth muscles as well as neurologic, endocrine and other systems. This review is on the cardiac pathology associated with DM1. The heart is one of the primary organs affected in DM1. Cardiac conduction defects are seen in up to 75% of adult DM1 cases and sudden death due to cardiac arrhythmias is one of the most common causes of death in DM1. Unfortunately, the pathogenesis of cardiac manifestations in DM1 is ill defined. In this review, we provide an overview of the history of cardiac studies in DM1, clinical manifestations, and pathology of the heart in DM1. This is followed by a discussion of emerging data about the utility of cardiac magnetic resonance imaging (CMR) as a biomarker for cardiac disease in DM1, and ends with a discussion on models of cardiac RNA toxicity in DM1 and recent clinical guidelines for cardiologic management of individuals with DM1.
Collapse
|
9
|
Predictors of respiratory decline in myotonic dystrophy type 1 (DM1): a longitudinal cohort study. Acta Neurol Belg 2021; 121:133-142. [PMID: 32651874 DOI: 10.1007/s13760-020-01425-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
We studied 33 patients affected by juvenile and adult myotonic dystrophy type 1 (DM1). The aim of the study was to assess clinical and laboratory parameters that could predict the requirement of noninvasive ventilation (NIV) in DM1. Secondary outcome was to assess the interplay between genetic profile, muscle impairment severity and presence of cardiac comorbidities.Patients with genetic diagnosis of DM1 were recruited. An abnormal trinucleotide repeat (CTG) expansion of dystrophy protein kinase gene (DMPK) on chromosome 19q13.3 was the prerequisite for inclusion. The number of triplet repeats was measured in genomic DNA to classify subjects. A multidisciplinary team evaluated the patients every 6-8 months up to 18 years with serial cardiological and respiratory function assessments. Neurological progression was monitored using a validated DM1-specific rating scale (MIRS). Independent variables considered for the study outcomes were gender, genetic status, age of presentation, MIRS scores, and results of pulmonary function tests (PFTs).Patients were 17 males (51.5%) and 16 females (48.5%). 16 cases were younger than mean age of 31.4 years, the remaining 17 were up to 65. 12 subjects (36.4%) underwent NIV during follow up. Cardiac comorbidities were detected in 63.6% of cases and in 91% of patients in NIV. Among PFTs, forced vital capacity (FVC) was a reliable indicator of respiratory decline. FVC values were significantly associated with clinical muscle severity assessed by MIRS.Severity of muscular impairment, CTG expansion size, age and presence of cardiac comorbidities predict respiratory impairment in DM1.
Collapse
|
10
|
Garibaldi M, Lauletta A, Bucci E, Fionda L, Vanoli F, Leonardi L, Alfieri G, Tufano L, Morino S, Merlonghi G, Anibaldi P, Salvetti M, Testa M, Antonini G. Gender effect on cardiac involvement in myotonic dystrophy type 1. Eur J Neurol 2020; 28:1366-1374. [PMID: 33283405 DOI: 10.1111/ene.14665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Cardiac involvement is observed in about 80% of subjects with myotonic dystrophy type 1 (DM1) and is mainly characterized by cardiac conduction and/or rhythm abnormalities (CCRAs), possibly leading to sudden cardiac death (SCD). Our objective was to investigate whether the gender difference may influence the cardiac involvement and SCD in DM1. METHODS We analyzed prevalence and incidence of cardiological abnormalities in males versus females in 151 consecutive DM1 patients over a 35-year follow-up period. RESULTS Fifty-five patients, 35 males (62.5%) and 20 females (42.5%), developed some type of CCRA during the follow-up period (mean 7.82 ± 6.21 years). CCRA overall, and specifically cardiac conduction abnormalities (CCAs), were significantly more frequent in males than in females (p = 0.043 and p = 0.031, respectively). CCRAs progressed in 16 males (45.7%) and six females (30%). Twenty-four patients, 14 males (25.0%) and 10 females (21.3%), died during the follow-up. Nine of them, six males (10.7%) and three females (6.4%), had SCD. After correction for Muscular Impairment Rating Scale progression, cytosine thymine-guanine expansion, and follow-up duration, a higher prevalence of CCAs was independently associated with male gender (p = 0.039), but independent association with gender was not detected for CCRAs overall, cardiac rhythm abnormalities, and SCD prevalence, even if prevalence was higher in males than females. CONCLUSIONS The overall risk of occurrence of CCAs in DM1 is significantly higher in males than females regardless of genetic background and disease severity and progression. Moreover, the data also suggest a similar impact for male gender for CCRAs overall, CCAs, and SCD even if not statistically significant.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Fiammetta Vanoli
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | | | - Marco Salvetti
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Marco Testa
- Department of Cardiology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To examine recent developments relating to cardiac involvement in the adult idiopathic inflammatory myopathies (IIM) and those inherited muscle diseases which may present in adulthood and mimic IIM. RECENT FINDINGS Cardiac involvement is a common feature of IIM and inherited muscle diseases. Frequency according to disease subtype varies, with serotype having particular influence in IIM, and genotype in the inherited muscle diseases. Innovative techniques for examining cardiac function have been investigated further, including speckle-tracking echocardiography and cardiac magnetic resonance tomography. The present work has highlighted a likely underestimate of the burden of cardiac disease to date. The complex relationship between IIM, atherosclerosis, and traditional cardiovascular risk factors has been further elucidated. Consensus recommendations for managing patients with inherited muscle diseases and prominent cardiac involvement have been recently published. In addition to supportive care, disease modifying treatments are increasingly becoming available for inherited muscle diseases which may also improve cardiac outcomes. SUMMARY Cardiac involvement is associated with significant morbidity and mortality. We suggest having a low threshold for considering the possibility of cardiac involvement in all patients with muscle disease.
Collapse
|
12
|
Mazzoli M, Ariatti A, Garuti GC, Agnoletto V, Genovese M, Gozzi M, Kaleci S, Marchioni A, Malagoli M, Galassi G. Predictors of prognosis in type 1 myotonic dystrophy (DM1): longitudinal 18-years experience from a single center. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:109-120. [PMID: 33305167 PMCID: PMC7711325 DOI: 10.36185/2532-1900-015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
The aim of the study was to identify possible predictors of neurological worsening and need of non-invasive ventilation (NIV) in individuals affected by myotonic dystrophy type 1 (DM1), the most common form of adult-onset muscular dystrophy. METHODS A retrospective observational cohort study was undertaken. Thirty-three patients with genetic diagnosis of DM1 were followed at our Neuromuscular unit in Modena. Abnormal trinucleotide repeat (CTG) expansion of dystrophy protein kinase gene (MDPK) on chromosome 19q 13.3 was the prerequisite for inclusion. The number of CTG repeats was determined. All the participants were older than 14 at the time of enrolment, therefore they could be included into the juvenile or adult form of the disease. Participants were neurologically evaluated every 6-8 months up to 18 years. Neurological impairment was assessed by Muscular Impairment Rating (MIRS), Medical Research Council (MRC), and modified Rankin (mRS) scales. The independent variables considered for prognosis were age at first evaluation, duration of the disease, CTG repeat number, gender, and presence of cardiac and vascular morbidities.Male patients were 51.5% and female patients 48.5%. Sixteen patients were younger than the mean age of 30.1 years, while the remaining 17 were up to 65. Twelve subjects (36.4%) underwent NIV before the end of follow-up. Muscle force and disability scores showed statistically significant deterioration (p < 0.001) during follow-up. The worsening was significantly higher among patients carrying higher number of CTG repeats and of younger age. The presence of cardio-vascular involvement has significant impact on neurological and respiratory progression.Neurological worsening is predicted by CTG expansion size, young age and presence of cardio-vascular morbidities.
Collapse
Affiliation(s)
- Marco Mazzoli
- Department of Biomedical, Metabolic and Neural Sciences, University Hospitals of Modena, Italy
| | - Alessandra Ariatti
- Department of Biomedical, Metabolic and Neural Sciences, University Hospitals of Modena, Italy
| | | | | | | | - Manuela Gozzi
- Radiology Unit, University Hospitals of Modena, Italy
| | - Shaniko Kaleci
- Department of Surgical, Medical, Dental and Morphological Science with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospitals of Modena, Italy
| | | | - Giuliana Galassi
- Department of Biomedical, Metabolic and Neural Sciences, University Hospitals of Modena, Italy
| |
Collapse
|