1
|
Musante I, Cangelosi D, Muzzi L, Jaudon F, Di Duca M, Guerrisi S, Antonini F, De Spelorzi YCC, Cingolani LA, Zara F, Scudieri P. CACNA1A loss-of-function affects neurogenesis in human iPSC-derived neural models. Cell Mol Life Sci 2025; 82:234. [PMID: 40514452 PMCID: PMC12165946 DOI: 10.1007/s00018-025-05740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/03/2025] [Accepted: 05/05/2025] [Indexed: 06/16/2025]
Abstract
CACNA1A encodes the pore-forming α1A subunit of the CaV2.1 calcium channel, whose altered function is associated with various neurological disorders, including forms of ataxia, epilepsy, and migraine. In this study, we generated isogenic iPSC-derived neural cultures carrying CACNA1A loss-of-function mutations differently affecting CaV2.1 splice isoforms. Morphological, molecular, and functional analyses revealed an essential role of CACNA1A in neurodevelopmental processes. We found that different CACNA1A loss-of-function mutations produce distinct neurodevelopmental deficits. The F1491S mutation, which is located in a constitutive domain of the channel and therefore causes a complete loss-of-function, impaired neural induction at very early stages, as demonstrated by changes in single-cell transcriptomic signatures of neural progenitors, and by defective polarization of neurons. By contrast, cells carrying the Y1854X mutation, which selectively impacts the synaptically-expressed CaV2.1[EFa] isoform, behaved normally in terms of neural induction but showed altered neuronal network composition and lack of synchronized activity. Our findings reveal previously unrecognized roles of CACNA1A in the mechanisms underlying neural induction and neural network dynamics and highlight the differential contribution of the divergent variants CaV2.1[EFa] and CaV2.1[EFb] in the development of human neuronal cells.
Collapse
Affiliation(s)
- Ilaria Musante
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lorenzo Muzzi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Fanny Jaudon
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Guerrisi
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Antonini
- Core Facilities for Omics Science, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.
| | - Paolo Scudieri
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
2
|
von der Gablentz J, Overbeeke N, Timmann D, Ganos C, Synofzik M, Brüggemann N, Helmchen C, Sprenger A. Postural control in episodic ataxia type 2: no evidence for increased vestibular excitability. Eur J Neurol 2025; 32:e16520. [PMID: 39463030 PMCID: PMC11622321 DOI: 10.1111/ene.16520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND AND PURPOSE Patients with episodic ataxia type 2 (EA2) suffer from recurrent paroxysmal episodes of vertigo and oscillopsia. Pathophysiologically, altered neuronal excitability has been suspected. Vestibular excitability in 22 EA2 patients and 22 age-matched healthy participants was compared. METHODS Galvanic vestibular stimulation (GVS) was used to assess vestibular excitability by vestibular motion perception thresholds and mean postural sway velocity during various visual and proprioceptive conditions in the two groups. Control stimuli using sham and no GVS were established to identify the specificity of GVS-induced postural sway. RESULTS In the baseline condition, EA2 patients showed larger postural instability. However, motion perception thresholds and the increase in mean postural sway velocity during vestibular stimulation (stimulation ratio) did not differ between groups. Postural sway during suprathreshold GVS increased with the vestibular motion perception threshold in EA2 patients, in contrast to healthy participants. CONCLUSIONS The larger postural unsteadiness of EA2 patients probably reflects their progressive cerebellar degeneration. It is not related to abnormal visual (Romberg's ratio) or proprioceptive control of stance. Postural unsteadiness during vestibular stimulation does not indicate altered vestibular excitability in EA2 patients. However, vestibular stimulation increasingly destabilized postural control of EA2 patients with higher motion perception thresholds when proprioceptive information was diminished. This conclusion, however, is restricted to the postural control of EA2 patients in the interval between the vestibulo-cerebellar episodes.
Collapse
Affiliation(s)
| | - Nina Overbeeke
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christos Ganos
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Andreas Sprenger
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Hassan A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinet Mov (N Y) 2023; 13:9. [PMID: 37008993 PMCID: PMC10064912 DOI: 10.5334/tohm.747] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Episodic ataxia (EA), characterized by recurrent attacks of cerebellar dysfunction, is the manifestation of a group of rare autosomal dominant inherited disorders. EA1 and EA2 are most frequently encountered, caused by mutations in KCNA1 and CACNA1A. EA3-8 are reported in rare families. Advances in genetic testing have broadened the KCNA1 and CACNA1A phenotypes, and detected EA as an unusual presentation of several other genetic disorders. Additionally, there are various secondary causes of EA and mimicking disorders. Together, these can pose diagnostic challenges for neurologists. Methods A systematic literature review was performed in October 2022 for 'episodic ataxia' and 'paroxysmal ataxia', restricted to publications in the last 10 years to focus on recent clinical advances. Clinical, genetic, and treatment characteristics were summarized. Results EA1 and EA2 phenotypes have further broadened. In particular, EA2 may be accompanied by other paroxysmal disorders of childhood with chronic neuropsychiatric features. New treatments for EA2 include dalfampridine and fampridine, in addition to 4-aminopyridine and acetazolamide. There are recent proposals for EA9-10. EA may also be caused by gene mutations associated with chronic ataxias (SCA-14, SCA-27, SCA-42, AOA2, CAPOS), epilepsy syndromes (KCNA2, SCN2A, PRRT2), GLUT-1, mitochondrial disorders (PDHA1, PDHX, ACO2), metabolic disorders (Maple syrup urine disease, Hartnup disease, type I citrullinemia, thiamine and biotin metabolism defects), and others. Secondary causes of EA are more commonly encountered than primary EA (vascular, inflammatory, toxic-metabolic). EA can be misdiagnosed as migraine, peripheral vestibular disorders, anxiety, and functional symptoms. Primary and secondary EA are frequently treatable which should prompt a search for the cause. Discussion EA may be overlooked or misdiagnosed for a variety of reasons, including phenotype-genotype variability and clinical overlap between primary and secondary causes. EA is highly treatable, so it is important to consider in the differential diagnosis of paroxysmal disorders. Classical EA1 and EA2 phenotypes prompt single gene test and treatment pathways. For atypical phenotypes, next generation genetic testing can aid diagnosis and guide treatment. Updated classification systems for EA are discussed which may assist diagnosis and management.
Collapse
|
4
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Indelicato E, Raccagni C, Runer S, Hannink J, Nachbauer W, Eigentler A, Amprosi M, Wenning G, Boesch S. Instrumented gait analysis defines the walking signature of CACNA1A disorders. J Neurol 2022; 269:2941-2947. [PMID: 34755206 PMCID: PMC9120104 DOI: 10.1007/s00415-021-10878-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Gait disturbances are a frequent symptom in CACNA1A disorders. Even though, data about their severity and progression are lacking and no CACNA1A-specific scale or assessment for gait is available. METHODS We applied a gait assessment protocol in 20 ambulatory patients with genetically confirmed CACNA1A disorders and 39 matched healthy controls. An instrumented gait analysis (IGA) was performed by means of wearable sensors in basal condition and after a treadmill/cycloergometer challenge in selected cases. RESULTS CACNA1A patients displayed lower gait speed, shorter steps with increased step length variability, a reduced landing acceleration as well as a reduced range of ankle motion compared to controls. Furthermore, gait-width in patients with episodic CACNA1A disorders was narrower as compared to controls. In one patient experiencing mild episodic symptoms after the treadmill challenge, the IGA was able to detect a deterioration over all gait parameters. CONCLUSIONS In CACNA1A patients, the IGA with wearable sensors unravels specific gait signatures which are not detectable at naked eye. These features (narrow-based gait, lower landing acceleration) distinguish these patients from other ataxic disorders and may be target of focused rehabilitative interventions. IGA can potentially be applied to monitor the neurological fluctuations associated with CACNA1A disorders.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Cecilia Raccagni
- Neurobiology Division, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Department of Neurology, Regional General Hospital, Lorenz Boehler Strasse 5, 39100, Bolzano, Italy.
| | - Sarah Runer
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Julius Hannink
- Portablies HealthCare Technologies GmbH, Henkestr. 91, 91052, Erlangen, Germany
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andreas Eigentler
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor Wenning
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Neurobiology Division, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
6
|
The complexities of CACNA1A in clinical neurogenetics. J Neurol 2021; 269:3094-3108. [PMID: 34806130 DOI: 10.1007/s00415-021-10897-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Variants in CACNA1A are classically related to episodic ataxia type 2, familial hemiplegic migraine type 1, and spinocerebellar ataxia type 6. Over the years, CACNA1A has been associated with a broader spectrum of phenotypes. Targeted analysis and unbiased sequencing of CACNA1A result not only in clear molecular diagnoses, but also in large numbers of variants of uncertain significance (VUS), or likely pathogenic variants with a phenotype that does not directly match the CACNA1A spectrum. Over the last years, targeted and clinical exome sequencing in our center has identified 41 CACNA1A variants. Ultimately, variants were considered pathogenic or likely pathogenic in 23 cases, with most phenotypes ranging from episodic or progressive ataxia to more complex ataxia syndromes, as well as intellectual disability and epilepsy. In two cases, the causality of the variant was discarded based on non-segregation or an alternative diagnosis. In the remaining 16 cases, the variant was classified as uncertain, due to lack of opportunities for segregation analysis or uncertain association with a non-classic phenotype. Phenotypic variability and the large number of VUS make CACNA1A a challenging gene for neurogenetic diagnostics. Accessible functional read-outs are clearly needed, especially in cases with a non-classic phenotype.
Collapse
|
7
|
Verriello L, Pauletto G, Nilo A, Lonigro I, Betto E, Valente M, Curcio F, Gigli GL. Epilepsy and episodic ataxia type 2: family study and review of the literature. J Neurol 2021; 268:4296-4302. [PMID: 33983550 DOI: 10.1007/s00415-021-10555-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Episodic ataxia type 2 (EA2) is a hereditary disorder characterized by paroxysmal attacks of ataxia, vertigo and nausea, due to mutations in the CACNA1A gene, which encodes for α1 subunit of the P/Q-type voltage-gated Ca2+ channel (CaV2.1). Other manifestations may be associated to CACNA1A mutations, such as migraine and epilepsy. The correlation between episodic ataxia and epilepsy is often underestimated and misdiagnosed. Clinical presentation of EA2 varies among patients and within the same family, and the same genetic mutation can lead to different clinical phenotypes. We herewith describe an Italian family presenting with typical EA2 and, in two of the family members (patients II.3 and III.1), epileptic seizures. The sequencing revealed a heterozygous deletion of 6 nucleotides in exon 28 of CACNA1A gene, present in all affected patients. Evidence suggests that mutations of CACNA1A, conferring a loss/reduction of CaV2.1 function, lead to an increase of thalamocortical excitation that contributes to epileptiform discharges. Our description highlights intra-family variability of EA2 phenotype and suggests that mutations in the CACNA1A gene should be suspected in individuals with focal or generalized epilepsy, associated with a family history of episodic ataxia.
Collapse
Affiliation(s)
- Lorenzo Verriello
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy.
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Incoronata Lonigro
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Elena Betto
- Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Mariarosaria Valente
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Francesco Curcio
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.,Department of Mathematics, Informatics and Physics (DMIF), University of Udine, Udine, Italy
| |
Collapse
|
8
|
Indelicato E, Boesch S. From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing. Front Neurol 2021; 12:639994. [PMID: 33737904 PMCID: PMC7960780 DOI: 10.3389/fneur.2021.639994] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.
Collapse
Affiliation(s)
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Rudenskaya G, Sermyagina I, Chukhrova A, Dadali E, Lozier E, Shchagina O. Diversity of CACNA1A-related disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:106-111. [DOI: 10.17116/jnevro2021121121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|