1
|
Ren GJ, Fan XC, Liu TL, Wang SS, Zhao GH. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs during Cryptosporidium baileyi infection. BMC Genomics 2018; 19:356. [PMID: 29747577 PMCID: PMC5946474 DOI: 10.1186/s12864-018-4754-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
Background Cryptosporidium baileyi is the most common Cryptosporidium species in birds. However, effective prevention measures and treatment for C. baileyi infection were still not available. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play important roles in regulating occurrence and progression of many diseases and are identified as effective biomarkers for diagnosis and prognosis of several diseases. In the present study, the expression profiles of host mRNAs, lncRNAs and circRNAs associated with C. baileyi infection were investigated for the first time. Results The tracheal tissues of experimental (C. baileyi infection) and control chickens were collected for deep RNA sequencing, and 545,479,934 clean reads were obtained. Of them, 1376 novel lncRNAs were identified, including 1161 long intergenic non-coding RNAs (lincRNAs) and 215 anti-sense lncRNAs. A total of 124 lncRNAs were found to be significantly differentially expressed between the experimental and control groups. Additionally, 14,698 mRNAs and 9085 circRNAs were identified, and significantly different expressions were observed for 1317 mRNAs and 104 circRNAs between two groups. Bioinformatic analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for their targets and source genes suggested that these dysregulated genes may be involved in the interaction between the host and C. baileyi. Conclusions The present study revealed the expression profiles of mRNAs, lncRNAs and circRNAs during C. baileyi infection for the first time, and sheds lights on the roles of lncRNAs and circRNAs underlying the pathogenesis of Cryptosporidium infection. Electronic supplementary material The online version of this article (10.1186/s12864-018-4754-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guan-Jing Ren
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Sha-Sha Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Ormeño F, Barrientos C, Ramirez S, Ponce I, Valenzuela L, Sepúlveda S, Bitar M, Kemmerling U, Machado CR, Cabrera G, Galanti N. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase. PLoS One 2016; 11:e0157270. [PMID: 27284968 PMCID: PMC4902261 DOI: 10.1371/journal.pone.0157270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing.
Collapse
Affiliation(s)
- Fernando Ormeño
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Barrientos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Santiago Ramirez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iván Ponce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sofía Sepúlveda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mainá Bitar
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GC); (NG)
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GC); (NG)
| |
Collapse
|
3
|
Hsiao CHC, Ueno N, Shao JQ, Schroeder KR, Moore KC, Donelson JE, Wilson ME. The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania. Microbes Infect 2011; 13:1033-44. [PMID: 21723411 DOI: 10.1016/j.micinf.2011.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 03/28/2011] [Accepted: 05/30/2011] [Indexed: 02/08/2023]
Abstract
Leishmania spp. protozoa are obligate intracellular parasites that replicate in macrophages during mammalian infection. Efficient phagocytosis and survival in macrophages are important determinants of parasite virulence. Macrophage lines differ dramatically in their ability to sustain intracellular Leishmania infantum chagasi (Lic). We report that the U937 monocytic cell line supported the intracellular replication and cell-to-cell spread of Lic during 72 h after parasite addition, whereas primary human monocyte-derived macrophages (MDMs) did not. Electron microscopy and live cell imaging illustrated that Lic promastigotes anchored to MDMs via their anterior ends and were engulfed through symmetrical pseudopods. In contrast, U937 cells bound Lic in diverse orientations, and extended membrane lamellae to reorient and internalize parasites through coiling phagocytosis. Lic associated tightly with the parasitophorous vacuole (PV) membrane in both cell types. PVs fused with LAMP-1-expressing compartments 24 h after phagocytosis by MDMs, whereas U937 cell PVs remained LAMP-1 negative. The expression of one phagocytic receptor (CR3) was higher in MDMs than U937 cells, leading us to speculate that parasite uptake proceeds through dissimilar pathways between these cells. We hypothesize that the mechanism of phagocytosis differs between primary versus immortalized human macrophage cells, with corresponding differences in the subsequent intracellular fate of the parasite.
Collapse
|
4
|
Hanssen E, McMillan PJ, Tilley L. Cellular architecture of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2010; 40:1127-35. [DOI: 10.1016/j.ijpara.2010.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 01/11/2023]
|
5
|
Alves-Ferreira M, Guimarães ACR, Capriles PVDSZ, Dardenne LE, Degrave WM. A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information. Mem Inst Oswaldo Cruz 2009; 104:1100-10. [DOI: 10.1590/s0074-02762009000800006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/28/2009] [Indexed: 11/22/2022] Open
|
6
|
Alves MJM, Mortara RA. A century of research: what have we learned about the interaction of Trypanosoma cruzi with host cells? Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:76-88. [DOI: 10.1590/s0074-02762009000900013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/29/2009] [Indexed: 12/31/2022] Open
|
7
|
Oliveira MPDC, Cortez M, Maeda FY, Fernandes MC, Haapalainen EF, Yoshida N, Mortara RA. Unique behavior of Trypanosoma dionisii interacting with mammalian cells: invasion, intracellular growth, and nuclear localization. Acta Trop 2009; 110:65-74. [PMID: 19283898 DOI: 10.1016/j.actatropica.2009.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The phylogenetic proximity between Trypanosoma cruzi and Trypanosoma (Schizotrypanum) dionisii suggests that these parasites might explore similar strategies to complete their life cycles. T. cruzi is the etiological agent of the life-threatening Chagas' disease, whereas T. dionisii is a bat trypanosome and probably not capable of infecting humans. Here we sought to compare mammalian cell invasion and intracellular traffic of both trypanosomes and determine the differences and similarities in this process. The results presented demonstrate that T. dionisii is highly infective in vitro, particularly when the infection process occurs without serum and that the invasion is similarly affected by agents known to interfere with T. cruzi invasion process. Our results indicate that the formation of lysosomal-enriched compartments is part of a cell-invasion mechanism retained by related trypanosomatids, and that residence and further escape from a lysosomal compartment may be a common requisite for successful infection. During intracellular growth, parasites share a few epitopes with T. cruzi amastigotes and trypomastigotes. Unexpectedly, in heavily infected cells, amastigotes and trypomastigotes were found inside the host cell nucleus. These findings suggest that T. dionisii, although sharing some features in host cell invasion with T. cruzi, has unique behaviors that deserve to be further explored.
Collapse
Affiliation(s)
- Miriam Pires de Castro Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu 862, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Apicomplexan parasites like Toxoplasma gondii are distinctive in their utilization of para site encoded motor systems to invade cells. Invasion results in the establishment of the parasitophorous vacuole (PV) within the infected cell. Most apicomplexans complete their intracellular tenure within the infected cell in the PV that is demarcated from the host cytoplasm by the parasitophorous vacuole membrane (PVM). In this chapter I focus on the events surrounding the formation of the PVM and selected activities attributed to it. Its central role as the interface between the parasite and its immediate environment, the host cytoplasm, is validated by the diversity of functions attributed to it. While functions in structural organization, nutrient acquisitions and signaling have been defined their molecular bases remain largely unknown. Several recent studies and the decoding of the Toxoplasma genome have set the stage for a rapid expansion in our understanding of the role of the PVM in parasite biology. Toxoplasma gondii, like all apicomplexan parasites are obligate intracellular pathogens. This family of parasites utilize their own actin-myosin based motor systems to gain entry into susceptible cells establishing themselves, in some cases transiently (e.g., Theileria spp) in specialized vacuolar compartment, the parasitophorous vacuole (PV). The T. gondii PV is highly dynamic compartment defining the replication permissive niche for the parasite. The delimiting membrane defining the parasitophorous vacuole, the parasitophorous vacuole membrane or PVM is increasingly being recognized as a specialized "organelle" that in the context of the infected cell is extracorporeal to the parent organism, the parasite. A systematic study of this enigmatic organelle has been severely limited by several issues. Primary among these is the fact that it is formed only in the context of the infected cell thereby limiting the amount of material. Secondly, unlike other cellular organelles that can often be purified by conventional approaches, the PVM, cannot be purified away from host cell organelles (see below). In spite of these significant obstacles considerable progress has been made in recent years toward understanding the biogenesis of the PVM, identification of its protein complement and the characterization of activities within it. These studies demonstrate that the PVM, on its own and by virtue of its interactions with cellular components, plays critical functions in the structural integrity of the vacuole, nutrient acquisition and the manipulation of cellular functions. In addition it appears that the repertoire of activities at the PVM is likely to be plastic reflecting temporal changes associated with the replicative phase of parasite growth. Finally, the PVM likely forms the foundation for the cyst wall as the parasite differentiates in the establishment of latent infection. As the critical border crossing between the parasite and invaded cell the study of the PVM provides a fertile area for new investigation aided by the recent decoding of the Toxoplasma genome (available at wwww.ToxoDB.org) and the application of proteomic analyses to basic questions in parasite biology.
Collapse
|
9
|
Walker ME, Hjort EE, Smith SS, Tripathi A, Hornick JE, Hinchcliffe EH, Archer W, Hager KM. Toxoplasma gondii actively remodels the microtubule network in host cells. Microbes Infect 2008; 10:1440-9. [PMID: 18983931 DOI: 10.1016/j.micinf.2008.08.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/15/2022]
Abstract
Toxoplasma gondii infection triggers host microtubule rearrangement and organelle recruitment around the parasite vacuole. Factors affecting initial stages of microtubule remodeling are unknown. To illuminate the mechanism, we tested the hypothesis that the parasite actively remodels host microtubules. Utilizing heat-killed parasites and time-lapse analysis, we determined microtubule rearrangement requires living parasites and is time dependent. We discovered a novel aster of microtubules (MTs) associates with the vacuole within 1h of infection. This aster lacks the concentrated foci of gamma (gamma)-tubulin normally associated with MT nucleation sites. Unexpectedly, vacuole enlargement does not correlate with an increase in MT staining around the vacuole. We conclude microtubule remodeling does not result from steric constraints. Using nocodazole washout studies, we demonstrate the vacuole nucleates host microtubule growth in-vivo via gamma-tubulin-associated sites. Moreover, superinfected host cells display multiple gamma-tubulin foci. Microtubule dynamics are critical for cell cycle control in uninfected cells. Using non-confluent monolayers, we show host cells commonly fail to finish cytokinesis resulting in larger, multinucleated cells. Our data suggest intimate interactions between T. gondii and host microtubules result in suppression of cell division and/or cause a mitotic defect, thus providing a larger space for parasite duplication.
Collapse
Affiliation(s)
- Margaret E Walker
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cortez E, Stumbo AC, Saldanha-Gama R, Villela CG, Barja-Fidalgo C, Rodrigues CA, das Graças Henriques M, Benchimol M, Barbosa HS, Porto LC, Carvalho L. Immunolocalization of an osteopontin-like protein in dense granules of Toxoplasma gondii tachyzoites and its association with the parasitophorous vacuole. Micron 2008; 39:25-31. [DOI: 10.1016/j.micron.2007.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/20/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
|
11
|
Barrias ES, Dutra JMF, De Souza W, Carvalho TMU. Participation of macrophage membrane rafts in Trypanosoma cruzi invasion process. Biochem Biophys Res Commun 2007; 363:828-34. [PMID: 17904520 DOI: 10.1016/j.bbrc.2007.09.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 01/29/2023]
Abstract
Membrane rafts are small and dynamic regions enriched in sphingolipids, cholesterol, ganglioside GM1 and protein markers like flotillins, forming the flatter domains or caveolins, which are characterized as stable flask-shape invaginations. We explored whether membrane rafts participate in the entry of Trypanosoma cruzi's trypomastigotes into murine macrophages through transient depletion of macrophage membrane cholesterol with methyl-beta-cyclodextrin and treatment with filipin. These treatments led to a decrease in the trypomastigote invasion process. Macrophage pre incubated with increasing concentrations of cholera toxin B, that binds GM1, inhibited the adhesion and invasion of trypomastigote and amastigote forms. Immunofluorescence analysis demonstrated a colocalization of GM1, flotillin 1 and caveolin 1 in the T. cruzi parasitophorous vacuole. Taken together these data suggest that membrane rafts, including caveolae, are involved in the process of T. cruzi invasion of macrophages.
Collapse
Affiliation(s)
- E S Barrias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
12
|
Martin AM, Liu T, Lynn BC, Sinai AP. The Toxoplasma gondii Parasitophorous Vacuole Membrane: Transactions Across the Border. J Eukaryot Microbiol 2007; 54:25-8. [PMID: 17300514 DOI: 10.1111/j.1550-7408.2006.00230.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The obligate intracellular protozoan Toxoplasma gondii establishes its replication permissive niche within the infected host cell. This niche, the parasitophorous vacuole (PV), is delimited from the host cell cytoplasm by the PV membrane (PVM). In this chapter we highlight the roles of the PVM in the remodeling of host cell architecture, nutrient acquisition, the manipulation of signaling, and touch upon the potential roles in the parasite developmental cycle. We further present the PVM as a unique and dynamic "organelle" found only within the infected cell where it is established outside the parent organism. Despite its importance little is known about the biology of the PVM. There has, however, been a recent renewal of interest in the PVM, the study of which has become more tractable with the application of both classical approaches as well as genomic and proteomic analyses. In this review we discuss the diverse activities associated with the PVM and present pressing questions that remain to be elucidated regarding this enigmatic organelle.
Collapse
Affiliation(s)
- Angela M Martin
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
13
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
14
|
Taatjes DJ, Roth J. Recent progress in histochemistry and cell biology: the state of the art 2005. Histochem Cell Biol 2005; 124:547-74. [PMID: 16283358 DOI: 10.1007/s00418-005-0110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Advances in the field of histochemistry, a multidisciplinary area including the detection, localization and functional characterization of molecules in single cells and complex tissues, often drives the attainment of new knowledge in the broadly defined discipline of cell biology. These two disciplines, histochemistry and cell biology, have been joined in this journal to facilitate the flow of information with celerity from technical advancement in histochemical procedures, to their utilization in experimental models. This review summarizes advancements in these fields during the past year.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Microscopy Imaging Center, Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|