1
|
Ko EK, Anderson A, D'souza C, Zou J, Huang S, Cho S, Alawi F, Prouty S, Lee V, Yoon S, Krick K, Horiuchi Y, Ge K, Seykora JT, Capell BC. Disruption of H3K36 methylation provokes cellular plasticity to drive aberrant glandular formation and squamous carcinogenesis. Dev Cell 2024; 59:187-198.e7. [PMID: 38198888 PMCID: PMC10872381 DOI: 10.1016/j.devcel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Chromatin organization is essential for maintaining cell-fate trajectories and developmental programs. Here, we find that disruption of H3K36 methylation dramatically impairs normal epithelial differentiation and development, which promotes increased cellular plasticity and enrichment of alternative cell fates. Specifically, we observe a striking increase in the aberrant generation of excessive epithelial glandular tissues, including hypertrophic salivary, sebaceous, and meibomian glands, as well as enhanced squamous tumorigenesis. These phenotypic and gene expression manifestations are associated with loss of H3K36me2 and rewiring of repressive H3K27me3, changes we also observe in human patients with glandular hyperplasia. Collectively, these results have identified a critical role for H3K36 methylation in both in vivo epithelial cell-fate decisions and the prevention of squamous carcinogenesis and suggest that H3K36 methylation modulation may offer new avenues for the treatment of numerous common disorders driven by altered glandular function, which collectively affect large segments of the human population.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carina D'souza
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Zou
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sijia Huang
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Institute of Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sohyun Cho
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Faizan Alawi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn School of Dental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen Prouty
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vivian Lee
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Keegan Krick
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yoko Horiuchi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brian C Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Hu N, Mo XM, Xu SN, Tang HN, Zhou YH, Li L, Zhou HD. A novel antimicrobial peptide derived from human BPIFA1 protein protects against Candida albicans infection. Innate Immun 2022; 28:67-78. [PMID: 35201913 PMCID: PMC9058375 DOI: 10.1177/17534259221080543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/15/2022] Open
Abstract
Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is an innate immunity defense protein. Our previous studies proved its antibacterial and antiviral effects, but its role in fungi remains unknown. The study aimed to identify antifungal peptides (AFP) derived from BPIFA1, and three antimicrobial peptides (AMP1-3) were designed. The antifungal effects were proved by growth inhibition assay. AMP3 activity was confirmed by germ tube growth experiment and XTT assay. Its effects on cell wall and membrane of Candida albicans were assessed by tannic acid and Annexin V-FITC/PI double staining, respectively. Additionally, scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used for morphological and ultrastructural observation. The expression of ALS1, EAP1, and SUN41 was tested by qPCR. Ultimately, three AMPs could fight against C. albicans in vitro, and AMP3 was highly effective. It functioned by destroying the integrity of cell wall and normal structure of cell membrane. It also inhibited biofilm formation of C. albicans. In addition, AMP3 down-regulated the expression of ALS1, EAP1, and SUN41, those are known to be involved in virulence of C. albicans. Altogether, the study reported successful development of a novel AFP, which could be used as a new strategy for antifungal therapy.
Collapse
Affiliation(s)
- Nan Hu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Nan Hu and Xi-Ming Mo contribute equally to the paper
| | - Xi-Ming Mo
- Department of clinical laboratory medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Nan Hu and Xi-Ming Mo contribute equally to the paper
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Department of clinical laboratory medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
3
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Saitou M, Gaylord EA, Xu E, May AJ, Neznanova L, Nathan S, Grawe A, Chang J, Ryan W, Ruhl S, Knox SM, Gokcumen O. Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Cell Rep 2020; 33:108402. [PMID: 33207190 PMCID: PMC7703872 DOI: 10.1016/j.celrep.2020.108402] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Salivary proteins are essential for maintaining health in the oral cavity and proximal digestive tract, and they serve as potential diagnostic markers for monitoring human health and disease. However, their precise organ origins remain unclear. Through transcriptomic analysis of major adult and fetal salivary glands and integration with the saliva proteome, the blood plasma proteome, and transcriptomes of 28+ organs, we link human saliva proteins to their source, identify salivary-gland-specific genes, and uncover fetal- and adult-specific gene repertoires. Our results also provide insights into the degree of gene retention during gland maturation and suggest that functional diversity among adult gland types is driven by specific dosage combinations of hundreds of transcriptional regulators rather than by a few gland-specific factors. Finally, we demonstrate the heterogeneity of the human acinar cell lineage. Our results pave the way for future investigations into glandular biology and pathology, as well as saliva's use as a diagnostic fluid.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, U.S.A; Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Viken, Norway
| | - Eliza A Gaylord
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Erica Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Alison J May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Lubov Neznanova
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Sara Nathan
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Anissa Grawe
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Jolie Chang
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - William Ryan
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A.
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| |
Collapse
|
5
|
Wei F, Tang L, He Y, Wu Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Liao Q, Zhang W, Ni Q, Luo J, Li X, Li Y, Peng C, Chen X, Li G, Xiong W, Zeng Z. BPIFB1 (LPLUNC1) inhibits radioresistance in nasopharyngeal carcinoma by inhibiting VTN expression. Cell Death Dis 2018; 9:432. [PMID: 29568064 PMCID: PMC5864881 DOI: 10.1038/s41419-018-0409-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022]
Abstract
Bactericidal/permeability-increasing-fold-containing family B member 1 (BPIFB1, previously named LPLUNC1) is highly expressed in the nasopharynx and significantly downregulated in nasopharyngeal carcinoma (NPC). Low expression is also associated with poor prognosis in patients with NPC. Radiotherapy is a routine treatment for NPC; however, radioresistance is a major cause of treatment failure. Thus, we aimed to investigate the role of BPIFB1 in the radioresponse of NPC. Colony formation and cell survival results showed that BPIFB1 sensitized NPC cells to ionizing radiation. VTN, a previously identified BPIFB1-binding protein, was shown to induce cell proliferation and survival, G2/M phase arrest, DNA repair, activation of the ATM-Chk2 and ATR-Chk1 pathways, and anti-apoptotic effects after exposure to radiation, facilitating NPC cell radioresistance. However, BPIFB1 inhibited this VTN-mediated radioresistance, ultimately improving NPC radiosensitivity. In conclusion, this study is the first to demonstrate the functions of BPIFB1 and VTN in the NPC radioresponse. Our findings indicated that promoting BPIFB1 expression and targeting VTN might represent new therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianxi Ni
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cong Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
BPIFB1 (LPLUNC1) inhibits migration and invasion of nasopharyngeal carcinoma by interacting with VTN and VIM. Br J Cancer 2017; 118:233-247. [PMID: 29123267 PMCID: PMC5785741 DOI: 10.1038/bjc.2017.385] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Bactericidal/Permeability-increasing-fold-containing family B member 1 (BPIFB1, previously termed LPLUNC1) is highly expressed in the nasopharynx, significantly downregulated in nasopharyngeal carcinoma (NPC), and associated with prognosis in NPC patients. Because metastasis represents the primary cause of NPC-related death, we explored the role of BPIFB1 in NPC migration and invasion. Methods: The role of BPIFB1 in NPC metastasis was investigated in vitro and in vivo. A co-immunoprecipitation assay coupled with mass spectrometry was used to identify BPIFB1-binding proteins. Additionally, western blotting, immunofluorescence, and immunohistochemistry allowed assessment of the molecular mechanisms associated with BPIFB1-specific metastatic inhibition via vitronectin (VTN) and vimentin (VIM) interactions. Results: Our results showed that BPIFB1 expression markedly inhibited NPC cell migration, invasion, and lung-metastatic abilities. Additionally, identification of two BPIFB1-interacting proteins, VTN and VIM, showed that BPIFB1 reduced VTN expression and the formation of a VTN-integrin αV complex in NPC cells, leading to inhibition of the FAK/Src/ERK signalling pathway. Moreover, BPIFB1 attenuated NPC cell migration and invasion by inhibiting VTN- or VIM-induced epithelial–mesenchymal transition. Conclusions: This study represents the first demonstration of BPIFB1 function in NPC migration, invasion, and lung metastasis. Our findings indicate that re-expression of BPIFB1 might represent a useful strategy for preventing and treating NPC.
Collapse
|
7
|
Alves DBM, Bingle L, Bingle CD, Lourenço SV, Silva AA, Pereira DL, Vargas PA. BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands. Braz Oral Res 2017; 31:e6. [PMID: 28099576 DOI: 10.1590/1807-3107bor-2017.vol31.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.
Collapse
Affiliation(s)
- Daniel Berretta Moreira Alves
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Lynne Bingle
- University of Sheffield, School of Clinical Dentistry, Academic Unit of Oral and Maxillofacial Pathology, Sheffield, UK
| | - Colin David Bingle
- University of Sheffield, Medical School, Royal Hallamshire Hospital, Academic Unit of Respiratory Medicine, Sheffield, UK
| | - Silvia Vanessa Lourenço
- Universidade de São Paulo - USP, School of Dentistry, Department of General Pathology, São Paulo-SP, Brazil
| | - Andréia Aparecida Silva
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Débora Lima Pereira
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Pablo Agustin Vargas
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Guo Y, Guo LN, Zhu JF, Tang CY, Feng YZ, Zhou HD. Associations of Salivary BPIFA1 Protein in Chronic Periodontitis Patients with Type 2 Diabetes Mellitus. Int J Endocrinol 2017; 2017:1087017. [PMID: 29109737 PMCID: PMC5646319 DOI: 10.1155/2017/1087017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS To explore the differences in salivary BPI fold containing family A, member 1 (BPIFA1) concentration among type 2 diabetes mellitus (T2DM) subjects with various severities of chronic periodontitis and to determine whether BPIFA1 in saliva can be used as a potential biomarker of T2DM. METHODS Unstimulated saliva samples were collected from 44 subjects with T2DM and 44 without T2DM (NDM). Additionally, demographic data and general health parameters, including fasting blood glucose (FBG) and body mass index (BMI), were collected. We also detected full-mouth clinical periodontal parameters including probing pocket depth (PPD), clinical attachment level (CAL), bleeding index (BI), and plaque index (PLI). Salivary BPIFA1, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) concentrations were also detected. RESULTS BPIFA1 in saliva was detected at relatively high levels. T2DM subjects had decreased salivary BPIFA1 concentrations (P = 0.031). In T2DM subjects with nonperiodontitis or severe periodontitis, the level of BPIFA1 was significantly lower compared with that of NDM. Salivary TNF-α concentration displayed a similar trend to BPIFA1 in the NDM group. CONCLUSIONS BPIFA1 protein is rich in saliva and might be used as a potential predictive biomarker of T2DM, especially in patients with severe periodontitis and nonperiodontitis. This trial is registered with ChiCTR-ROC-17010310.
Collapse
Affiliation(s)
- Yue Guo
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lin-Na Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun-Fei Zhu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chen-Yi Tang
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
Liu H, Zhang X, Wu J, French SW, He Z. New insights on the palate, lung, and nasal epithelium clone (PLUNC) proteins: Based on molecular and functional analysis of its homolog of YH1/SPLUNC1. Exp Mol Pathol 2016; 100:363-369. [PMID: 26654795 DOI: 10.1016/j.yexmp.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
The palate, lung, and nasal epithelium clone (PLUNC) proteins are intricate immune molecules and arisen questions from them are still unresolved. In order to identify the role of PLUNC family proteins, we had analyzed its homolog protein YH1/SPLUNC1, which highly expresses in nontumor nasopharyngeal epithelium while expresses weakly in nasopharyngeal carcinoma (NPC) tissues. It is found that YH1/SPLUNC1 protein expression level was higher in chronic normal nasopharynx inflammatory cells compared to NPC tissue cells. An approach to produce active YH1/SPLUNC1 protein had been established and recombinant YH1/SPLUNC1 protein could bind to all four Gram-positive and four Gram-negative bacteria we tested, and triggered the aggregation of those bacteria. Interestingly, YH1/SPLUNC1 protein has antimicrobial activity, and it can directly kill Escherichia coli and Acinetobacter haemolyticus. The microorganism cell showed morphological changes in cell wall such as cell damage and cytoplasmic leakage after exposure to YH1/SPLUNC1 protein, indicating that YH1/SPLUNC1 directly killed the microorganisms by cell wall permeabilization. All these results indicated that YH1/SPLUNC1 might be an important antimicrobial protein involved in innate immunity defense.
Collapse
Affiliation(s)
- Hui Liu
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China; Department of Pathology, University of California, Harbor UCLA Medical Center, Torrance, CA 90509, United States
| | - Xiangning Zhang
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China
| | - Jingjing Wu
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China
| | - Samuel W French
- Department of Pathology, University of California, Harbor UCLA Medical Center, Torrance, CA 90509, United States
| | - Zhiwei He
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China.
| |
Collapse
|
10
|
Britto CJ, Cohn L. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease. Am J Respir Cell Mol Biol 2015; 52:525-34. [PMID: 25265466 DOI: 10.1165/rcmb.2014-0297rt] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
11
|
Ou C, Sun Z, Zhang H, Xiong W, Ma J, Zhou M, Lu J, Zeng Z, Bo X, Chen P, Li G, Li X, Li X. SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-κB pathway. Oncol Rep 2015; 33:2779-2788. [PMID: 25891128 DOI: 10.3892/or.2015.3913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/19/2015] [Indexed: 11/05/2022] Open
Abstract
Studies indicate that the natural immune-related protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) plays an antitumor role in nasopharyngeal epithelial tissue. However, the detailed mechanism of the tumor-suppressor effect of SPLUNC1 in the inflammatory microenvironment of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) remains elusive. The aim of the present study was to explore how SPLUNC1 reduces the inflammatory response of NPC cells infected with EBV by regulating the Toll-like receptor (TLR)9/NF-κB signaling pathway. As detected by immunohistochemistry and western blotting, SPLUNC1 protein expression exhibited low or negative expression in the NPC epithelial samples/cells, while it demonstrated positive expression in normal nasopharyngeal epithelial tissues/cells; this pattern of expression was the contrary to that of TLR9. The poorly differentiated HNE2 cell line had the highest efficiency of transfer of infection with EBV by 'cell-to-cell' contact method. The group of EBV-infected HNE2 cells showed significantly higher activation of the expression of TLR9/NF-κB signaling pathway-associated factors (TLR9, CD14, MyD88, IKK, P-IKβα, P-NF-κB and NF-κB). The levels of inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α in the HNE2 cell group after EBV infection were higher than these levels in the uninfected cell group (P<0.05); Meanwhile, after EBV infection, the expression levels of TLR9/NF-κB pathway associated-protein and inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α in the HNE2/SPLUNC1 cell group were lower than these levels in the HNE2/Vector cell group (P<0.05). After EBV-DNA direct transfection, cytokine mRNA expression levels of TLR9, IL-6, IL-8, IL-1β and TNF-α in the HNE2 cell group were significantly higher than these levels in the NP69 cell group (P<0.05). The expression levels of these cytokines in the HNE2/SPLUNC1 cell group were obviously lower than these levels in the HNE2/Vector cell group (P<0.05). These results suggest that EBV infection of NPC cells can activate the TLR9/NF-κB signaling pathway, promote the release of inflammatory cytokines and consequently enhance the inflammatory response, while SPLUNC1 can weaken the inflammatory response induced by EBV infection in NPC cells through the regulation of the TLR9/NF-κB signaling pathway and control of the tumor inflammatory microenvironment.
Collapse
Affiliation(s)
- Chunlin Ou
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhenqiang Sun
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Han Zhang
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Jian Ma
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Jianhong Lu
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiang Bo
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Pan Chen
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiayu Li
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
12
|
Zhang W, Zeng Z, Wei F, Chen P, Schmitt DC, Fan S, Guo X, Liang F, Shi L, Liu Z, Zhang Z, Xiang B, Zhou M, Huang D, Tang K, Li X, Xiong W, Tan M, Li G, Li X. SPLUNC1 is associated with nasopharyngeal carcinoma prognosis and plays an important role in all-trans-retinoic acid-induced growth inhibition and differentiation in nasopharyngeal cancer cells. FEBS J 2014; 281:4815-29. [PMID: 25161098 DOI: 10.1111/febs.13020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/19/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022]
Abstract
Human SPLUNC1 can suppress nasopharyngeal carcinoma (NPC) tumor formation; however, the correlation between SPLUNC1expression and NPC patient prognosis has not been reported. In the present study, we used a large-scale sample of 1015 tissue cores to detect SPLUNC1 expression and its association with patient prognosis. SPLUNC1 expression was reduced in NPC samples compared to nontumor nasopharyngeal epithelium tissues. Positive expression of SPLUNC1 in NPC predicted a better prognosis (disease-free survival, P = 0.034; overall survival, P = 0.048). Cox's proportional hazards model revealed that SPLUNC1 could be a significant prognostic factor affecting disease-free survival (P = 0.027). A cDNA micro-array analyzed by significant analysis of micro-array (SAM) and ingenuity pathway analysis (IPA) revealed that an indirect interaction existed between SPLUNC1 and retinoic acid (RA) in the cancer regulatory network. To further investigate the molecular mechanisms involved, we utilized several bioinformatics tools and identified 12 retinoid X receptors heterodimer binding sites in the promoter region of the SPLUNC1 gene. The transcriptional activity of the SPLUNC1 promoter was up-regulated significantly by all-trans-retinoic acid (ATRA). SPLUNC1 and retinoic acid receptor expression were induced significantly by ATRA, and removal of ATRA led to a progressive loss of SPLUNC1 and retinoic acid receptor expression. ATRA inhibited proliferation and induced the differentiation of NPC cells. Interestingly, over-expression of SPLUNC1 sensitized NPC cells to ATRA, whereas knockdown of SPLUNC1 in HNE1 cells increased cell viability. Under SPLUNC1 knockdown conditions, differentiation was reversed by ATRA treatment. We concluded that SPLUNC1 could potentially predict prognosis for NPC patients and play an important role in ATRA-induced growth inhibition and differentiation in NPC cells.
Collapse
Affiliation(s)
- Wenling Zhang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ning F, Wang C, Berry KZ, Kandasamy P, Liu H, Murphy RC, Voelker DR, Nho CW, Pan CH, Dai S, Niu L, Chu HW, Zhang G. Structural characterization of the pulmonary innate immune protein SPLUNC1 and identification of lipid ligands. FASEB J 2014; 28:5349-60. [PMID: 25223608 DOI: 10.1096/fj.14-259291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The short palate, lung and nasal epithelial clone 1 (SPLUNC1) protein is a member of the palate, lung, and nasal epithelium clone (PLUNC) family, also known as bactericidal/permeability-increasing (BPI) fold-containing protein, family A, member 1 (BPIFA1). SPLUNC1 is an abundant protein in human airways, but its function remains poorly understood. The lipid ligands of SPLUNC1 as well as other PLUNC family members are largely unknown, although some reports provide evidence that lipopolysaccharide (LPS) could be a lipid ligand. Unlike previous hypotheses, we found significant structural differences between SPLUNC1 and BPI. Recombinant SPLUNC1 produced in HEK 293 cells harbored several molecular species of sphingomyelin and phosphatidylcholine as its ligands. Significantly, in vitro lipid-binding studies failed to demonstrate interactions between SPLUNC1 and LPS, lipoteichoic acid, or polymyxin B. Instead, one of the major and most important pulmonary surfactant phospholipids, dipalmitoylphosphatidylcholine (DPPC), bound to SPLUNC1 with high affinity and specificity. We found that SPLUNC1 could be the first protein receptor for DPPC. These discoveries provide insight into the specific determinants governing the interaction between SPLUNC1 and lipids and also shed light on novel functions that SPLUNC1 and other PLUNC family members perform in host defense.
Collapse
Affiliation(s)
- Fangkun Ning
- School of Life Sciences, University of Science and Technology of China, Hefei, China; Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Chao Wang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Karin Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Haolin Liu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Choel-Ho Pan
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Shaodong Dai
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Liwen Niu
- School of Life Sciences, University of Science and Technology of China, Hefei, China;
| | - Hong-Wei Chu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA; Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Gongyi Zhang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
14
|
Chen P, Guo X, Zhou H, Zhang W, Zeng Z, Liao Q, Li X, Xiang B, Yang J, Ma J, Zhou M, Peng S, Xiang J, Li X, LE CW, Xiong W, McCarthy JB, Li G. SPLUNC1 regulates cell progression and apoptosis through the miR-141-PTEN/p27 pathway, but is hindered by LMP1. PLoS One 2013; 8:e56929. [PMID: 23472073 PMCID: PMC3589440 DOI: 10.1371/journal.pone.0056929] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Little is known about the role of the host defensive protein short palate, lung and nasal epithelium clone 1 (SPLUNC1) in the carcinogenesis of nasopharyngeal carcinoma (NPC). Here we report that SPLUNC1 plays a role at a very early stage of NPC carcinogenesis. SPLUNC1 regulates NPC cell proliferation, differentiation and apoptosis through miR-141, which in turn regulates PTEN and p27 expression. This signaling axis is negatively regulated by the EBV-coded gene LMP1. Therefore we propose that SPLUNC1 suppresses NPC tumor formation and its inhibition by LMP1 provides a route for NPC tumorigenesis.
Collapse
Affiliation(s)
- Pan Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaofang Guo
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Houde Zhou
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qianjin Liao
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Colvin Wanshura LE
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (JBM); (GL)
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (JBM); (GL)
| |
Collapse
|
15
|
GUO XF, CHEN P, LI XY, LI XL, LI GY. The Structure and Function of SPLUNC1:Novel Class of Innate Immune Protective Molecules*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Thaikoottathil JV, Martin RJ, Di PY, Minor M, Case S, Zhang B, Zhang G, Huang H, Chu HW. SPLUNC1 deficiency enhances airway eosinophilic inflammation in mice. Am J Respir Cell Mol Biol 2012; 47:253-60. [PMID: 22499853 DOI: 10.1165/rcmb.2012-0064oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Short palate, lung and nasal epithelium clone 1 (SPLUNC1) is enriched in normal airway lining fluid, but is significantly reduced in airway epithelium exposed to a Th2 cytokine milieu. The role of SPLUNC1 in modulating airway allergic inflammation (e.g., eosinophils) remains unknown. We used SPLUNC1 knockout (KO) and littermate wild-type (C57BL/6 background) mice and recombinant SPLUNC1 protein to determine the impact of SPLUNC1 on airway allergic/eosinophilic inflammation, and to investigate the underlying mechanisms. An acute ovalbumin (OVA) sensitization and challenge protocol was used to induce murine airway allergic inflammation (e.g., eosinophils, eotaxin-2, and Th2 cytokines). Our results showed that SPLUNC1 in the bronchoalveolar lavage fluid of OVA-challenged wild-type mice was significantly reduced (P < 0.05), which was negatively correlated with levels of lung eosinophilic inflammation. Moreover, SPLUNC1 KO mice demonstrated significantly higher numbers of eosinophils in the lung after OVA challenges than did wild-type mice. Alveolar macrophages isolated from OVA-challenged SPLUNC1 KO versus wild-type mice had higher concentrations of baseline eotaxin-2 that was amplified by LPS (a known risk factor for exacerbating asthma). Human recombinant SPLUNC1 protein was applied to alveolar macrophages to study the regulation of eotaxin-2 in the context of Th2 cytokine and LPS stimulation. Recombinant SPLUNC1 protein attenuated LPS-induced eotaxin-2 production in Th2 cytokine-pretreated murine macrophages. These findings demonstrate that SPLUNC1 inhibits airway eosinophilic inflammation in allergic mice, in part by reducing eotaxin-2 production in alveolar macrophages.
Collapse
Affiliation(s)
- Jyoti V Thaikoottathil
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Functional roles of SPLUNC1 in the innate immune response against Gram-negative bacteria. Biochem Soc Trans 2011; 39:1051-5. [PMID: 21787346 DOI: 10.1042/bst0391051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLUNC (palate, lung and nasal epithelium clone)-associated gene originally referred to one gene, but now has been extended to represent a gene family that consists of a number of genes with peptide sequence homologies and predicted structural similarities. PLUNC-like proteins display sequence homology with BPI (bactericidal/permeability-increasing protein), a 456-residue cationic protein produced by precursors of polymorphonuclear leucocytes that have been shown to possess both bactericidal and LPS (lipopolysaccharide)-binding activities. The human PLUNC is also known as LUNX (lung-specific X protein), NASG (nasopharyngeal carcinoma-related protein) and SPURT (secretory protein in upper respiratory tract). The gene originally named PLUNC is now recognized as SPLUNC1. Its gene product SPLUNC1 is a secretory protein that is abundantly expressed in cells of the surface epithelium in the upper respiratory tracts and secretory glands in lung, and in the head and the neck region. The functional role of SPLUNC1 in innate immunity has been suggested but not clearly defined. The present review describes recent findings that support antimicrobial and anti-inflammatory functions of SPLUNC1 in Gram-negative bacteria-induced respiratory infection.
Collapse
|
18
|
Zeng Z, Huang H, Zhang W, Xiang B, Zhou M, Zhou Y, Ma J, Yi M, Li X, Li X, Xiong W, Li G. Nasopharyngeal carcinoma: advances in genomics and molecular genetics. SCIENCE CHINA-LIFE SCIENCES 2011; 54:966-75. [PMID: 22038010 DOI: 10.1007/s11427-011-4223-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Central South University, Changsha 410078, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang L, Deng T, Li X, Liu H, Zhou H, Ma J, Wu M, Zhou M, Shen S, Li X, Niu Z, Zhang W, Shi L, Xiang B, Lu J, Wang L, Li D, Tang H, Li G. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis 2010; 31:559-66. [DOI: 10.1093/carcin/bgp335] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Xiang B, Yi M, Wang L, Liu W, Zhang W, Ouyang J, Peng Y, Li W, Yin D, Zhou M, Liu H, Wu M, Wang R, Li X, Li G. Preparation of polyclonal antibody specific for NOR1 and detection of its expression pattern in human tissues and nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai) 2009; 41:754-62. [PMID: 19727524 DOI: 10.1093/abbs/gmp064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oxidored-nitro domain containing protein 1 (NOR1) gene is a novel nitroreductase gene first isolated from nasopharyngeal carcinoma (NPC). It plays an important role in the formation of chemical carcinogen and the carcinogenesis of NPC for its nitrosation function. Overexpression of the wild-type NOR1 gene in nasopharyngeal carcinoma cells is effective to inhibit cell growth and proliferation. In this study, for the first time, we generated a highly specific NOR1 antibody and analyzed NOR1 distribution in the human tissues and NPC biopsies. The results showed that NOR1 protein is predominantly expressed in human nasopharynx and tracheal tissues. Human heart, liver, spleen, stomach, colon, kidney, skeletal muscle, thymus, and pancreas are all deficient of NOR1 protein. More importantly, we performed immunohistochemistry assay of NOR1 protein expression in the NPC tissues, and the result showed that NOR1 protein is frequently down-expressed in NPC. These data shed light on the selectivity of potential physiological functions of NOR1 and provides an indispensable reference to the carcinogenesis process of NPC and to identify or validate tissue-specific drug targets.
Collapse
Affiliation(s)
- Bo Xiang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effect of SPLUNC1 protein on the Pseudomonas aeruginosa and Epstein-Barr virus. Mol Cell Biochem 2007; 309:191-7. [DOI: 10.1007/s11010-007-9659-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 11/14/2007] [Indexed: 12/31/2022]
|
22
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|
23
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|