1
|
Lee Y, Kim YC, Seong J, Ahn S, Han M, Lee JA, Kim JH, Ahn JY, Ku NS, Choi JY, Yeom JS, Jeong SJ. Predictors of bloodstream infection and its impact on mortality in septic arthritis: A 15-year review. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:318-324. [PMID: 40059018 DOI: 10.1016/j.jmii.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/27/2024] [Accepted: 02/22/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Septic arthritis is frequently complicated by bloodstream infection (BSI), which can lead to metastatic infections and sepsis. In the current study, we aimed to identify risk factors for septic arthritis-related BSI and assess its impact on clinical outcomes. METHODS A retrospective review spanning 15 years (January 2009 to May 2023) was conducted on patients diagnosed with septic arthritis. Data from patients with positive synovial fluid cultures were analyzed. RESULTS Among 456 patients with septic arthritis, 16.8 % (n = 77) developed BSI. The 90-day mortality rate was significantly higher in patients with BSI than in those without BSI (14.3 % vs. 5.3 %, p = 0.004). Staphylococcus aureus was the most commonly identified organism in synovial fluid cultures, and the presence of S. aureus infection was associated with an increased risk of BSI (adjusted odds ratio [aOR], 2.20; 95 % confidence interval [CI], 1.15-4.34; p = 0.019). Independent risk factors for BSI included a higher Sequential Organ Failure Assessment (SOFA) score (aOR, 1.23; 95 % CI, 1.06-1.44; p = 0.009), lymphopenia (aOR, 2.84; 95 % CI, 1.38-6.15; p = 0.006), and elevated C-reactive protein (mg/dL) levels (aOR, 1.07; 95 % CI, 1.05-1.10; p < 0.001). Age ≥70 years (aOR, 3.96; 95 % CI, 1.49-11.85; p = 0.009) and a higher SOFA score (aOR, 1.36; 95 % CI, 1.12-1.67; p = 0.002) were significant predictors of 90-day mortality, although BSI itself was not. CONCLUSION Mortality in patients with septic arthritis was primarily associated with systemic sepsis due to BSI rather than BSI itself. Understanding the relationship between septic arthritis-related BSI and clinical outcomes could aid physicians in managing systemic infections and improving patient care.
Collapse
Affiliation(s)
- Yongseop Lee
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Chan Kim
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeeun Seong
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangmin Ahn
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Han
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Garduno A, Cusack R, Leone M, Einav S, Martin-Loeches I. Multi-Omics Endotypes in ICU Sepsis-Induced Immunosuppression. Microorganisms 2023; 11:1119. [PMID: 37317092 DOI: 10.3390/microorganisms11051119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
It is evident that the admission of some patients with sepsis and septic shock to hospitals is occurring late in their illness, which has contributed to the increase in poor outcomes and high fatalities worldwide across age groups. The current diagnostic and monitoring procedure relies on an inaccurate and often delayed identification by the clinician, who then decides the treatment upon interaction with the patient. Initiation of sepsis is accompanied by immune system paralysis following "cytokine storm". The unique immunological response of each patient is important to define in terms of subtyping for therapy. The immune system becomes activated in sepsis to produce interleukins, and endothelial cells express higher levels of adhesion molecules. The proportions of circulating immune cells change, reducing regulatory cells and increasing memory cells and killer cells, having long-term effects on the phenotype of CD8 T cells, HLA-DR, and dysregulation of microRNA. The current narrative review seeks to highlight the potential application of multi-omics data integration and immunological profiling at the single-cell level to define endotypes in sepsis and septic shock. The review will consider the parallels and immunoregulatory axis between cancer and immunosuppression, sepsis-induced cardiomyopathy, and endothelial damage. Second, the added value of transcriptomic-driven endotypes will be assessed through inferring regulatory interactions in recent clinical trials and studies reporting gene modular features that inform continuous metrics measuring clinical response in ICU, which can support the use of immunomodulating agents.
Collapse
Affiliation(s)
- Alexis Garduno
- Department of Clinical Medicine, Trinity College, University of Dublin, D02 PN40 Dublin, Ireland
| | - Rachael Cusack
- Department of Intensive Care Medicine, St. James's Hospital, James's Street, D08 NHY1 Dublin, Ireland
| | - Marc Leone
- Department of Anesthesia, Intensive Care and Trauma Center, Nord University Hospital, Aix Marseille University, APHM, 13015 Marseille, France
| | - Sharon Einav
- General Intensive Care Unit, Shaare Zedek Medical Center, Jerusalem 23456, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 23456, Israel
| | - Ignacio Martin-Loeches
- Department of Clinical Medicine, Trinity College, University of Dublin, D02 PN40 Dublin, Ireland
- Department of Intensive Care Medicine, St. James's Hospital, James's Street, D08 NHY1 Dublin, Ireland
| |
Collapse
|
3
|
Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem Pharmacol 2022; 199:114982. [PMID: 35247333 DOI: 10.1016/j.bcp.2022.114982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
The strategy of targeting virulence factor has received great attention as it barely develops bacterial resistance. Sortase A (SrtA) and caseinolytic peptidase P (ClpP), as important virulence factors, are considered to be ideal pharmacological targets for methicillin-resistant Staphylococcus aureus (MRSA) infection. Through screening hundreds of compounds, we found scutellarin, a natural flavonoid, markedly inhibited SrtA and ClpP activities of MRSA strain USA300 with an IC50 of 53.64 μg/mL and 107.00 μg/mL, respectively. Subsequently, we observed that scutellarin could inhibit the SrtA-related virulence of MRSA. To demonstrate whether scutellarin directly binding to SrtA, fluorescence quenching assay and molecular docking were performed and the results indicated that scutellarin directly bonded to SrtA molecule with a KA value of 7.58 × 104 L/mol. In addition to direct SrtA inhibition, scutellarin could also inhibit hemolytic activity of S. aureus by inhibiting the expression of Hla in a SrtA-independent manner. Further assays confirmed that scutellarin inhibited hemolysis by inhibiting ClpP. The combination of scutellarin and vancomycin showed enhancing inhibition of USA300 in vitro and in vivo, evidenced by decreased MIC from 3 μg/mL to 0.5 μg/mL and increased survival and improvement of lung pathology in pneumonia mice. Taken together, these results suggest that scutellarin exhibited di-inhibitory effects on SrtA and ClpP of USA300. The di-inhibition of virulence factors by scutellarin combined with vancomycin to prevent MRSA invasion of A549 cells and pneumonia in mice, indicating that scutellarin is expected to be a potential adjuvant against MRSA in the future.
Collapse
|
4
|
Domizi R, Damiani E, Scorcella C, Carsetti A, Giaccaglia P, Casarotta E, Montomoli J, Gabbanelli V, Brugia M, Moretti M, Adrario E, Donati A. Mid-Regional Proadrenomedullin (MR-proADM) and Microcirculation in Monitoring Organ Dysfunction of Critical Care Patients With Infection: A Prospective Observational Pilot Study. Front Med (Lausanne) 2021; 8:680244. [PMID: 34917627 PMCID: PMC8669477 DOI: 10.3389/fmed.2021.680244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
Introduction: Microvascular alterations are involved in the development of organ injury in critical care patients. Mid-regional proadrenomedullin (MR-proADM) may predict organ damage and its evolution. The main objective of this study was to assess the correlation between MR-proADM and microvascular flow index (MFI) in a small cohort of 20 adult critical care patients diagnosed with infection, sepsis, or septic shock. Further objectives were to evaluate the correlation between the clearance of MR-proADM and the variables of microcirculation and between MR-proADM and the Sequential Organ Failure Assessment (SOFA) score. Materials and Methods: This is a prospective observational pilot study. Inclusion criteria: consecutive adult patients admitted to intensive care unit (ICU) for or with infection-related illness. Daily measurement of MR-proADM and calculation of the SOFA score from admission in ICU to day 5. Repeated evaluations of sublingual microcirculation, collection of clinical data, and laboratory tests. Results: Primary outcome: MR-proADM was not significantly correlated to the MFI at admission in ICU. A clearance of MR-proADM of 20% or more in the first 24 h was related to the improvement of the MFIs and MFIt [percentual variation of the MFIs + 12.35 (6.01–14.59)% vs. +2.23 (−4.45–6.01)%, p = 0.005; MFIt +9.09 (4.53–16.26)% vs. −1.43 (−4.36–3.12)%, p = 0.002]. Conclusion: This study did not support a direct correlation of MR-proADM with the MFI at admission in ICU; however, it showed a good correlation between the clearance of MR-proADM, MFI, and other microvascular variables. This study also supported the prognostic value of the marker. Adequately powered studies should be performed to confirm the findings.
Collapse
Affiliation(s)
- Roberta Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy
| | - Elisa Damiani
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy
| | - Andrea Carsetti
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Giaccaglia
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erika Casarotta
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Jonathan Montomoli
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Vincenzo Gabbanelli
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy
| | - Marina Brugia
- Laboratory Medicine, Azienda Ospedaliera Universitaria Ospedali Riuniti Ancona, Ancona, Italy
| | - Marco Moretti
- Laboratory Medicine, Azienda Ospedaliera Universitaria Ospedali Riuniti Ancona, Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Abele Donati
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
5
|
Clark AJ, Mullooly N, Safitri D, Harris M, de Vries T, MaassenVanDenBrink A, Poyner DR, Gianni D, Wigglesworth M, Ladds G. CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells. Commun Biol 2021; 4:776. [PMID: 34163006 PMCID: PMC8222276 DOI: 10.1038/s42003-021-02293-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Agonist bias occurs when different ligands produce distinct signalling outputs when acting at the same receptor. However, its physiological relevance is not always clear. Using primary human cells and gene editing techniques, we demonstrate endogenous agonist bias with physiological consequences for the calcitonin receptor-like receptor, CLR. By switching the receptor-activity modifying protein (RAMP) associated with CLR we can “re-route” the physiological pathways activated by endogenous agonists calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2). AM2 promotes calcium-mediated nitric oxide signalling whereas CGRP and AM show pro-proliferative effects in cardiovascular cells, thus providing a rationale for the expression of the three peptides. CLR-based agonist bias occurs naturally in human cells and has a fundamental purpose for its existence. We anticipate this will be a starting point for more studies into RAMP function in native environments and their importance in endogenous GPCR signalling. Clark et al. explore the ability of ligands to activate the calcitonin-like receptor (CLR) in primary endothelial cells, and the influence of co-expressed receptor-activity modifying proteins (RAMPs). Their study reveals that GPCR agonist bias occurs naturally in human cells and plays a fundamental role in providing unique functions to endogenous agonists.
Collapse
Affiliation(s)
- Ashley J Clark
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Niamh Mullooly
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tessa de Vries
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, Rotterdam, Netherlands
| | | | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Davide Gianni
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mark Wigglesworth
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Abstract
Adrenomedullin (ADM) is a 52 amino acid containing free circulating vasoactive peptide hormone found to be active in various pathophysiological states including sepsis. High ADM levels at admission have been correlated with vasopressor requirements, organ dysfunction, and mortality in sepsis patients. ADM stimulation results in vasodilation and loss of vascular resistance in humans resulting in hypotension with the potential for negative impact in septic shock. However, in vitro human and animal experiments have shown that ADM decreases hyperpermeability and capillary leak, thus having an endothelial barrier stabilizing effect during septic shock. Adrenomedullin thus appears to be a double-edged weapon. This editorial critically reviews the article by Daga et al. who evaluated serum ADM as a prognostic marker to review the gender-related difference in mortality pattern, and also the correlation of ADM level to APACHE II and SOFA scores. The role of adrenomedullin in sepsis and the potential developments in the future have been discussed concisely. How to cite this article: Ajith Kumar AK. Adrenomedullin in Sepsis: Finally, a Friend or an Enemy? Indian J Crit Care Med 2020;24(12):1151-1153.
Collapse
Affiliation(s)
- AK Ajith Kumar
- Department of Critical Care, Manipal Hospitals, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Thiele C, Simon TP, Szymanski J, Daniel C, Golias C, Hartmann O, Struck J, Martin L, Marx G, Schuerholz T. Effects of the Non-Neutralizing Humanized Monoclonal Anti-Adrenomedullin Antibody Adrecizumab on Hemodynamic and Renal Injury in a Porcine Two-Hit Model. Shock 2020; 54:810-818. [PMID: 32554994 DOI: 10.1097/shk.0000000000001587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adrenomedullin is a vasoactive peptide that improves endothelial barrier function in sepsis, but may also cause hypotension and organ failure. Treatment with a non-neutralizing monoclonal anti-adrenomedullin antibody showed improvement in murine sepsis models. We tested the effects of the humanized monoclonal anti-adrenomedullin antibody Adrecizumab in a porcine two-hit model of hemorrhagic and septic shock.In this randomized, blinded study 12 German Landrace pigs were bled to half of baseline mean arterial pressure for 45 min. Sepsis was induced using an Escherichia coli clot placed into the abdominal cavity 6 h after hemorrhagic shock. Animals received either 2 mg/kg BW anti-adrenomedullin antibody or vehicle solution immediately after sepsis induction. After 4 h, resuscitation was initiated using balanced crystalloids and noradrenalin to maintain a central venous pressure of 8 to 12 mm Hg, a mean arterial pressure ≥ 65 mm Hg, and a ScvO2 ≥70% for another 8 h. Hemodynamic parameters, laboratory parameters, and kidney histology were assessed.The amount of volume resuscitation was significantly lower and significantly less animals developed a septic shock in the antibody-treated group, compared with the vehicle group. Kidney histology showed significantly lower granulocytes in both cortex and medulla in antibody-treated animals, while the remaining four kidney measures (serum creatinine and urine output and cortical and medullary injury in histopathology) did not reach the significance levels. After induction of sepsis, plasma adrenomedullin increased immediately in both the groups, but increased quicker and more pronounced in the antibody group.In this two-hit shock model, treatment with an anti-adrenomedullin antibody significantly increased plasma adrenomedullin levels, while significantly less animals developed septic shock and renal granulocyte extravasation was significantly reduced. Thus, therapy with Adrecizumab may provide benefit in sepsis, and clinical investigation of this drug candidate is warranted.
Collapse
Affiliation(s)
- Christoph Thiele
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jeanine Szymanski
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christos Golias
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Schuerholz
- Department of Anesthesia and Intensive Care, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
8
|
Bioactive Adrenomedullin, Organ Support Therapies, and Survival in the Critically Ill. Crit Care Med 2020; 48:49-55. [DOI: 10.1097/ccm.0000000000004044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Livingston ET, Mursalin MH, Callegan MC. A Pyrrhic Victory: The PMN Response to Ocular Bacterial Infections. Microorganisms 2019; 7:E537. [PMID: 31703354 PMCID: PMC6920826 DOI: 10.3390/microorganisms7110537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Some tissues of the eye are susceptible to damage due to their exposure to the outside environment and inability to regenerate. Immune privilege, although beneficial to the eye in terms of homeostasis and protection, can be harmful when breached or when an aberrant response occurs in the face of challenge. In this review, we highlight the role of the PMN (polymorphonuclear leukocyte) in different bacterial ocular infections that invade the immune privileged eye at the anterior and posterior segments: keratitis, conjunctivitis, uveitis, and endophthalmitis. Interestingly, the PMN response from the host seems to be necessary for pathogen clearance in ocular disease, but the inflammatory response can also be detrimental to vision retention. This "Pyrrhic Victory" scenario is explored in each type of ocular infection, with details on PMN recruitment and response at the site of ocular infection. In addition, we emphasize the differences in PMN responses between each ocular disease and its most common corresponding bacterial pathogen. The in vitro and animal models used to identify PMN responses, such as recruitment, phagocytosis, degranulation, and NETosis, are also outlined in each ocular infection. This detailed study of the ocular acute immune response to infection could provide novel therapeutic strategies for blinding diseases, provide more general information on ocular PMN responses, and reveal areas of bacterial ocular infection research that lack PMN response studies.
Collapse
Affiliation(s)
- Erin T. Livingston
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
| | - Md Huzzatul Mursalin
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Effects of the Humanized Anti-Adrenomedullin Antibody Adrecizumab (HAM8101) on Vascular Barrier Function and Survival in Rodent Models of Systemic Inflammation and Sepsis. Shock 2019; 50:648-654. [PMID: 29324627 DOI: 10.1097/shk.0000000000001102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Adrenomedullin (ADM) is an important regulator of endothelial barrier function during sepsis. Administration of a murine antibody targeted against the N-terminus of ADM (HAM1101) resulted in improved outcome in models of murine sepsis. We studied the effects of a humanized form of this antibody (HAM8101, also known as Adrecizumab) on vascular barrier dysfunction and survival in rodent models of systemic inflammation and sepsis. METHODS Rats (n=48) received different dosages of HAM8101 or placebo (n = 8 per group), directly followed by administration of lipopolysaccharide (5 mg/kg). Twenty-four hours later, Evans Blue dye was administered to assess vascular leakage in kidney and liver tissue. Furthermore, mice (n = 24) were administered different dosages of HAM8101 or placebo (n = 6 per group), immediately followed by cecal ligation and puncture (CLP). Eighteen hours later, albumin, vascular endothelial growth factor (VEGF), and angiopoietin-1 were analyzed in the kidney. Finally, effects of single and repeated dose administration of HAM1101, HAM8101 and placebo on survival were assessed in CLP-induced murine sepsis (n = 60, n = 10 per group). RESULTS Dosages of 0.1 and 2.5 mg/kg HAM8101 attenuated renal albumin leakage in endotoxemic rats. Dosages of 0.1, 2.0, and 20 mg/kg HAM8101 reduced renal concentrations of albumin and the detrimental protein VEGF in septic mice, whereas concentrations of the protective protein angiopoietin-1 were augmented. Both single and repeated administration of both HAM1101 and HAM8101 resulted in improved survival during murine sepsis. CONCLUSIONS Pretreatment with the humanized anti-ADM antibody HAM8101 improved vascular barrier function and survival in rodent models of systemic inflammation and sepsis.
Collapse
|
11
|
Geven C, Blet A, Kox M, Hartmann O, Scigalla P, Zimmermann J, Marx G, Laterre PF, Mebazaa A, Pickkers P. A double-blind, placebo-controlled, randomised, multicentre, proof-of-concept and dose-finding phase II clinical trial to investigate the safety, tolerability and efficacy of adrecizumab in patients with septic shock and elevated adrenomedullin concentration (AdrenOSS-2). BMJ Open 2019; 9:e024475. [PMID: 30782906 PMCID: PMC6377571 DOI: 10.1136/bmjopen-2018-024475] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/14/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Sepsis remains a major health problem with an increasing incidence, high morbidity and high mortality. Apart from treatment with antibiotics and organ support, no approved specific adjunct therapies currently exist. Adrenomedullin (ADM) is a vasoactive peptide. High plasma concentrations of ADM correlate with worse outcome in sepsis patients. Preclinical work with the non-neutralising ADM-binding antibody adrecizumab showed promising effects in animal models of septic shock, including improved vascular barrier function, reduced vasopressor demand and organ dysfunction and increased survival. Therapeutic use of adrecizumab may therefore improve outcome in critically ill patients with septic shock and high ADM plasma concentrations. Phase I studies in healthy volunteers did not reveal any safety concerns. In this biomarker-guided trial, the safety and efficacy of adrecizumab will be investigated in patients with septic shock. METHODS AND ANALYSIS We describe a phase II, randomised, double-blind, placebo-controlled, biomarker-guided, proof-of-concept and dose-finding clinical trial in patients with early septic shock and high concentration of circulating ADM. A total of 300 patients will be enrolled at approximately 30 sites within the European Union. Patients are randomised to receive active treatment (2 and 4 mg/kg adrecizumab) or placebo, in a 1:1:2 ratio. Patient selection is guided by clinical parameters, and biomarker-guided by measurement of circulating biologically active ADM concentration at admission. Primary endpoint is safety and tolerability of adrecizumab over a 90-day period. A key secondary endpoint is the Sepsis Severity Index over a 14-day period. ETHICS AND DISSEMINATION This study is approved by relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, the European Medicines Agency guidelines of Good Clinical Practice and all other applicable regulations. Results of this study will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER NCT03085758; Pre-results.
Collapse
Affiliation(s)
- Christopher Geven
- Department of Intensive Care Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alice Blet
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis—Lariboisière, Paris, France
- UMR-S 942, Inserm, Paris, France
- Paris Diderot University, Paris, France
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Gernot Marx
- Department of Intensive Care Medicine and Intermediate Care, RWTH University Hospital Aachen, Aachen, Germany
| | - Pierre-François Laterre
- Department of Critical Care Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Alexandre Mebazaa
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis—Lariboisière, Paris, France
- UMR-S 942, Inserm, Paris, France
- Paris Diderot University, Paris, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Mebazaa A, Geven C, Hollinger A, Wittebole X, Chousterman BG, Blet A, Gayat E, Hartmann O, Scigalla P, Struck J, Bergmann A, Antonelli M, Beishuizen A, Constantin JM, Damoisel C, Deye N, Di Somma S, Dugernier T, François B, Gaudry S, Huberlant V, Lascarrou JB, Marx G, Mercier E, Oueslati H, Pickkers P, Sonneville R, Legrand M, Laterre PF. Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study. Crit Care 2018; 22:354. [PMID: 30583748 PMCID: PMC6305573 DOI: 10.1186/s13054-018-2243-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. METHODS AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. RESULTS Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). CONCLUSIONS AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. TRIAL REGISTRATION ClinicalTrials.gov, NCT02393781 . Registered on March 19, 2015.
Collapse
Affiliation(s)
- Alexandre Mebazaa
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
- Inserm 942, Paris, France
- University Paris Diderot, Paris, France
| | - Christopher Geven
- Department of Intensive Care Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, The Netherlands
| | - Alexa Hollinger
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
- Inserm 942, Paris, France
- Department of Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Basel, Switzerland
| | - Xavier Wittebole
- Department of Critical Care Medicine, St Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Benjamin Glen Chousterman
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
- University Paris Diderot, Paris, France
| | - Alice Blet
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
- Inserm 942, Paris, France
| | - Etienne Gayat
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
- Inserm 942, Paris, France
- University Paris Diderot, Paris, France
| | | | | | | | | | | | - Albertus Beishuizen
- Department of Intensive Care, Medische Spectrum Twente, Enschede, The Netherlands
| | - Jean-Michel Constantin
- Department of Perioperative Medicine, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Charles Damoisel
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
| | - Nicolas Deye
- Inserm 942, Paris, France
- CHU de Tours, Tours, France
| | | | | | - Bruno François
- ICU Department, CHU Dupuytren, Limoges, France
- INSERM CIC 1435/UMR 1092, Limoges, France
| | | | | | | | - Gernot Marx
- Klinik für Operative Intensivmedizin und Intermediate Care, Universitätsklinikum der RWTH, Aachen, Germany
| | | | - Haikel Oueslati
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, The Netherlands
| | | | - Matthieu Legrand
- Department of Anesthesiology, Burn and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, 2 rue A. Paré, 75010 Paris, France
- Inserm 942, Paris, France
- University Paris Diderot, Paris, France
| | - Pierre-François Laterre
- Department of Critical Care Medicine, Saint Luc University Hospital, Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium
| |
Collapse
|
13
|
Ziesemer S, Eiffler I, Schönberg A, Müller C, Hochgräfe F, Beule AG, Hildebrandt JP. Staphylococcus aureusα-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells. Am J Respir Cell Mol Biol 2018; 58:482-491. [DOI: 10.1165/rcmb.2016-0207oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, Zoological Institute, and
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Zoological Institute, and
| | | | | | - Falko Hochgräfe
- Junior Research Group Pathoproteomics, Competence Center Functional Genomics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Achim G. Beule
- Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, Greifswald, Germany; and
- Department of Otorhinolaryngology, University Hospital, Münster, Germany
| | | |
Collapse
|
14
|
Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, Mohammed M, Handberg EM, Richards EM, Pepine CJ, Raizada MK. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 2018; 132:701-718. [PMID: 29507058 PMCID: PMC5955695 DOI: 10.1042/cs20180087] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN.
Collapse
Affiliation(s)
- Seungbum Kim
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Ruby Goel
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Ashok Kumar
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Yanfei Qi
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Gil Lobaton
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, FL, U.S.A
| | - Mohammed Mohammed
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Eileen M Handberg
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Elaine M Richards
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A.
| | - Mohan K Raizada
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A.
| |
Collapse
|
15
|
Montanaro L, Campoccia D, Arciola CR. A Glance at the Role of Exotoxins in Opportunistic Bacterial Infections. Int J Artif Organs 2018; 29:462-7. [PMID: 16705616 DOI: 10.1177/039139880602900417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The production and the mechanism of action of exotoxins from Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa are presented. The attack to the immune host's defenses is the main virulence factor of opportunistic bacteria in implant infections, favoring the invasion and colonization of compromised periprosthesis tissues.
Collapse
Affiliation(s)
- L Montanaro
- Research Laboratory on Biocompatibility of Implant Materials, Rizzoli Orthopedic Institute, Bologna and Experimental Pathology Department, University of Bologna, Italy.
| | | | | |
Collapse
|
16
|
Birukov KG, Karki P. Injured lung endothelium: mechanisms of self-repair and agonist-assisted recovery (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752660. [PMID: 29261029 PMCID: PMC6022073 DOI: 10.1177/2045893217752660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lung endothelium is vulnerable to both exogenous and endogenous insults, so a properly coordinated efficient repair system is essential for the timely recovery of the lung after injury. The agents that cause endothelial injury and dysfunction fall into a broad range from mechanical forces such as pathological cyclic stretch and shear stress to bacterial pathogens and their virulent components, vasoactive agonists including thrombin and histamine, metabolic causes including high glucose and oxidized low-density lipoprotein (OxLDL), circulating microparticles, and inflammatory cytokines. The repair mechanisms employed by endothelial cells (EC) can be broadly categorized into three groups: (1) intrinsic mechanism of recovery regulated by the cross-talk between small GTPases as exemplified by Rap1-mediated EC barrier recovery from Rho-mediated thrombin-induced EC hyperpermeability; (2) agonist-assisted recovery facilitated by the activation of Rac and Rap1 with subsequent inhibition of Rho signaling as observed with many barrier protective agonists including oxidized phospholipids, sphingosine 1-phosphate, prostacyclins, and hepatocyte growth factor; and (3) self-recovery of EC by the secretion of growth factors and other pro-survival bioactive compounds including anti-inflammatory molecules such as lipoxins during the resolution of inflammation. In this review, we will discuss the molecular and cellular mechanisms of pulmonary endothelium repair that is critical for the recovery from various forms of lung injuries.
Collapse
Affiliation(s)
- Konstantin G. Birukov
- Department of Anesthesiology, University of
Maryland Baltimore, School of Medicine, Baltimore, MD, USA,Konstantin G. Birukov, Department of Anesthesiology,
University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145 Baltimore, MD
21201, USA.
| | - Pratap Karki
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
17
|
Roux BT, Bauer CC, McNeish AJ, Ward SG, Cottrell GS. The Role of Ubiquitination and Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate in the Degradation of the Adrenomedullin Type I Receptor. Sci Rep 2017; 7:12389. [PMID: 28959041 PMCID: PMC5620052 DOI: 10.1038/s41598-017-12585-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023] Open
Abstract
Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 2 (RAMP2) comprise a receptor for adrenomedullin (AM). Although it is known that AM induces internalization of CLR•RAMP2, little is known about the molecular mechanisms that regulate the trafficking of CLR•RAMP2. Using HEK and HMEC-1 cells, we observed that AM-induced activation of CLR•RAMP2 promoted ubiquitination of CLR. A mutant (CLRΔ9KR), lacking all intracellular lysine residues was functional and trafficked similar to the wild-type receptor, but was not ubiquitinated. Degradation of CLR•RAMP2 and CLRΔ9KR•RAMP2 was not dependent on the duration of AM stimulation or ubiquitination and occurred via a mechanism that was partially prevented by peptidase inhibitors. Degradation of CLR•RAMP2 was sensitive to overexpression of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), but not to HRS knockdown, whereas CLRΔ9KR•RAMP2 degradation was unaffected. Overexpression, but not knockdown of HRS, promoted hyperubiquitination of CLR under basal conditions. Thus, we propose a role for ubiquitin and HRS in the regulation of AM-induced degradation of CLR•RAMP2.
Collapse
Affiliation(s)
- Benoît T Roux
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Claudia C Bauer
- Cellular and Molecular Neuroscience, Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Alister J McNeish
- Cellular and Molecular Neuroscience, Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Stephen G Ward
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Graeme S Cottrell
- Cellular and Molecular Neuroscience, Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK.
| |
Collapse
|
18
|
Davis RB, Kechele DO, Blakeney ES, Pawlak JB, Caron KM. Lymphatic deletion of calcitonin receptor-like receptor exacerbates intestinal inflammation. JCI Insight 2017; 2:e92465. [PMID: 28352669 DOI: 10.1172/jci.insight.92465] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lymphatics play a critical role in maintaining gastrointestinal homeostasis and in the absorption of dietary lipids, yet their roles in intestinal inflammation remain elusive. Given the increasing prevalence of inflammatory bowel disease, we investigated whether lymphatic vessels contribute to, or may be causative of, disease progression. We generated a mouse model with temporal and spatial deletion of the key lymphangiogenic receptor for the adrenomedullin peptide, calcitonin receptor-like receptor (Calcrl), and found that the loss of lymphatic Calcrl was sufficient to induce intestinal lymphangiectasia, characterized by dilated lacteals and protein-losing enteropathy. Upon indomethacin challenge, Calcrlfl/fl/Prox1-CreERT2 mice demonstrated persistent inflammation and failure to recover and thrive. The epithelium and crypts of Calcrlfl/fl/Prox1-CreERT2 mice exhibited exacerbated hallmarks of disease progression, and the lacteals demonstrated an inability to absorb lipids. Furthermore, we identified Calcrl/adrenomedullin signaling as an essential upstream regulator of the Notch pathway, previously shown to be critical for intestinal lacteal maintenance and junctional integrity. In conclusion, lymphatic insufficiency and lymphangiectasia caused by loss of lymphatic Calcrl exacerbates intestinal recovery following mucosal injury and underscores the importance of lymphatic function in promoting recovery from intestinal inflammation.
Collapse
|
19
|
Eiffler I, Behnke J, Ziesemer S, Müller C, Hildebrandt JP. Staphylococcus aureus α-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L676-85. [PMID: 27496896 DOI: 10.1152/ajplung.00090.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
Membrane potential (Vm)-, Na(+)-, or Ca(2+)-sensitive fluorescent dyes were used to analyze changes in Vm or intracellular ion concentrations in airway epithelial cells treated with Staphylococcus aureus α-toxin (Hla), a major virulence factor of pathogenic strains of these bacteria. Gramicidin, a channel-forming peptide causing membrane permeability to monovalent cations, a mutated form of Hla, rHla-H35L, which forms oligomers in the plasma membranes of eukaryotic cells but fails to form functional transmembrane pores, or the cyclodextrin-derivative IB201, a blocker of the Hla pore, were used to investigate the permeability of the pore. Na(+) as well as Ca(2+) ions were able to pass the Hla pore and accumulated in the cytosol. The pore-mediated influx of calcium ions was blocked by IB201. Treatment of cells with recombinant Hla resulted in plasma membrane depolarization as well as in increases in the phosphorylation levels of paxillin (signaling pathway mediating disruption of the actin cytoskeleton) and p38 MAP kinase (signaling pathway resulting in defensive actions). p38 MAP kinase phosphorylation, but not paxillin phosphorylation, was elicited by treatment of cells with gramicidin. Although treatment of cells with rHla-H35L resulted in the formation of membrane-associated heptamers, none of these cellular effects were observed in our experiments. This indicates that formation of functional Hla-transmembrane pores is required to induce the cell physiological changes mediated by α-toxin. Specifically, the changes in ion equilibria and plasma membrane potential are important activators of p38 MAP kinase, a signal transduction module involved in host cell defense.
Collapse
Affiliation(s)
- Ina Eiffler
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Jane Behnke
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| |
Collapse
|
20
|
Müller-Redetzky H, Lienau J, Suttorp N, Witzenrath M. Therapeutic strategies in pneumonia: going beyond antibiotics. Eur Respir Rev 2016; 24:516-24. [PMID: 26324814 DOI: 10.1183/16000617.0034-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of the innate immune system drives lung injury and its systemic sequelae due to breakdown of vascular barrier function, harmful hyperinflammation and microcirculatory failure, which contribute to the unfavourable outcome of patients with severe pneumonia. A variety of promising therapeutic targets have been identified and numerous innovative therapeutic approaches demonstrated to improve lung injury in experimental preclinical studies. However, at present specific preventive or curative strategies for the treatment of lung failure in pneumonia in addition to antibiotics are still missing. The aim of this mini-review is to give a short overview of some, but not all, adjuvant therapeutic strategies for pneumonia and its most important complications, sepsis and acute respiratory distress syndrome, and briefly discuss future perspectives.
Collapse
Affiliation(s)
- Holger Müller-Redetzky
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jasmin Lienau
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Lacey KA, Geoghegan JA, McLoughlin RM. The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens. Pathogens 2016; 5:pathogens5010022. [PMID: 26901227 PMCID: PMC4810143 DOI: 10.3390/pathogens5010022] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus (S. aureus) causes the vast majority of skin and soft tissue infections (SSTIs) in humans. S. aureus has become increasingly resistant to antibiotics and there is an urgent need for new strategies to tackle S. aureus infections. Vaccines offer a potential solution to this epidemic of antimicrobial resistance. However, the development of next generation efficacious anti-S. aureus vaccines necessitates a greater understanding of the protective immune response against S. aureus infection. In particular, it will be important to ascertain if distinct immune mechanisms are required to confer protection at distinct anatomical sites. Recent discoveries have highlighted that interleukin-17-producing T cells play a particularly important role in the immune response to S. aureus skin infection and suggest that vaccine strategies to specifically target these types of T cells may be beneficial in the treatment of S. aureus SSTIs. S. aureus expresses a large number of cell wall-anchored (CWA) proteins, which are covalently attached to the cell wall peptidoglycan. The virulence potential of many CWA proteins has been demonstrated in infection models; however, there is a paucity of information regarding their roles during SSTIs. In this review, we highlight potential candidate antigens for vaccines targeted at protection against SSTIs.
Collapse
Affiliation(s)
- Keenan A Lacey
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Joan A Geoghegan
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
22
|
Ahn C, Shin DH, Lee D, Kang HY, Jeung EB. Uterine expression of tight junctions in the Canine uterus. J Biomed Res 2015. [DOI: 10.12729/jbr.2015.16.3.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Peng H, Li C, Kadow S, Henry BD, Steinmann J, Becker KA, Riehle A, Beckmann N, Wilker B, Li PL, Pritts T, Edwards MJ, Zhang Y, Gulbins E, Grassmé H. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med (Berl) 2015; 93:675-89. [PMID: 25616357 PMCID: PMC4432103 DOI: 10.1007/s00109-014-1246-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Pulmonary edema associated with increased vascular permeability is a severe complication of Staphylococcus aureus-induced sepsis and an important cause of human pathology and death. We investigated the role of the mammalian acid sphingomyelinase (Asm)/ceramide system in the development of lung edema caused by S. aureus. Our findings demonstrate that genetic deficiency or pharmacologic inhibition of Asm reduced lung edema in mice infected with S. aureus. The Asm/ceramide system triggered the formation of superoxide, resulting in degradation of tight junction proteins followed by lung edema. Treatment of infected mice with amitriptyline, a potent inhibitor of Asm, protected mice from lung edema caused by S. aureus, but did not reduce systemic bacterial numbers. In turn, treatment with antibiotics reduced bacterial numbers but did not protect mice from lung edema. In contrast, only the combination of antibiotics and amitriptyline inhibited both pulmonary edema and bacteremia protecting mice from lethal sepsis and lung dysfunction suggesting the combination of both drugs as novel treatment option for sepsis. KEY MESSAGES Antibiotics are often insufficient to cure S. aureus-induced sepsis. S. aureus induces lung edema via the Asm/ceramide system. Genetic deficiency of Asm inhibits lung dysfunction upon infection with S. aureus. Pharmacologic inhibition of Asm reduces lung edema induced by S. aureus. Antibiotics plus amitriptyline protect mice from lung edema and lethal S. aureus sepsis.
Collapse
Affiliation(s)
- Huiming Peng
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Cao Li
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Brian D. Henry
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Jörg Steinmann
- Department of Medical Microbiology, University of Duisburg-Essen, Virchowstrasse 179, 45147 Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Andrea Riehle
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Natalie Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Timothy Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Michael J. Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
24
|
Müller-Redetzky HC, Lienau J, Witzenrath M. The Lung Endothelial Barrier in Acute Inflammation. THE VERTEBRATE BLOOD-GAS BARRIER IN HEALTH AND DISEASE 2015. [PMCID: PMC7123850 DOI: 10.1007/978-3-319-18392-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Hermann I, Räth S, Ziesemer S, Volksdorf T, Dress RJ, Gutjahr M, Müller C, Beule AG, Hildebrandt JP. Staphylococcus aureusHemolysin A Disrupts Cell–Matrix Adhesions in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2015; 52:14-24. [DOI: 10.1165/rcmb.2014-0082oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Hildebrandt JP. Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection. AIMS Microbiol 2015. [DOI: 10.3934/microbiol.2015.1.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Gotts JE, Matthay MA. Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome. Clin Chest Med 2014; 35:797-809. [PMID: 25453426 PMCID: PMC4254691 DOI: 10.1016/j.ccm.2014.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regenerative medicine has entered a rapid phase of discovery, and much has been learned in recent years about the lung's response to injury. This article first summarizes the cellular and molecular mechanisms that damage the alveolar-capillary barrier, producing acute respiratory distress syndrome (ARDS). The latest understanding of endogenous repair processes is discussed, highlighting the diversity of lung epithelial progenitor cell populations and their regulation in health and disease. Finally, the past, present, and future of exogenous cell-based therapies for ARDS is reviewed.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| |
Collapse
|
28
|
Müller-Redetzky HC, Wienhold SM, Berg J, Hocke AC, Hippenstiel S, Hellwig K, Gutbier B, Opitz B, Neudecker J, Rückert J, Gruber AD, Kershaw O, Mayer K, Suttorp N, Witzenrath M. Moxifloxacin is not anti-inflammatory in experimental pneumococcal pneumonia. J Antimicrob Chemother 2014; 70:830-40. [DOI: 10.1093/jac/dku446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Müller-Redetzky HC, Will D, Hellwig K, Kummer W, Tschernig T, Pfeil U, Paddenberg R, Menger MD, Kershaw O, Gruber AD, Weissmann N, Hippenstiel S, Suttorp N, Witzenrath M. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R73. [PMID: 24731244 PMCID: PMC4056010 DOI: 10.1186/cc13830] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/03/2014] [Indexed: 01/04/2023]
Abstract
Introduction Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. Methods We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. Results In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1–3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). Conclusions MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.
Collapse
|
30
|
Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014; 355:657-73. [PMID: 24599335 PMCID: PMC7102256 DOI: 10.1007/s00441-014-1821-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022]
Abstract
The lungs provide a large inner surface to guarantee respiration. In lung alveoli, a delicate membrane formed by endo- and epithelial cells with their fused basal lamina ensures rapid and effective gas exchange between alveolar and vascular compartments while concurrently forming a robust barrier against inhaled particles and microbes. However, upon infectious or sterile inflammatory stimulation, tightly regulated endothelial barrier leakiness is required for leukocyte transmigration. Further, endothelial barrier disruption may result in uncontrolled extravasation of protein-rich fluids. This brief review summarizes some important mechanisms of pulmonary endothelial barrier regulation and disruption, focusing on the role of specific cell populations, coagulation and complement cascades and mediators including angiopoietins, specific sphingolipids, adrenomedullin and reactive oxygen and nitrogen species for the regulation of pulmonary endothelial barrier function. Further, current therapeutic perspectives against development of lung injury are discussed.
Collapse
|
31
|
Cheung GYC, Joo HS, Chatterjee SS, Otto M. Phenol-soluble modulins--critical determinants of staphylococcal virulence. FEMS Microbiol Rev 2014; 38:698-719. [PMID: 24372362 DOI: 10.1111/1574-6976.12057] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are a recently discovered family of amphipathic, alpha-helical peptides that have multiple roles in staphylococcal pathogenesis and contribute to a large extent to the pathogenic success of virulent staphylococci, such as Staphylococcus aureus. PSMs may cause lysis of many human cell types including leukocytes and erythrocytes, stimulate inflammatory responses, and contribute to biofilm development. PSMs appear to have an original role in the commensal lifestyle of staphylococci, where they facilitate growth and spreading on epithelial surfaces. Aggressive, cytolytic PSMs seem to have evolved from that original role and are mainly expressed in highly virulent S. aureus. Here, we will review the biochemistry, genetics, and role of PSMs in the commensal and pathogenic lifestyles of staphylococci, discuss how diversification of PSMs defines the aggressiveness of staphylococcal species, and evaluate potential avenues to target PSMs for drug development against staphylococcal infections.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
32
|
Kramko N, Sinitski D, Seebach J, Löffler B, Dieterich P, Heilmann C, Peters G, Schnittler HJ. Early Staphylococcus aureus-induced changes in endothelial barrier function are strain-specific and unrelated to bacterial translocation. Int J Med Microbiol 2013; 303:635-44. [DOI: 10.1016/j.ijmm.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/26/2013] [Accepted: 09/01/2013] [Indexed: 12/14/2022] Open
|
33
|
Werdan K, Dietz S, Löffler B, Niemann S, Bushnaq H, Silber RE, Peters G, Müller-Werdan U. Mechanisms of infective endocarditis: pathogen–host interaction and risk states. Nat Rev Cardiol 2013; 11:35-50. [DOI: 10.1038/nrcardio.2013.174] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Wu T, Xing J, Birukova AA. Cell-type-specific crosstalk between p38 MAPK and Rho signaling in lung micro- and macrovascular barrier dysfunction induced by Staphylococcus aureus-derived pathogens. Transl Res 2013; 162:45-55. [PMID: 23571093 PMCID: PMC4075464 DOI: 10.1016/j.trsl.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 12/29/2022]
Abstract
Lung inflammation and alterations in endothelial cell (EC) micro- and macrovascular permeability are key events to development of acute lung injury. Using ECs derived from human pulmonary artery and lung microvasculature, we investigated the interplay between p38 stress mitogen-activated protein kinase (MAPK) and Rho guanosine triphosphatase signaling in inflammatory and hyperpermeability responses. Both cell types were treated with Staphylococcus aureus-derived peptidoglycan (PepG) and lipoteichoic acid (LTA) with or without pretreatment with p38 MAPK or Rho kinase inhibitors. LTA and PepG increased permeability markedly in both pulmonary macrovascular and microvascular ECs. Agonist-induced hyperpermeability was accompanied by cytoskeletal remodeling, disruption of cell-cell contacts, formation of paracellular gaps, and activation of p38 MAPK, nuclear factor kappa-B (NFκB), and Rho/Rho kinase signaling. In macrovascular ECs, pharmacologic inhibition of Rho kinase with Y27632 suppressed p38 MAP kinase cascade activation significantly, whereas inhibition of p38 MAPK with SB203580 had no effect on Rho activation. In contrast, inhibition of p38 MAPK in microvascular ECs suppressed LTA/PepG-induced activation of Rho, whereas the Rho inhibitor suppressed activation of p38 MAPK. Inhibition of either p38 MAPK or Rho kinase attenuated activation of NFκB signaling substantially. These results demonstrate cell-type-specific differences in signaling induced by Staphylococcus aureus-derived pathogens in pulmonary endothelium. Thus, although Gram-positive bacterial compounds caused barrier dysfunction in both EC types, it was induced by a different pattern of crosstalk between Rho, p38 MAPK, and NFκB signaling. These observations may have important implications in defining microvasculature-specific therapeutic strategies aimed at the treatment of sepsis and acute lung injury induced by Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Tinghuai Wu
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
Keynan Y, Rubinstein E. Staphylococcus aureus Bacteremia, Risk Factors, Complications, and Management. Crit Care Clin 2013; 29:547-62. [DOI: 10.1016/j.ccc.2013.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Cheung GYC, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets 2012; 16:601-12. [PMID: 22530584 DOI: 10.1517/14728222.2012.682573] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The pandemic human pathogen, Staphylococcus aureus, displays high levels of antibiotic resistance and is a major cause of hospital- and community-associated infections. S. aureus disease manifestation is to a great extent due to the production of a large arsenal of virulence factors, which include a series of secreted toxins. Antibodies to S. aureus toxins are found in people who are infected or asymptomatically colonized with S. aureus. Immunotherapies consisting of neutralizing anti-toxin antibodies could provide immediate aid to patients with impaired immune systems or in advanced stages of disease. AREAS COVERED Important S. aureus toxins, their roles in pathogenesis, rationales for selecting S. aureus toxins for immunization efforts, and caveats associated with monoclonal antibody-based passive immunization are discussed. This review will focus on hyper-virulent community-associated methicillin-resistant S. aureus because of their recent surge and clinical importance. EXPERT OPINION Antibodies against genome-encoded toxins may be more broadly applicable than those directed against toxins found only in a sub-population of S. aureus isolates. Furthermore, there is substantial functional redundancy among S. aureus toxins. Thus, an optimal anti-S. aureus formulation may consist of multiple antibodies directed against a series of key S. aureus genome-encoded toxins.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Laboratory of Human Bacterial Pathogenesis, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
Powers ME, Kim HK, Wang Y, Bubeck Wardenburg J. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 2012; 206:352-6. [PMID: 22474035 DOI: 10.1093/infdis/jis192] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bacteremia and sepsis. The interaction of S. aureus with the endothelium is central to bloodstream infection pathophysiology yet remains ill-understood. We show herein that staphylococcal α-hemolysin, a pore-forming cytotoxin, is required for full virulence in a murine sepsis model. The α-hemolysin binding to its receptor A-disintegrin and metalloprotease 10 (ADAM10) upregulates the receptor's metalloprotease activity on endothelial cells, causing vascular endothelial-cadherin cleavage and concomitant loss of endothelial barrier function. These cellular injuries and sepsis severity can be mitigated by ADAM10 inhibition. This study therefore provides mechanistic insight into toxin-mediated endothelial injury and suggests new therapeutic approaches for staphylococcal sepsis.
Collapse
Affiliation(s)
- Michael E Powers
- Department of Microbiology, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
38
|
The Staphylococcus aureus alpha-toxin perturbs the barrier function in Caco-2 epithelial cell monolayers by altering junctional integrity. Infect Immun 2012; 80:1670-80. [PMID: 22354024 DOI: 10.1128/iai.00001-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased microvascular permeability is a hallmark of sepsis and septic shock. Intestinal mucosal dysfunction may allow translocation of bacteria and their products, thereby promoting sepsis and inflammation. Although Staphylococcus aureus alpha-toxin significantly contributes to sepsis and perturbs the endothelial barrier function, little is known about possible effects of S. aureus alpha-toxin on human epithelial barrier functions. We hypothesize that S. aureus alpha-toxin in the blood can impair the intestinal epithelial barrier and thereby facilitate the translocation of luminal bacteria into the blood, which may in turn aggravate a septic condition. Here, we showed that staphylococcal alpha-toxin disrupts the barrier integrity of human intestinal epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER) and reduced cellular levels of junctional proteins, such as ZO-1, ZO-3, and E-cadherin. The Caco-2 cells also responded to alpha-toxin with an elevated cytosolic calcium ion concentration ([Ca(2+)](i)), elicited primarily by calcium influx from the extracellular environment, as well as with a significant reduction in TER, which was modulated by intracellular calcium chelation. Moreover, a significantly larger reduction in TER and amounts of the junctional proteins, viz., ZO-3 and occludin, was achieved by basolateral than by apical application of the alpha-toxin. These experimental findings thus support the hypothesis that free staphylococcal alpha-toxin in the bloodstream may cause intestinal epithelial barrier dysfunction and further aggravate the septic condition by promoting the release of intestinal bacteria into the underlying tissues and the blood.
Collapse
|
39
|
The Sphingosine-1 Phosphate receptor agonist FTY720 dose dependently affected endothelial integrity in vitro and aggravated ventilator-induced lung injury in mice. Pulm Pharmacol Ther 2011; 24:377-85. [DOI: 10.1016/j.pupt.2011.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/05/2010] [Accepted: 01/24/2011] [Indexed: 11/22/2022]
|
40
|
|
41
|
Kennedy AD, Wardenburg JB, Gardner DJ, Long D, Whitney AR, Braughton KR, Schneewind O, DeLeo FR. Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis 2010; 202:1050-8. [PMID: 20726702 PMCID: PMC2945289 DOI: 10.1086/656043] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are predominantly those affecting skin and soft tissues. Although progress has been made, our knowledge of the molecules that contribute to the pathogenesis of CA-MRSA skin infections is incomplete. We tested the hypothesis that alpha-hemolysin (Hla) contributes to the severity of USA300 skin infections in mice and determined whether vaccination against Hla reduces disease severity. Isogenic hla-negative (Deltahla) strains caused skin lesions in a mouse infection model that were significantly smaller than those caused by wild-type USA300 and Newman strains. Moreover, infection due to wild-type strains produced dermonecrotic skin lesions, whereas there was little or no dermonecrosis in mice infected with Deltahla strains. Passive immunization with Hla-specific antisera or active immunization with a nontoxigenic form of Hla significantly reduced the size of skin lesions caused by USA300 and prevented dermonecrosis. We conclude that Hla is a potential target for therapeutics or vaccines designed to moderate severe S. aureus skin infections.
Collapse
Affiliation(s)
- Adam D. Kennedy
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, Illinois
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Donald J. Gardner
- Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Daniel Long
- Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Adeline R. Whitney
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Kevin R. Braughton
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
42
|
EXOU-INDUCED VASCULAR HYPERPERMEABILITY AND PLATELET ACTIVATION IN THE COURSE OF EXPERIMENTAL PSEUDOMONAS AERUGINOSA PNEUMOSEPSIS. Shock 2010; 33:315-21. [DOI: 10.1097/shk.0b013e3181b2b0f4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Biological relevance of natural alpha-toxin fragments from Staphylococcus aureus. J Membr Biol 2010; 233:93-103. [PMID: 20155474 DOI: 10.1007/s00232-010-9229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Serine proteases represent an essential part of cellular homeostasis by generating biologically active peptides. In bacteria, proteolysis serves two different roles: a major housekeeping function and the destruction of foreign or target cell proteins, thereby promoting bacterial invasion. In the process, other virulence factors such as exotoxins become affected. In Staphylococcus aureus culture supernatant, the pore-forming alpha-toxin is cleaved by the coexpressed V8 protease and aureolysin. The oligomerizing and pore-forming abilities of five such spontaneously occurring N- and C-terminal alpha-toxin fragments were studied. (3)H-marked alpha-toxin fragments bound to rabbit erythrocyte membranes but only fragments with intact C termini, missing 8, 12 and 71 amino acids from their N-terminal, formed stable oligomers. All isolated fragments induced intoxication of mouse adrenocortical Y1 cells in vitro, though the nature of membrane damage for a fragment, degraded at its C terminus, remained obscure. Only one fragment, missing the first eight N-terminal amino acids, induced irreversible intoxication of Y1 cells in the same manner as the intact toxin. Four of the isolated fragments caused swelling, indicating altered channel formation. Fragments missing 12 and 71 amino acids from the N terminus occupied the same binding sites on Y1 cell membranes, though they inhibited membrane damage caused by intact toxin. In conclusion, N-terminal deletions up to 71 amino acids are tolerated, though the kinetics of channel formation and the channel's properties are altered. In contrast, digestion at the C terminus results in nonfunctional species.
Collapse
|
44
|
Legrand M, Klijn E, Payen D, Ince C. The response of the host microcirculation to bacterial sepsis: does the pathogen matter? J Mol Med (Berl) 2010; 88:127-33. [PMID: 20119709 PMCID: PMC2832870 DOI: 10.1007/s00109-009-0585-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/25/2009] [Accepted: 12/21/2009] [Indexed: 12/05/2022]
Abstract
Sepsis results from the interaction between a host and an invading pathogen. The microcirculatory dysfunction is now considered central in the development of the often deadly multiple organ dysfunction syndrome in septic shock patients. The microcirculatory flow shutdown and flow shunting leading to oxygen demand and supply mismatch at the cellular level and the local activation of inflammatory pathways resulting from the leukocyte–endothelium interactions are both features of the sepsis-induced microcirculatory dysfunction. Although the host response through the inflammatory and immunologic response appears to be critical, there are also evidences that Gram-positive and Gram-negative bacteria can exert different effects at the microcirculatory level. In this review we discuss available data on the potential bacterial-specific microcirculatory alterations observed during sepsis.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Intensive Care, Erasmus Medical Center, Erasmus University of Rotterdam, s Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Pfeil U, Aslam M, Paddenberg R, Quanz K, Chang CL, Park JI, Gries B, Rafiq A, Faulhammer P, Goldenberg A, Papadakis T, Noll T, Hsu SYT, Weissmann N, Kummer W. Intermedin/adrenomedullin-2 is a hypoxia-induced endothelial peptide that stabilizes pulmonary microvascular permeability. Am J Physiol Lung Cell Mol Physiol 2009; 297:L837-45. [PMID: 19684198 DOI: 10.1152/ajplung.90608.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Accumulating evidence suggests a pivotal role of the calcitonin receptor-like receptor (CRLR) signaling pathway in preventing damage of the lung by stabilizing pulmonary barrier function. Intermedin (IMD), also termed adrenomedullin-2, is the most recently identified peptide targeting this receptor. Here we investigated the effect of hypoxia on the expression of IMD in the murine lung and cultured murine pulmonary microvascular endothelial cells (PMEC) as well as the role of IMD in regulating vascular permeability. Monoclonal IMD antibodies were generated, and transcript levels were assayed by quantitative RT-PCR. The promoter region of IMD gene was analyzed, and the effect of hypoxia-inducible factor (HIF)-1alpha on IMD expression was investigated in HEK293T cells. Isolated murine lungs and a human lung microvascular endothelial cell monolayer model were used to study the effect of IMD on vascular permeability. IMD was identified as a pulmonary endothelial peptide by immunohistochemistry and RT-PCR. Hypoxia caused an upregulation of IMD mRNA in the murine lung and PMEC. As shown by these results, HIF-1alpha enhances IMD promoter activity. Our functional studies showed that IMD abolished the increase in pressure-induced endothelial permeability. Moreover, IMD decreased basal and thrombin-induced hyperpermeability of an endothelial cell monolayer in a receptor-dependent manner and activated PKA in these cells. In conclusion, IMD is a novel hypoxia-induced gene and a potential interventional agent for the improvement of endothelial barrier function in systemic inflammatory responses and hypoxia-induced vascular leakage.
Collapse
Affiliation(s)
- Uwe Pfeil
- Institute for Anatomy and Cell Biology, Department of Internal Medicine, Justus Liebig University, Aulweg 123, 35385 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Temmesfeld-Wollbrück B, Brell B, zu Dohna C, Dorenberg M, Hocke AC, Martens H, Klar J, Suttorp N, Hippenstiel S. Adrenomedullin reduces intestinal epithelial permeability in vivo and in vitro. Am J Physiol Gastrointest Liver Physiol 2009; 297:G43-51. [PMID: 19423749 DOI: 10.1152/ajpgi.90532.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leakage of the gut mucosal barrier in the critically ill patient may allow translocation of bacteria and their virulence factors, thereby perpetuating sepsis and inflammation. Present evidence suggests that adrenomedullin (AM) improves endothelial barrier function and stabilizes circulatory function in systemic inflammation. We tested the hypothesis that exogenously applied AM stabilizes gut epithelial barrier function. Infusion of Staphylococcus aureus alpha-toxin induced septic shock in rats. AM infusion in a therapeutic setting reduced translocation of labeled dextran from the gut into the systemic circulation in this model. AM also reduced alpha-toxin and hydrogen peroxide (H2O2)-related barrier disruption in Caco-2 cells in vitro and reduced H2O2-related rat colon barrier malfunction in Ussing chamber experiments. AM was shown to protect endothelial barrier function via cAMP elevation, but AM failed to induce cAMP accumulation in Caco-2 cells. cAMP is degraded via phosphodiesterases (PDE), and Caco-2 cells showed high activity of cAMP-degrading PDE3 and 4. However, AM failed to induce cAMP accumulation in Caco-2 cells even in the presence of sufficient PDE3/4 inhibition, whereas adenylyl cyclase activator forskolin induced strong cAMP elevation. Furthermore, PDE3/4 inhibition neither amplified AM-induced epithelial barrier stabilization nor affected AM cAMP-related rat colon short-circuit current, furthermore indicating that AM may act independently of cAMP in Caco-2 cells. Finally, experiments using chemical inhibitors indicated that PKC, phosphatidylinositide 3-kinase, p38, and ERK did not contribute to AM-related stabilization of barrier function in Caco-2 cells. In summary, during severe inflammation, elevated AM levels may substantially contribute to the stabilization of gut barrier function.
Collapse
Affiliation(s)
- Bettina Temmesfeld-Wollbrück
- Departments of Internal Medicine and Infectious Diseases, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dunworth WP, Fritz-Six KL, Caron KM. Adrenomedullin stabilizes the lymphatic endothelial barrier in vitro and in vivo. Peptides 2008; 29:2243-9. [PMID: 18929609 PMCID: PMC2639781 DOI: 10.1016/j.peptides.2008.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/10/2008] [Accepted: 09/15/2008] [Indexed: 02/04/2023]
Abstract
The lymphatic vascular system functions to maintain fluid homeostasis by removing fluid from the interstitial space and returning it to venous circulation. This process is dependent upon the maintenance and modulation of a semi-permeable barrier between lymphatic endothelial cells of the lymphatic capillaries. However, our understanding of the lymphatic endothelial barrier and the molecular mechanisms that govern its function remains limited. Adrenomedullin (AM) is a 52 amino acid secreted peptide which has a wide range of effects on cardiovascular physiology and is required for the normal development of the lymphatic vascular system. Here, we report that AM can also modulate lymphatic permeability in cultured dermal microlymphatic endothelial cells (HMVEC-dLy). AM stimulation caused a reorganization of the tight junction protein ZO-1 and the adherens protein VE-cadherin at the plasma membrane, effectively tightening the endothelial barrier. Stabilization of the lymphatic endothelial barrier by AM occurred independently of changes in junctional protein gene expression and AM(-/-) endothelial cells showed no differences in the gene expression of junctional proteins compared to wildtype endothelial cells. Nevertheless, local administration of AM in the mouse tail decreased the rate of lymph uptake from the interstitial space into the lymphatic capillaries. Together, these data reveal a previously unrecognized role for AM in controlling lymphatic endothelial permeability and lymphatic flow through reorganization of junctional proteins.
Collapse
Affiliation(s)
- William P. Dunworth
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Kimberly L. Fritz-Six
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Kathleen M. Caron
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| |
Collapse
|
48
|
Ramachandran C, Satpathy M, Mehta D, Srinivas SP. Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells. Curr Eye Res 2008; 33:169-76. [PMID: 18293188 DOI: 10.1080/02713680701837067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. METHODS Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. RESULTS Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. CONCLUSIONS Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.
Collapse
|
49
|
Subcellular expression pattern and role of IL-15 in pneumococci induced lung epithelial apoptosis. Histochem Cell Biol 2008; 130:165-76. [PMID: 18365236 DOI: 10.1007/s00418-008-0414-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Streptococcus pneumoniae is the leading causative agent of community-acquired pneumonia. Induction of apoptosis in pulmonary epithelial cells by bacteria during pneumonia might be harmful to the host. Interleukin-15 (IL-15) has been demonstrated as an effective inhibitor of apoptosis and is expressed in lung epithelium on the mRNA and protein level. Therefore, we characterized the sub-cellular expression pattern of the short and long IL-15 isoforms in lung epithelial cells in vitro as well as its role in pneumococci-related lung epithelial cell apoptosis. We found an expression pattern for both IL-15 signal peptides in the pulmonary epithelial cell lines A549 and Beas-2B. Moreover, a strong co-localization of IL-15 and IL-15Ralpha was detected on cell surfaces. Compared to pro-inflammatory cytokine stimulation, neither IL-15 nor its trimeric receptor complex was up-regulated after pneumococcal infection. However, overexpression of IL-15 isoforms revealed IL-15LSP and IL-15Vkl as inhibitors of pneumococci induced apoptosis in pulmonary epithelial cells. Thus, IL-15 may act as an anti-apoptotic molecule in pneumococci infection, thereby suggesting IL-15 as a benefical cytokine in pulmonary host defense against infection.
Collapse
|
50
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|