1
|
Martin RM, de Almeida MR, Gameiro E, de Almeida SF. Live-cell imaging unveils distinct R-loop populations with heterogeneous dynamics. Nucleic Acids Res 2023; 51:11010-11023. [PMID: 37819055 PMCID: PMC10639055 DOI: 10.1093/nar/gkad812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
We have developed RHINO, a genetically encoded sensor that selectively binds RNA:DNA hybrids enabling live-cell imaging of cellular R-loops. RHINO comprises a tandem array of three copies of the RNA:DNA hybrid binding domain of human RNase H1 connected by optimized linker segments and fused to a fluorescent protein. This tool allows the measurement of R-loop abundance and dynamics in live cells with high specificity and sensitivity. Using RHINO, we provide a kinetic framework for R-loops at nucleoli, telomeres and protein-coding genes. Our findings demonstrate that R-loop dynamics vary significantly across these regions, potentially reflecting the distinct roles R-loops play in different chromosomal contexts. RHINO is a powerful tool for investigating the role of R-loops in cellular processes and their contribution to disease development and progression.
Collapse
Affiliation(s)
- Robert M Martin
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Madalena R de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Gameiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Cerrato CP, Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2022; 19:133-146. [PMID: 35086398 DOI: 10.1080/17425247.2022.2034784] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell-penetrating peptide (CPP) technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat most diseases. AREAS COVERED This updated review article provides an overview of current intracellular organelle targeting by CPP. The targeting strategies of CPP and CPP/cargo complexes to specific cells or intracellular organelles are summarized, and the review provides an update on the current data for their pharmacological and therapeutical applications. EXPERT OPINION Targeted drug delivery is moving from the level of tissue or specific pathogenic cell to the level of specific organelle that is the target of the drug, an important aspect in drug design and development. Organelle-targeted drug delivery results in improved efficacy, ability to control mode of action, reduction of undesired toxicities and side effects, and possibility to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem 2021; 13:530-539. [PMID: 33859390 DOI: 10.1038/s41557-021-00661-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a major challenge for the life sciences. Here we demonstrate that thiol-reactive arginine-rich peptide additives can enhance the cellular uptake of protein-CPP conjugates in a non-endocytic mode, even at low micromolar concentration. We show that such thiol- or HaloTag-reactive additives can result in covalently anchored CPPs on the cell surface, which are highly effective at co-delivering protein cargoes. Taking advantage of the thiol reactivity of our most effective CPP additive, we show that Cys-containing proteins can be readily delivered into the cytosol by simple co-addition of a slight excess of this CPP. Furthermore, we demonstrate the application of our 'CPP-additive technique' in the delivery of functional enzymes, nanobodies and full-length immunoglobulin-G antibodies. This new cellular uptake protocol greatly simplifies both the accessibility and efficiency of protein and antibody delivery, with minimal chemical or genetic engineering.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marina Kithil
- Technical University of Darmstadt, Darmstadt, Germany
| | | | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. .,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Miller SE, Tsuji K, Abrams RPM, Burke TR, Schneider JP. Uncoupling the Folding-Function Paradigm of Lytic Peptides to Deliver Impermeable Inhibitors of Intracellular Protein-Protein Interactions. J Am Chem Soc 2020; 142:19950-19955. [PMID: 33175531 PMCID: PMC8916162 DOI: 10.1021/jacs.0c07921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we describe the use of peptide backbone N-methylation as a new strategy to transform membrane-lytic peptides (MLPs) into cytocompatible intracellular delivery vehicles. The ability of lytic peptides to engage with cell membranes has been exploited for drug delivery to carry impermeable cargo into cells, but their inherent toxicity results in narrow therapeutic windows that limit their clinical translation. For most linear MLPs, a prerequisite for membrane activity is their folding at cell surfaces. Modification of their backbone with N-methyl amides inhibits folding, which directly correlates to a reduction in lytic potential but only minimally affects cell entry. We synthesized a library of N-methylated peptides derived from MLPs and conducted structure-activity studies that demonstrated the broad utility of this approach across different secondary structures, including both β-sheet and helix-forming peptides. Our strategy is highlighted by the delivery of a notoriously difficult class of protein-protein interaction inhibitors that displayed on-target activity within cells.
Collapse
Affiliation(s)
- Stephen E Miller
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| | - Kohei Tsuji
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda Maryland 20892, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| |
Collapse
|
5
|
Rubio K, Castillo-Negrete R, Barreto G. Non-coding RNAs and nuclear architecture during epithelial-mesenchymal transition in lung cancer and idiopathic pulmonary fibrosis. Cell Signal 2020; 70:109593. [PMID: 32135188 DOI: 10.1016/j.cellsig.2020.109593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. On the other hand, idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease showing a prevalence of 20 new cases per 100,000 persons per year. Despite differences in cellular origin and pathological phenotypes, LC and IPF are lung diseases that share common features, including hyperproliferation of specific cell types in the lung, involvement of epithelial-mesenchymal transition (EMT) and enhanced activity of signaling pathways, such as tissue growth factor (TGFB), epidermal growth factor (EGF), fibroblast growth factor (FGF), wingless secreted glycoprotein (WNT) signaling, among others. EMT is a process during which epithelial cells lose their cell polarity and cell-cell adhesion, and acquire migratory and invasive properties to become mesenchymal cells. EMT involves numerous morphological hallmarks of hyperproliferative diseases, like cell plasticity, resistance to apoptosis, dedifferentiation and proliferation, thereby playing a central role during organ fibrosis and cancer progression. EMT was considered as an "all-or-none" process. In contrast to these outdated dichotomist interpretations, recent reports suggest that EMT occurs gradually involving different epithelial cell intermediate states with mesenchyme-like characteristics. These cell intermediate states of EMT differ from each other in their cell plasticity, invasiveness and metastatic potential, which in turn are induced by signals from their microenvironment. EMT is regulated by several transcription factors (TFs), which are members of prominent families of master regulators of transcription. In addition, there is increasing evidence for the important contribution of noncoding RNAs (ncRNAs) to EMT. In our review we highlight articles dissecting the function of different ncRNAs subtypes and nuclear architecture in cell intermediate states of EMT, as well as their involvement in LC and IPF.
Collapse
Affiliation(s)
- Karla Rubio
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany
| | - Rafael Castillo-Negrete
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Universities of Giessen and Marburg Lung Center (UGMLC), The German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Germany.
| |
Collapse
|
6
|
Schneider AFL, Wallabregue ALD, Franz L, Hackenberger CPR. Targeted Subcellular Protein Delivery Using Cleavable Cyclic Cell-Penetrating Peptides. Bioconjug Chem 2019; 30:400-404. [PMID: 30616339 DOI: 10.1021/acs.bioconjchem.8b00855] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The delivery of entire functional proteins into living cells is a long-sought goal in science. Cyclic cell-penetrating peptides (cCPPs) have proven themselves to be potent delivery vehicles to carry proteins upon conjugation into the cytosol of living cells with immediate bioavailability via a non-endosomal uptake pathway. With this strategy, we pursue the cytosolic delivery of mCherry, a medium-sized fluorescent protein. Afterward, we achieve subcellular delivery of mCherry to different intracellular loci by genetic fusion of targeting peptides to the protein sequence. We show efficient transport into a membrane-bound compartment, the nucleus, as well as targeting of the actin cytoskeleton, marking one of the first ways to label actin fluorescently in genetically unmodified living cells. Furthermore, we demonstrate that only by conjugation of cCPPs via a disulfide bond, is flawless localization to the target area achieved. This finding underlines the importance of using a cCPP-based delivery vehicle that is cleaved inside cells, for the precise intracellular localization of a protein of interest.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14189 Berlin , Germany
| | - Antoine L D Wallabregue
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| | - Luise Franz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14189 Berlin , Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| |
Collapse
|
7
|
Ma TH, Chen PH, Tan BCM, Lo SJ. Size scaling of nucleolus in Caenorhabditis elegans embryos. Biomed J 2018; 41:333-336. [PMID: 30580798 PMCID: PMC6306298 DOI: 10.1016/j.bj.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Nucleolus is viewed as a plurifunctional center in the cell, tightly linked to ribosome biosynthesis. As a non-membranous structure, how the size of nucleolus is determined is a long outstanding question, and the possibility of “direct size scaling to the nucleus” was raised by genetic studies in fission yeast. Here, we used the model organism Caenorhabditis elegans to test this hypothesis in multi-cellular organisms. We depleted ani-2, ima-3, or C27D9.1 by RNAi feeding, which altered embryo sizes to different extents in ncl-1 mutant worms. DIC imaging provided evidence that in size-altering embryo nucleolar size decreases in small cells and increases in large cells. Furthermore, analyses of nucleolar size in four blastomeres (ABa, ABp, EMS, and P2) within the same embryo of ncl-1 mutants consistently demonstrated the correspondence between cell and nucleolar sizes – the small cells (EMS and P2) have smaller nucleoli in comparison to the large cells (ABa).
Collapse
Affiliation(s)
- Tian-Hsiang Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linlou, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, Chang Gung Memorial Hospital at Linlou, Taoyuan, Taiwan.
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation. Oncogene 2017; 36:5110-5121. [PMID: 28481878 DOI: 10.1038/onc.2017.135] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
The MAPK pathway is activated in the majority of melanomas and is the target of therapeutic approaches. Under normal conditions, it initiates the so-called immediate early response, which encompasses the transient transcription of several genes belonging to the AP-1 transcription factor family. Under pathological conditions, such as continuous MAPK pathway overactivation due to oncogenic alterations occurring in melanoma, these genes are constitutively expressed. The consequences of a permanent expression of these genes are largely unknown. Here, we show that FOSL1 is the main immediate early AP-1 member induced by melanoma oncogenes. We first examined its role in established melanoma cells. We found that FOSL1 is involved in melanoma cell migration as well as cell proliferation and anoikis-independent growth, which is mediated by the gene product of its target gene HMGA1, encoding a multipotent chromatin modifier. As FOSL1 expression is increased in patient melanoma samples compared to nevi, we investigated the effect of enhanced FOSL1 expression on melanocytes. Intriguingly, we found that FOSL1 acts oncogenic and transforms melanocytes, enabling subcutaneous tumor growth in vivo. During the process of transformation, FOSL1 reprogrammed the melanocytes and downregulated MITF in a HMGA1-dependent manner. At the same time, AXL was upregulated, leading to a shift in the MITF/AXL balance. Furthermore, FOSL1 re-enforced pro-tumorigenic transcription factors MYC, E2F3 and AP-1. Together, this led to the enhancement of several growth-promoting processes, such as ribosome biogenesis, cellular detachment and pyrimidine metabolism. Overall, we demonstrate that FOSL1 is a novel reprogramming factor for melanocytes with potent tumor transformation potential.
Collapse
|
9
|
Martin RM, Ter-Avetisyan G, Herce HD, Ludwig AK, Lättig-Tünnemann G, Cardoso MC. Principles of protein targeting to the nucleolus. Nucleus 2016; 6:314-25. [PMID: 26280391 PMCID: PMC4615656 DOI: 10.1080/19491034.2015.1079680] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution.
Collapse
Affiliation(s)
- Robert M Martin
- a Instituto de Medicina Molecular ; Faculdade de Medicina ; Universidade de Lisboa ; Lisboa , Portugal
| | | | | | | | | | | |
Collapse
|
10
|
Martin RM, Herce HD, Ludwig AK, Cardoso MC. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides. Methods Mol Biol 2016; 1455:71-82. [PMID: 27576711 DOI: 10.1007/978-1-4939-3792-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.
Collapse
Affiliation(s)
- Robert M Martin
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Henry D Herce
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Anne K Ludwig
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.
| |
Collapse
|
11
|
Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains. Sci Rep 2015; 5:12147. [PMID: 26190255 PMCID: PMC4507178 DOI: 10.1038/srep12147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/16/2015] [Indexed: 11/08/2022] Open
Abstract
SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus.
Collapse
|
12
|
A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:101-10. [DOI: 10.1016/j.bbamcr.2014.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/19/2023]
|
13
|
Peterson EJ, Menon VR, Gatti L, Kipping R, Dewasinghe D, Perego P, Povirk LF, Farrell NP. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm 2014; 12:287-97. [PMID: 25407898 PMCID: PMC4334294 DOI: 10.1021/mp5006867] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
TriplatinNC
is a highly positively charged, substitution-inert
derivative of the phase II clinical anticancer drug, BBR3464. Such
substitution-inert complexes form a distinct subset of polynuclear
platinum complexes (PPCs) interacting with DNA and other biomolecules
through noncovalent interactions. Rapid cellular entry is facilitated
via interaction with cell surface glycosoaminoglycans and is a mechanism
unique to PPCs. Nanoscale secondary ion mass spectrometry (nanoSIMS)
showed rapid distribution within cytoplasmic and nucleolar compartments,
but not the nucleus. In this article, the downstream effects of nucleolar
localization are described. In human colon carcinoma cells, HCT116,
the production rate of 47S rRNA precursor transcripts was dramatically
reduced as an early event after drug treatment. Transcriptional inhibition
of rRNA was followed by a robust G1 arrest, and activation
of apoptotic proteins caspase-8, -9, and -3 and PARP-1 in a p53-independent
manner. Using cell synchronization and flow cytometry, it was determined
that cells treated while in G1 arrest immediately, but
cells treated in S or G2 successfully complete mitosis.
Twenty-four hours after treatment, the majority of cells finally arrest
in G1, but nearly one-third contained highly compacted
DNA; a distinct biological feature that cannot be associated with
mitosis, senescence, or apoptosis. This unique effect mirrored the
efficient condensation of tRNA and DNA in cell-free systems. The combination
of DNA compaction and apoptosis by TriplatinNC treatment conferred
striking activity in platinum-resistant and/or p53 mutant or null
cell lines. Taken together, our results support that the biological
activity of TriplatinNC reflects reduced metabolic deactivation (substitution-inert
compound not reactive to sulfur nucleophiles), high cellular accumulation,
and novel consequences of high-affinity noncovalent DNA binding, producing
a new profile and a further shift in the structure–activity
paradigms for antitumor complexes.
Collapse
Affiliation(s)
- Erica J Peterson
- Department of Chemistry and ‡Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Herce HD, Rajan M, Lättig-Tünnemann G, Fillies M, Cardoso MC. A novel cell permeable DNA replication and repair marker. Nucleus 2014; 5:590-600. [PMID: 25484186 PMCID: PMC4615156 DOI: 10.4161/nucl.36290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA binding peptide; (2) a cell-penetrating peptide, derived from the HIV-1 Trans Activator of Transcription (TAT); (3) an in vivo cleavable linker, linking the two peptides. The resulting construct was taken up by human, hamster and mouse cells within minutes of addition to the media. Inside the cells, the cargo separated from the vector peptide and bound PCNA effectively. Both replication and repair sites could be directly labeled in live cells making it the first in vivo cell permeable peptide marker for these two fundamental cellular processes. Concurrently, we also introduced a quick peptide based PCNA staining method as an alternative to PCNA antibodies for immunofluorescence applications. In summary, we present here a versatile tool to instantaneously label repair and replication processes in fixed and live cells.
Collapse
Affiliation(s)
- Henry D Herce
- a Department of Biology , Technische Universität Darmstadt ; Darmstadt , Germany
| | | | | | | | | |
Collapse
|
15
|
Qin R, Zhang H, Li S, Jiang W, Liu D. Three major nucleolar proteins migrate from nucleolus to nucleoplasm and cytoplasm in root tip cells of Vicia faba L. exposed to aluminum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10736-43. [PMID: 24870286 DOI: 10.1007/s11356-014-3057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Results from our previous investigation indicated that Al could affect the nucleolus and induce extrusion of silver-staining nucleolar particles containing argyrophilic proteins from the nucleolus into the cytoplasm in root tip cells of Vicia faba L. So far, the nucleolar proteins involved have not been identified. It is well known that nucleophosmin (B23), nucleolin (C23), and fibrillarin are three major and multifunctional nucleolar proteins. Therefore, effects of Al on B23, C23, and fibrillarin in root tip cells of V. faba exposed to 100 μM Al for 48 h were observed and analyzed using indirect immunofluorescence microscopy and Western blotting. The results from this work demonstrated that after 100 μM of Al treatment for 48 h, B23 and C23 migrated from the nucleolus to the cytoplasm and fibrillarin from the nucleolus to the nucleoplasm. In some cells, fibrillarin was present only in the cytoplasm. Western blotting data revealed higher expression of the three major nucleolar proteins in Al-treated roots compared with the control and that the B23 content increased markedly. These findings confirmed our previous observations.
Collapse
Affiliation(s)
- Rong Qin
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Qin R, Jiang W, Liu D. Aluminum can induce alterations in the cellular localization and expression of three major nucleolar proteins in root tip cells of Allium cepa var. agrogarum L. CHEMOSPHERE 2013; 90:827-34. [PMID: 23111171 DOI: 10.1016/j.chemosphere.2012.09.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/16/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
A 50 μM aluminum (Al) could induce nucleolar materials containing the argyrophilic proteins scattered in the nuclei and extruded from the nuclei into the cytoplasm in the root tip cells of Allium cepa. Unfortunately, what kinds of nucleolar proteins are affected has not been reported till now. In order to go deeper into the understanding of the cytological effects of Al on nucleolus and nucleolar proteins, alterations in the cellular localization and expression of three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were further examined under the treatment with Al in the root tip cells of A. cepa in the present study. Cytological effects of Al on nucleolus were observed by silver-staining method and three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were examined by western blotting. The results indicated that in the presence of 50 μM Al for 48 h the nucleolar proteins were translocated from nucleolus to nucleoplasm and cytoplasm. Western blotting data demonstrated the relatively higher expression of the three major nucleolar proteins when compared with control. Evidence from the present investigation indicated that Al had toxic effects on Ag-NOR proteins, nucleophosmin and nucleolin, and other kinds of nucleolar proteins, fibrillarin.
Collapse
Affiliation(s)
- Rong Qin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | | | | |
Collapse
|
17
|
Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2707-17. [DOI: 10.1016/j.bbamem.2012.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/08/2012] [Accepted: 06/20/2012] [Indexed: 01/07/2023]
|
18
|
Ma Y, Gong C, Ma Y, Fan F, Luo M, Yang F, Zhang YH. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues. J Control Release 2012; 162:286-94. [PMID: 22824782 DOI: 10.1016/j.jconrel.2012.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/31/2012] [Accepted: 07/15/2012] [Indexed: 12/26/2022]
Abstract
The ability of cell-penetrating peptides (CPPs) to deliver a range of membrane-impermeable molecules into living cells makes them attractive potential vehicles for therapeutics. However, in vivo, the efficiency of CPP delivery to the cytosol remains unsatisfactory owing to endosomal entrapment and/or systemic toxicity, which severely restrict their bioavailability and efficacy in in vivo applications. In this study, we developed a series of novel chimeras consisting of various numbers of d- and l-arginine residues and investigated their cellular uptake behaviors and systemic toxicities. We demonstrated that the intracellular distribution, uptake efficiency, and systemic toxicity of these oligoarginines were all significantly affected by the number of d-arginine residues in the peptide sequence. We also found that a hybrid peptide, (rR)(3)R(2), possessed low systemic toxicity, high uptake efficiency, and, remarkably, achieved efficient cytosolic delivery not only in cultured cells but also in living tissue cells in mice after intravenous injection, implying that this heterogeneous motif might have promising applications in the delivery of cargoes of small sizes directed to cytosolic targets in vivo. Our studies into the uptake mechanism of (rR)(3)R(2) indicate that its cellular uptake was not affected by pharmacological or physical inhibitors of endocytosis but by the elimination of the membrane potential, suggesting that (rR)(3)R(2) does not enter the cells via endocytosis but rather through direct membrane translocation driven by the membrane potential. The results here might provide useful guidelines for the design and application of CPPs in drug delivery.
Collapse
Affiliation(s)
- Yan Ma
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nat Commun 2011; 2:453. [PMID: 21878907 PMCID: PMC3265364 DOI: 10.1038/ncomms1459] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/27/2011] [Indexed: 01/24/2023] Open
Abstract
In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity. Consequently, cyclic arginine-rich cell-penetrating peptides showed enhanced cellular uptake kinetics relative to their linear and more flexible counterpart. We propose that guanidinium groups are forced into maximally distant positions by cyclization. This orientation increases membrane contacts leading to enhanced cell penetration. Cell-penetrating peptides can deliver molecular cargoes into living cells, and cross biological membranes by transduction—a non-endocytic mechanism. Here, the transduction efficiency of cyclic arginine-rich peptides is shown to be higher than that of more flexible linear peptides.
Collapse
|
20
|
Compromise in mRNA processing machinery in senescent human fibroblasts: implications for a novel potential role of Phospho-ATR (ser428). Biogerontology 2010; 11:421-36. [PMID: 20084458 DOI: 10.1007/s10522-010-9261-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/03/2010] [Indexed: 01/30/2023]
Abstract
Ataxia-Telangiectasia and Rad3 related kinase (ATR) is a major gatekeeper of genomic stability and has been the subject of exhaustive study in the context of cell cycle progression and senescence as a DNA damage-induced response. Conditional knockout of the kinase in adult mice results in accelerated aging phenomena, such as such hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. In addition to that, recent reports strongly implicate signaling mediated by this kinase in the regulation of alternative splicing of certain, mostly cancer-associated transcripts. Interest to the function of mRNA synthesis and processing is constantly increasing as severe degenerative diseases, such as cancer, cystic fibrosis and Hutchinson-Gilford progeria syndrome are at least partly attributed to these abnormalities. In light of the above, we investigate the RNA processing machinery in senescent fibroblasts as opposed to young, either exponentially proliferating or quiescent, further focusing on the distribution and localization of active, phosphorylated ATR at ser428. This study implicates the spatiotemporal presence of the phosphorylated kinase in the regulation of mRNA splicing and polyadenylation. This function appears perturbed in senescent cells, accompanied by a distinct pattern of phospho-ATR in the senescent nucleus.
Collapse
|
21
|
Single ovalbumin molecules exploring nucleoplasm and nucleoli of living cell nuclei. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:396-404. [PMID: 19895852 DOI: 10.1016/j.bbamcr.2009.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/12/2009] [Accepted: 10/28/2009] [Indexed: 11/24/2022]
Abstract
The nucleus is the center of direction and coordination of the cell's metabolic and reproductive activities and contains numerous functionally specialized domains. These subnuclear structures are not delimited by membranes like cytoplasmic organelles and their function is only poorly understood. Here, we studied the most prominent nuclear domains, nucleoli and the remaining nucleoplasm. We used fluorescently labeled ovalbumin-ATTO647N, an inert protein, to examine their physical properties. This inert tracer was microinjected into the cytoplasm of HeLa cells, and after diffusion into the nucleus the tracer distribution and mobility in the two nuclear compartments was examined. Like many macromolecular probes ovalbumin was significantly less abundant in nucleoli compared to the nucleoplasm. High-speed fluorescence microscopy allowed visualizing and analyzing single tracer molecule trajectories within nucleoli and nucleoplasm. In accordance with previous studies we found that the viscosity of the nucleus is sevenfold higher than that of aqueous buffer. Notably, nucleoplasm and nucleoli did not significantly differ in viscosity, however, the fraction of slow or trapped molecules was higher in the nucleoplasm than in nucleoli (6% versus 0.2%). Surprisingly, even a completely inert molecule like ovalbumin showed at times short-lived binding events with a decay time of 8 ms in the nucleoplasm and even shorter-6.3 ms-within the nucleoli.
Collapse
|
22
|
Zullo AJ, Michaud M, Zhang W, Grusby MJ. Identification of the small protein rich in arginine and glycine (SRAG): a newly identified nucleolar protein that can regulate cell proliferation. J Biol Chem 2009; 284:12504-11. [PMID: 19254951 DOI: 10.1074/jbc.m809436200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The characterization of new proteins will aid in our explanation of normal biology and disease. Toward that goal, we describe the initial characterization of the small protein rich in arginine and glycine (SRAG). Human and mouse SRAG are 248/249-amino acid arginine- and glycine-rich proteins that are widely expressed in tissues and cell lines. Two SRAG isoforms, SRAG-5 and SRAG-3, which are truncations of full-length SRAG, were also identified. Although all SRAG proteins reside in the nucleus, they were also found within the nucleolus. Localization within the nucleolus was regulated by the N terminus of the protein. Our initial studies indicated that SRAG can interact with RNA. Full-length SRAG protein levels were highest in resting cells and were reduced in proliferating cells. The reduction in SRAG protein that occurs in proliferating cells was mapped with inhibitors to the G(2)/M phase of the cell cycle. As expected, the overexpression of SRAG reduced the percentage of cells in the G(2)/M phase and increased cell death. In sum, we have identified a new and intriguing member of the nucleolar proteome.
Collapse
Affiliation(s)
- Alfred J Zullo
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
23
|
Identification and specific localization of tyrosine-phosphorylated proteins in Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:617-26. [PMID: 19181871 PMCID: PMC2669198 DOI: 10.1128/ec.00366-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphorylation on tyrosine residues is a key signal transduction mechanism known to regulate intercellular and intracellular communication in multicellular organisms. Despite the lack of conventional tyrosine kinases in the genome of the single cell organism Trypanosoma brucei, phosphorylation on trypanosomal protein tyrosine residues has been reported for this parasite. However, the identities of most of the tyrosine-phosphorylated proteins and their precise site(s) of phosphorylation were unknown. Here, we have applied a phosphotyrosine-specific proteomics approach to identify 34 phosphotyrosine-containing proteins from whole-cell extracts of procyclic form T. brucei. A significant proportion of the phosphotyrosine-containing proteins identified in this study were protein kinases of the CMGC kinase group as well as some proteins of unknown function and proteins involved in energy metabolism, protein synthesis, and RNA metabolism. Interestingly, immunofluorescence microscopy using anti-phosphotyrosine antibodies suggests that there is a concentration of tyrosine-phosphorylated proteins associated with cytoskeletal structures (basal body and flagellum) and in the nucleolus of the parasite. This localization of tyrosine-phosphorylated proteins supports the idea that the function of signaling molecules is controlled by their precise location in T. brucei, a principle well known from higher eukaryotes.
Collapse
|
24
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
25
|
Tünnemann G, Ter-Avetisyan G, Martin RM, Stöckl M, Herrmann A, Cardoso MC. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci 2008; 14:469-76. [PMID: 18069724 DOI: 10.1002/psc.968] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell penetrating peptides (CPPs) are useful tools to deliver low-molecular-weight cargoes into cells; however, their mode of uptake is still controversial. The most efficient CPPs belong to the group of arginine-rich peptides, but a systematic assessment of their potential toxicity is lacking. In this study we combined data on the membrane translocation abilities of oligo-arginines in living cells as a function of their chain length, concentration, stability and toxicity. Using confocal microscopy analysis of living cells we evaluated the transduction frequency of the L-isoforms of oligo-arginines and lysines and then monitored their associated toxicity by concomitant addition of propidium iodide. Whereas lysines showed virtually no transduction, the transduction ability of arginines increased with the number of consecutive residues and the peptide concentration, with L-R9 and L-R10 performing overall best. We further compared the L- and D-R9 isomers and found that the D-isoform always showed a higher transduction as compared to the L-counterpart in all cell types. Notably, the transduction difference between D- and L-forms was highly variable between cell types, emphasizing the need for protease-resistant peptides as vectors for drug delivery. Real-time kinetic analysis of the D- and L-isomers applied simultaneously to the cells revealed a much faster transduction for the D-variant. The latter underlies the fact that the isomers do not mix, and penetration of one peptide does not perturb the membrane in a way that gives access to the other peptide. Finally, we performed short- and long-term cell viability and cell cycle progression analyses with the protease-resistant D-R9. Altogether, our results identified concentration windows with low toxicity and high transduction efficiency, resulting in fully bioavailable intracellular peptides.
Collapse
Affiliation(s)
- Gisela Tünnemann
- Max Delbrueck Center for Molecular Medicine, D-13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Rubtsov NB, Karamisheva TV, Minina YM, Zhdanova NS. Three-dimensional organization of interphase fibroblast nuclei in two closely related shrew species (Sorex granarius and Sorex araneus) differing in the structures of their chromosome termini. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|