1
|
Novel role of zonulin in the pathophysiology of gastro-duodenal transit: a clinical and translational study. Sci Rep 2021; 11:22462. [PMID: 34789790 PMCID: PMC8599512 DOI: 10.1038/s41598-021-01879-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
We examined the relationship between zonulin and gastric motility in critical care patients and a translational mouse model of systemic inflammation. Gastric motility and haptoglobin (HP) 2 isoform quantification, proxy for zonulin, were examined in patients. Inflammation was triggered by lipopolysaccharide (LPS) injection in C57Bl/6 zonulin transgenic mouse (Ztm) and wildtype (WT) mice as controls, and gastro-duodenal transit was examined by fluorescein-isothiocyanate, 6 and 12 h after LPS-injection. Serum cytokines and zonulin protein levels, and zonulin gastric-duodenal mRNA expression were examined. Eight of 20 patients [14 years, IQR (12.25, 18)] developed gastric dysmotility and were HP2 isoform-producing. HP2 correlated with gastric dysmotility (r = − 0.51, CI − 0.81 to 0.003, p = 0.048). LPS injection induced a time-dependent increase in IL-6 and KC-Gro levels in all mice (p < 0.0001). Gastric dysmotility was reduced similarly in Ztm and WT mice in a time-dependent manner. Ztm had 16% faster duodenal motility than WT mice 6H post-LPS, p = 0.01. Zonulin mRNA expression by delta cycle threshold (dCT) was higher in the stomach (9.7, SD 1.4) than the duodenum (13.9, SD 1.4) 6H post-LPS, p = 0.04. Serum zonulin protein levels were higher in LPS-injected mice compared to vehicle-injected animals in a time-dependent manner. Zonulin correlated with gastric dysmotility in patients. A mouse model had time-dependent gastro-duodenal dysmotility after LPS-injection that paralleled zonulin mRNA expression and protein levels.
Collapse
|
2
|
Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2020; 53:231-249. [PMID: 32881079 DOI: 10.1111/evj.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) is a family of cells of related function that includes bone marrow progenitors, blood monocytes and resident tissue macrophages. Macrophages are effector cells in both innate and acquired immunity. They are a major resident cell population in every organ and their numbers increase in response to proinflammatory stimuli. Their function is highly regulated by a wide range of agonists, including lymphokines, cytokines and products of microorganisms. Macrophage biology has been studied most extensively in mice, yet direct comparisons of rodent and human macrophages have revealed many functional differences. In this review, we provide an overview of the equine MPS, describing the variation in the function and phenotype of macrophages depending on their location and the similarities and differences between the rodent, human and equine immune response. We discuss the use of the horse as a large animal model in which to study macrophage biology and pathological processes shared with humans. Finally, following the recent update to the horse genome, facilitating further comparative analysis of regulated gene expression between the species, we highlight the importance of future transcriptomic macrophage studies in the horse, the findings of which may also be applicable to human as well as veterinary research.
Collapse
Affiliation(s)
- Anna E Karagianni
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
3
|
Electroacupuncture at ST-36 Protects Interstitial Cells of Cajal via Sustaining Heme Oxygenase-1 Positive M2 Macrophages in the Stomach of Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3987134. [PMID: 29854081 PMCID: PMC5944261 DOI: 10.1155/2018/3987134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Abstract
Background Electroacupuncture (EA) at ST-36 has been reported to improve delayed gastric emptying and protect the networks of ICC in diabetic models. However, the mechanisms of the effects of EA are still unclear. The purpose of this study was to investigate whether the HO-1 positive M2 macrophages participate in the protective effects of EA for the ICC networks. Methods Male C57BL/6 mice were randomized into five groups: the normal control group, diabetic group (DM), diabetic mice with sham EA group (SEA), diabetic mice with low frequency EA group (LEA), and diabetic mice with high frequency EA group (HEA). ICC network changes were detected by Ano1 immunostaining. F4/80 and HO-1 costaining was used to measure HO-1 positive macrophage expression. Western blot and PCR methods were applied to monitor HO-1, IL-10, and macrophage markers, respectively. The serum MDA levels were detected by a commercial kit. Results This study presents the following results: (1) Compared with the control group, ICC networks were severely disrupted in the DM group, but no obvious changes were found in the LEA and HEA groups. (2) Many HO-1 positive macrophages could be observed in the LEA and HEA groups, and the expression of HO-1 was also markedly upregulated. (3) The IL-10 expression was obviously upregulated in the LEA and HEA groups. (4) The serum MDA levels were decreased in the real EA group. (5) When compared to the DM group, the expression of CD163 and Arg-1 was increased in the LEA and HEA groups, but the iNOS expression was decreased. Conclusion The protective effects of EA on the networks of ICC may rely on the HO-1 positive macrophages to mediate anti-inflammatory and antioxidative stress effects.
Collapse
|
4
|
Wehner S, Engel DR. Resident macrophages in the healthy and inflamed intestinal muscularis externa. Pflugers Arch 2017; 469:541-552. [PMID: 28236119 DOI: 10.1007/s00424-017-1948-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Macrophages reside in a dense cellular network in the intestinal muscularis externa, and there is emerging evidence that the functionality of these cells determines the local microenvironment. Inflammatory responses during intestinal diseases change the homeostatic functionality of these cells causing inflammation and intestinal dysmotility. Such disturbances are not only induced by a change in the cellular composition in the intestinal muscularis but also by an altered crosstalk with the peripheral and central nervous system. In this review, we summarize the role of muscularis macrophages in the intestine in homeostasis and inflammation. We compare the functionality, the phenotype, and the origin of muscularis macrophages to their neighboring counterparts within the different layers of the intestine. We outline the cellular crosstalk with the enteric and the peripheral nervous system and summarize the current therapeutic approaches to modulate the functionality of these phagocytes.
Collapse
Affiliation(s)
- Sven Wehner
- Department of Surgery/Immune Pathophysiology, University of Bonn, 53121, Bonn, Germany.
| | - Daniel Robert Engel
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Duisburg-Essen and University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
5
|
Mikkelsen HB, Huizinga JD, Larsen JO, Kirkeby S. Ionized calcium-binding adaptor molecule 1 positive macrophages and HO-1 up-regulation in intestinal muscularis resident macrophages. Anat Rec (Hoboken) 2017; 300:1114-1122. [PMID: 27860408 PMCID: PMC5484384 DOI: 10.1002/ar.23517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Small intestinal muscularis externa macrophages have been associated with interstitial cells of Cajal. They have been proposed to play various roles in motility disorders and to take part in a microbiota‐driven regulation of gastrointestinal motility. Our objective was to understand the reaction of resident macrophages of the musculature to a pro‐inflammatory stimulator, lipopolysaccharide (LPS). Mice were injected with LPS or saline and sacrificed after 6 hr. Whole mounts were stained with antibodies toward CD169, ionized calcium‐binding adaptor molecule 1 (iba1) (microglial/macrophage marker) and heme oxygenase‐1 (HO‐1). Cell densities were measured using unbiased stereology. Results: iba1pos cells showed an overall higher density than CD169pos and HO‐1pos cells. Most HO‐1pos and iba1pos cells were positive for CD 169 in serosa and at Auerbach's plexus (AP). At the deep muscular plexus, mainly iba1pos cells were present, and were mostly CD169neg; a few HO‐1pos cells were present. Conclusions: A new subset of resident macrophages in the intestinal muscularis externa was discovered, identified as iba1pos CD169neg. HO‐1 is constitutively present in most macrophages in serosa and at AP, suggesting a M2 phenotype. LPS‐treatment results in an up‐regulation of HO‐1pos/CD169neg cells in serosa and at AP. Anat Rec, 300:1114–1122, 2017. © 2016 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists
Collapse
Affiliation(s)
- Hanne B Mikkelsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Jan D Huizinga
- Department of Medicine Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Canada
| | - Jytte O Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Svend Kirkeby
- Department of Oral Medicine Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Safdari B, Sia T, Wattchow D, Smid S. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability. Cytokine 2016; 83:231-238. [DOI: 10.1016/j.cyto.2016.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
|
7
|
Farro G, Gomez-Pinilla PJ, Di Giovangiulio M, Stakenborg N, Auteri M, Thijs T, Depoortere I, Matteoli G, Boeckxstaens GE. Smooth muscle and neural dysfunction contribute to different phases of murine postoperative ileus. Neurogastroenterol Motil 2016; 28:934-47. [PMID: 26891411 DOI: 10.1111/nmo.12796] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/15/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is characterized by a transient inhibition of gastrointestinal (GI) motility after abdominal surgery mediated by the inflammation of the muscularis externa (ME). The aim of this study was to identify alterations in the enteric nervous system that may contribute to the pathogenesis of POI. METHODS Gastrointestinal transit, contractility of isolated smooth muscle strips and inflammatory parameters were evaluated at different time points (1.5 h to 10 days) after intestinal manipulation (IM) in mice. Immune-labeling was used to visualize changes in myenteric neurons. KEY RESULTS Intestinal manipulation resulted in an immediate inhibition of GI transit recovering between 24 h and 5 days. In vitro contractility to K(+) (60 mM) or carbachol (10(-9) to 10(-4) M) was biphasically suppressed over 24 h after IM (with transient recovery at 6 h). The first phase of impaired myogenic contractility was associated with increased expression of TNF-α, IL-6 and IL-1α. After 24 h, we identified a significant reduction in electrical field stimulation-evoked contractions and relaxations, lasting up to 10 days after IM. This was associated with a reduced expression of chat and nos1 genes. CONCLUSIONS & INFERENCES Intestinal manipulation induces two waves of smooth muscle inhibition, most likely mediated by inflammatory cytokines, lasting up to 3 days after IM. Further, we here identify a late third phase (>24 h) characterized by impaired cholinergic and nitrergic neurotransmission persisting after recovery of muscle contractility. These findings illustrate that POI results from inflammation-mediated impaired smooth muscle contraction, but also involves a long-lasting impact of IM on the enteric nervous system.
Collapse
Affiliation(s)
- G Farro
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - P J Gomez-Pinilla
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - M Di Giovangiulio
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - N Stakenborg
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - M Auteri
- Division of Physiology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - T Thijs
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - I Depoortere
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - G Matteoli
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - G E Boeckxstaens
- Division of Gastroenterology, Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Cipriani G, Gibbons SJ, Kashyap PC, Farrugia G. Intrinsic Gastrointestinal Macrophages: Their Phenotype and Role in Gastrointestinal Motility. Cell Mol Gastroenterol Hepatol 2016; 2:120-130.e1. [PMID: 27047989 PMCID: PMC4817106 DOI: 10.1016/j.jcmgh.2016.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is an increasing awareness of the role of macrophages in the regulation and maintenance of gastrointestinal function in health and disease. This work has proceeded in the context of an increased understanding of the complex phenotypic variation in macrophages throughout the body and has revealed previously un-identified roles for macrophages in diseases like gastroparesis, post-operative ileus and inflammatory bowel disease. Opportunities for exploiting the phenotypic modulation of tissue resident macrophages have been identified as possible therapies for some of these diseases. In addition, macrophages are an established component of the innate immune system that can respond to variations and changes in the intestinal microbiome and potentially mediate part of the impact of the microbiota on intestinal health. We reviewed the latest work on novel concepts in defining macrophage phenotype, discuss possible mechanisms of action for tissue-resident macrophages in the gut, address the significance of microbiome effects on macrophage phenotype and review the known and possible roles of macrophages in motility disorders of the gastrointestinal tract.
Collapse
Affiliation(s)
- Gianluca Cipriani
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| | - Simon J Gibbons
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| | - Purna C Kashyap
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| | - Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| |
Collapse
|
9
|
Guarino MPL, Sessa R, Altomare A, Cocca S, Di Pietro M, Carotti S, Schiavoni G, Alloni R, Emerenziani S, Morini S, Severi C, Cicala M. Human colonic myogenic dysfunction induced by mucosal lipopolysaccharide translocation and oxidative stress. Dig Liver Dis 2013; 45:1011-1016. [PMID: 23891549 DOI: 10.1016/j.dld.2013.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/03/2013] [Accepted: 06/08/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Impairment of gastrointestinal motility is frequently observed in patients with severe infection. AIM To assess whether exposure of human colonic mucosa to pathogenic lipopolysaccharide affects smooth muscle contractility. METHODS Human colonic mucosa and submucosa were sealed between two chambers, with the luminal side facing upwards and covered with Krebs solution, with or without lipopolysaccharide from a pathogenic strain of Escherichia coli (O111:B4; 1,000 ng/mL), and with the submucosal side facing downwards into Krebs. The solution on the submucosal side was collected following 30-min mucosal exposure to Krebs without (N-undernatant) or with lipopolysaccharide (lipopolysaccharide undernatant). Undernatants were tested for lipopolysaccharide and hydrogen peroxide levels and for their effects on smooth muscle cells in the presence of catalase, indomethacin or MG132. RESULTS Smooth muscle cells incubated with N-undernatant had a maximal contraction of 32 ± 5% that was reduced by 62.9 ± 12% when exposed to lipopolysaccharide undernatant. Inhibition of contraction was reversed by catalase, indomethacin and MG132. Lipopolysaccharide levels were higher in the lipopolysaccharide undernatant (2.7 ± 0.7 ng/mL) than in N-undernatant (0.45 ± 0.06 ng/mL) as well as hydrogen peroxide levels (133.75 ± 15.9 vs 82 ± 7.5 nM respectively). CONCLUSIONS Acute exposure of colonic mucosa to pathogenic lipopolysaccharide impairs muscle cell contractility owing to both lipopolysaccharide mucosal translocation and production of free radicals.
Collapse
|
10
|
Liu X, Wu T, Chi P. Inhibition of MK2 shows promise for preventing postoperative ileus in mice. J Surg Res 2013; 185:102-12. [DOI: 10.1016/j.jss.2013.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 04/01/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
11
|
Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci 2012; 169:12-27. [PMID: 22436622 DOI: 10.1016/j.autneu.2012.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/28/2022]
Abstract
Interactions between macrophages and the autonomic innervation of gastrointestinal (GI) tract smooth muscle have received little experimental attention. To better understand this relationship, immunohistochemistry was performed on GI whole mounts from rats at three ages. The phenotypes, morphologies, and distributions of gut macrophages are consistent with the cells performing extensive housekeeping functions in the smooth muscle layers. Specifically, a dense population of macrophages was located throughout the muscle wall where they were distributed among the muscle fibers and along the vasculature. Macrophages were also associated with ganglia and connectives of the myenteric plexus and with the sympathetic innervation. Additionally, these cells were in tight registration with the dendrites and axons of the myenteric neurons as well as the varicosities along the length of the sympathetic axons, suggestive of a contribution by the macrophages to the homeostasis of both synapses and contacts between the various elements of the enteric circuitry. Similarly, macrophages were involved in the presumed elimination of neuropathies as indicated by their association with dystrophic neurons and neurites which are located throughout the myenteric plexus and smooth muscle wall of aged rats. Importantly, the patterns of macrophage-neuron interactions in the gut paralleled the much more extensively characterized interactions of macrophages (i.e., microglia) and neurons in the CNS. The present observations in the PNS as well as extrapolations from homologous microglia in the CNS suggest that GI macrophages play significant roles in maintaining the nervous system of the gut in the face of wear and tear, disease, and aging.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907-2081, USA
| | | |
Collapse
|
12
|
Wehner S, Vilz TO, Stoffels B, Kalff JC. Immune mediators of postoperative ileus. Langenbecks Arch Surg 2012; 397:591-601. [PMID: 22382699 DOI: 10.1007/s00423-012-0915-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 02/08/2023]
Abstract
UNLABELLED CLINICAL BACKGROUND: In all patients undergoing abdominal surgery, a transient phase of interruption of bowel motility, named postoperative ileus (POI) occurs. POI is often accepted as an unavoidable "physiological" response and a self-limiting complication after surgery although it has a significant impact on patient morbidity with prolonged hospitalization and increased costs. Annual economic burden has been estimated as much as US $1.47 billion in the USA (Iyer et al. in J Manag Care Pharm 15(6):485-494, 2009). PATHOPHYSIOLOGY The pathophysiology has been elucidated within the last decades, demonstrating that both, neurogenic and inflammatory mechanisms are involved in response to the surgical trauma. It is now generally accepted that POI pathogenesis processes in two phases: a first neurogenic phase is accountable for the immediate postoperative impairment of bowel motility. This is followed by a second immunological phase that can last for days and mainly affects strength and length of POI. More recent findings demonstrate a bidirectional interaction between the nervous and the immune system, and this interaction significantly contributed to our present understanding of POI pathophysiology. Although nerval mechanisms have a significant impact in the early phase of POI, the contribution of the immune system and subsequently its manipulation has risen as the most promising strategy in prevention or treatment of the clinically relevant prolonged form of POI. AIMS The present manuscript will give an update on the inflammatory responses, the involved cell types, and participating immune mediators in POI.
Collapse
Affiliation(s)
- Sven Wehner
- Department of Surgery, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | | | | | | |
Collapse
|
13
|
De Winter BY, van den Wijngaard RM, de Jonge WJ. Intestinal mast cells in gut inflammation and motility disturbances. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:66-73. [PMID: 21497195 DOI: 10.1016/j.bbadis.2011.03.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/20/2011] [Accepted: 03/25/2011] [Indexed: 12/12/2022]
Abstract
Mast cells may be regarded as prototypes of innate immune cells that can be controlled by neuronal mediators. Their activation has been implicated in many types of neuro-inflammatory responses, and related disturbances of gut motility, via direct or indirect mechanisms that involve several mechanisms relevant to disease pathogenesis such as changes in epithelial barrier function or activation of adaptive or innate immune responses. Here we review the evidence for the involvement of mast cells in the inflammation of the bowel wall caused by bowel manipulation that leads to motility disturbances such as postoperative gastroparesis and ileus. Also in IBD there is substantial evidence for the involvement of mast cells and a mast cell-mediated neuroimmune interaction showing an increased number and an increased degranulation of mast cells. We discuss the potential of mast cell inhibition as a bona fide drug target to relief postoperative ileus. Further research on mast cell-related therapy either by stabilizing the mast cells or by blocking specific mast cell mediators as adjunctive therapy in IBD is encouraged, bearing in mind that several drugs currently used in the treatment of IBD possess properties affecting mast cell activities. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Department of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
14
|
Mikkelsen HB, Larsen JO, Froh P, Nguyen TH. Quantitative assessment of macrophages in the muscularis externa of mouse intestines. Anat Rec (Hoboken) 2011; 294:1557-65. [PMID: 21809459 DOI: 10.1002/ar.21444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/02/2011] [Indexed: 12/20/2022]
Abstract
Quantification of intestinal cells is challenging for several reasons: The cell densities vary throughout the intestines and may be age dependent. Some cell types are ramified and/or can change shape and size. Additionally, immunolabeling is needed for the correct identification of cell type. Immunolabeling is dependent on both up- and down-regulation of the antigen being labeled as well as on the primary and secondary antibodies, the fixation, and the enhancement procedures. Here, we provide a detailed description of immunolabeling of CD169(+) cells and major histocompatibility class II antigen (MHCII(+) ) cells and the subsequent quantification of these cells using design-based stereology in the intestinal muscularis externa. We used young (5-weeks-old) and adult (10-weeks-old) mice. Cell densities were higher in jejunum-ileum, when compared with colon. In jejunum/ileum, the cell densities increased in oral-anal direction in adults, whereas the densities were highest in the midpart in young animals. In colon, the cell densities decreased in oral-anal direction in both groups of animals. Except for the density of MHCII(+) cells in colon, the cell densities were highest in young animals. Densities of CD169(+) and MHCII(+) cells did not differ, except in the colon of young animals where the CD169(+) density was almost twice as high as the MHCII(+) density. CD169 and MHCII antigens seem to be expressed simultaneously by the same cell in jejunum/ileum. We conclude that cell densities depend on both the age of the mouse and on the location in the intestines.
Collapse
Affiliation(s)
- H B Mikkelsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
15
|
Hoffman SM, Fleming SD. Natural Helicobacter infection modulates mouse intestinal muscularis macrophage responses. Cell Biochem Funct 2010; 28:686-94. [PMID: 21104937 PMCID: PMC3021795 DOI: 10.1002/cbf.1709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Helicobacter species are common laboratory pathogens which induce intestinal inflammation and disease in susceptible mice. Since in vitro studies indicate that Helicobacter products activate macrophages, we hypothesized that in vivo Helicobacter infection regulates the inflammatory response of intestinal muscularis macrophages from C57Bl/6 mice. Helicobacter hepaticus infection increased surface expression of macrophage markers F4/80, CD11b and MHC-II within whole intestinal muscle mounts. However, constitutive cytokine and chemokine production by macrophages isolated from infected mice significantly decreased compared to macrophages from uninfected mice despite no detectable bacterial products in the cultures. In addition, muscularis macrophages from infected mice up-regulated FIZZ-1 and SK-1 gene expression, suggesting the macrophages had an anti-inflammatory phenotype. Corresponding with increased anti-inflammatory gene expression, macrophages from infected mice were more phagocytic but did not produce cytokines after stimulation with LPS and IFN-γ or immune complexes and IL-4. Therefore, the presence of Helicobacter infection matures intestinal muscularis macrophages, modulating the constitutive macrophage response to become more anti-inflammatory and resistant to secondary stimulation.
Collapse
Affiliation(s)
- Sara M Hoffman
- Division of Biology, Kansas State University, KS 66506, USA
| | | |
Collapse
|
16
|
Mikkelsen HB. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions. J Cell Mol Med 2010; 14:818-32. [PMID: 20132411 PMCID: PMC3823114 DOI: 10.1111/j.1582-4934.2010.01025.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are recognized as pacemaker cells for gastrointestinal movement and are suggested to be mediators of neuromuscular transmission. Intestinal motility disturbances are often associated with a reduced number of ICC and/or ultrastructural damage, sometimes associated with immune cells. Macrophages and mast cells in the intestinal muscularis externa of rodents can be found in close spatial contact with ICC. Macrophages are a constant and regularly distributed cell population in the serosa and at the level of Auerbach's plexus (AP). In human colon, ICC are in close contact with macrophages at the level of AP, suggesting functional interaction. It has therefore been proposed that ICC and macrophages interact. Macrophages and mast cells are considered to play important roles in the innate immune defence by producing pro-inflammatory mediators during classical activation, which may in itself result in damage to the tissue. They also take part in alternative activation which is associated with anti-inflammatory mediators, tissue remodelling and homeostasis, cancer, helminth infections and immunophenotype switch. ICC become damaged under various circumstances - surgical resection, possibly post-operative ileus in rodents - where innate activation takes place, and in helminth infections - where alternative activation takes place. During alternative activation the muscularis macrophage can switch phenotype resulting in up-regulation of F4/80 and the mannose receptor. In more chronic conditions such as Crohn's disease and achalasia, ICC and mast cells develop close spatial contacts and piecemeal degranulation is possibly triggered.
Collapse
Affiliation(s)
- Hanne B Mikkelsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
17
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
18
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|