1
|
Fu Y, Batushansky A, Kinter M, Huebner JL, Kraus VB, Griffin TM. Effects of Leptin and Body Weight on Inflammation and Knee Osteoarthritis Phenotypes in Female Rats. JBMR Plus 2023; 7:e10754. [PMID: 37457883 PMCID: PMC10339097 DOI: 10.1002/jbm4.10754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 07/18/2023] Open
Abstract
Leptin is a proinflammatory adipokine that contributes to obesity-associated osteoarthritis (OA), especially in women. However, the extent to which leptin causes knee OA separate from the effect of increased body weight is not clear. We hypothesized that leptin is necessary to induce knee OA in obese female rats but not sufficient to induce knee OA in lean rats lacking systemic metabolic inflammation. The effect of obesity without leptin signaling was modeled by comparing female lean Zucker rats to pair fed obese Zucker rats, which possess mutant fa alleles of the leptin receptor gene. The effect of leptin without obesity was modeled in female F344BN F1 hybrid rats by systemically administering recombinant rat leptin versus saline for 23 weeks via osmotic pumps. Primary OA outcomes included cartilage histopathology and subchondral bone micro-computed tomography. Secondary outcomes included targeted cartilage proteomics, serum inflammation, and synovial fluid inflammation following an acute intra-articular challenge with interleukin-1β (IL-1β). Compared to lean Zucker rats, obese Zucker rats developed more severe tibial osteophytes and focal cartilage lesions in the medial tibial plateau, with modest changes in proximal tibial epiphysis trabecular bone structure. In contrast, exogenous leptin treatment, which increased plasma leptin sixfold without altering body weight, caused mild generalized cartilage fibrillation and reduced Safranin O staining compared to vehicle-treated animals. Leptin also significantly increased subchondral and trabecular bone volume and bone mineral density in the proximal tibia. Cartilage metabolic and antioxidant enzyme protein levels were substantially elevated with leptin deficiency and minimally suppressed with leptin treatment. In contrast, leptin treatment induced greater changes in systemic and local inflammatory mediators compared to leptin receptor deficiency, including reduced serum IL-6 and increased synovial fluid IL-1β. In conclusion, rat models that separately elevate leptin or body weight develop distinct OA-associated phenotypes, revealing how obesity increases OA pathology through both leptin-dependent and independent pathways. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yao Fu
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Albert Batushansky
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael Kinter
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma Center for GeroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Janet L. Huebner
- Duke Molecular Physiology InstituteDuke University, School of Medicine, Duke UniversityDurhamNorth CarolinaUSA
| | - Virginia B. Kraus
- Duke Molecular Physiology InstituteDuke University, School of Medicine, Duke UniversityDurhamNorth CarolinaUSA
- Division of Rheumatology, Department of MedicineDuke University, School of Medicine, Duke UniversityDurhamNorth CarolinaUSA
| | - Timothy M. Griffin
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma Center for GeroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Veterans Affairs Medical CenterOklahoma CityOklahomaUSA
| |
Collapse
|
2
|
Jin LY, Yin HL, Xu YQ, Xu S, Song XX, Luo Y, Li XF. Long-term whole-body vibration induces degeneration of intervertebral disc and facet joint in a bipedal mouse model. Front Bioeng Biotechnol 2023; 11:1069568. [PMID: 37008038 PMCID: PMC10063969 DOI: 10.3389/fbioe.2023.1069568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Whole body vibration (WBV) has been used to treat various musculoskeletal diseases in recent years. However, there is limited knowledge about its effects on the lumbar segments in upright posture mice. This study was performed to investigate the effects of axial Whole body vibration on the intervertebral disc (IVD) and facet joint (FJ) in a novel bipedal mouse model.Methods: Six-week-old male mice were divided into control, bipedal, and bipedal + vibration groups. Taking advantage of the hydrophobia of mice, mice in the bipedal and bipedal + vibration groups were placed in a limited water container and were thus built standing posture for a long time. The standing posture was conducted twice a day for a total of 6 hours per day, 7 days per week. Whole body vibration was conducted during the first stage of bipedal building for 30 min per day (45 Hz with peak acceleration at 0.3 g). The mice of the control group were placed in a water-free container. At the 10th-week after experimentation, intervertebral disc and facet joint were examined by micro-computed tomography (micro-CT), histologic staining, and immunohistochemistry (IHC), and gene expression was quantified using real-time polymerase chain reaction. Further, a finite element (FE) model was built based on the micro-CT, and dynamic Whole body vibration was loaded on the spine model at 10, 20, and 45 Hz.Results: Following 10 weeks of model building, intervertebral disc showed histological markers of degeneration, such as disorders of annulus fibrosus and increased cell death. Catabolism genes’ expression, such as Mmp13, and Adamts 4/5, were enhanced in the bipedal groups, and Whole body vibration promoted these catabolism genes’ expression. Examination of the facet joint after 10 weeks of bipedal with/without Whole body vibration loading revealed rough surface and hypertrophic changes at the facet joint cartilage resembling osteoarthritis. Moreover, immunohistochemistry results demonstrated that the protein level of hypertrophic markers (Mmp13 and Collagen X) were increased by long-durationstanding posture, and Whole body vibration also accelerated the degenerative changes of facet joint induced by bipedal postures. No changes in the anabolism of intervertebral disc and facet joint were observed in the present study. Furthermore, finite element analysis revealed that a larger frequency of Whole body vibration loading conditions induced higher Von Mises stresses on intervertebral disc, contact force, and displacement on facet joint.Conclusion: The present study revealed significant damage effects of Whole body vibration on intervertebral disc and facet joint in a bipedal mouse model. These findings suggested the need for further studies of the effects of Whole body vibration on lumbar segments of humans.
Collapse
|
3
|
Jin LY, Guo C, Xu S, Liu HY, Li XF. The Role of Estrogen Receptor α in Response to Longitudinal Bone Growth in ob/ob Mice. Front Endocrinol (Lausanne) 2021; 12:749449. [PMID: 34925230 PMCID: PMC8671758 DOI: 10.3389/fendo.2021.749449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
The absence of leptin results in contrasting growth pattern of appendicular and axial bone growth in ob/ob mice. Endochondral bone formation is an important procedure of growth plate determining the bone growth, where this procedure is also regulated by estrogen and its receptor (ER) signaling pathway. The present study is undertaken to explore the roles of ERs in regulating the different growth patterns in ob/ob mice. In this study, C57BL/6 female mice were used as wild-type (WT) mice; ob/ob mice and WT mice were age-matched fed, and bone length is analyzed by X-ray plain film at the 12 weeks old. We confirm that ob/ob mice have shorter femoral length and longer spine length than WT mice (p < 0.05). The contrasting expression patterns of chondrocyte proliferation proteins and hypertrophic marker proteins are also observed from the femur and spinal growth plate of ob/ob mice compared with WT mice (p < 0.01). Spearman's analysis showed that body length (axial and appendicular length) is positively related to the expression level of ERα in growth plate. Three-week-old female ob/ob mice are randomized divided into three groups: 1) ob/ob + ctrl, 2) ob/ob + ERα antagonist (MPP), and 3) ob/ob + ERβ antagonist (PHTPP). Age-matched C57BL/6 mice were also divided into three groups, same as the groups of ob/ob mice. MPP and PHTPP were administered by intraperitoneal injection for 6 weeks. However, the results of X-ray and H&E staining demonstrate that leptin deficiency seems to disturb the regulating effects of ER antagonists on longitudinal bone growth. These findings suggested that region-specific expression of ERα might be associated with contrasting phenotypes of axial and appendicular bone growth in ob/ob mice. However, ER signaling on longitudinal bone growth was blunted by leptin deficiency in ob/ob mice, and the underlying association between ERs and leptin needs to be explored in future work.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Chen Guo
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Shuai Xu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
4
|
Intervertebral Disc and Adipokine Leptin-Loves Me, Loves Me Not. Int J Mol Sci 2020; 22:ijms22010375. [PMID: 33396484 PMCID: PMC7795371 DOI: 10.3390/ijms22010375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
Leptin—the most famous adipose tissue-secreted hormone—in the human body is mostly observed in a negative connotation, as the hormone level increases with the accumulation of body fat. Nowadays, fatness is becoming another normal body shape. Fatness is burdened with numerous illnesses—including low back pain and degenerative disease of lumbar intervertebral disc (IVD). IVD degeneration and IVD inflammation are two indiscerptible phenomena. Irrespective of the underlying pathophysiological background (trauma, obesity, nutrient deficiency), the inflammation is crucial in triggering IVD degeneration. Leptin is usually depicted as a proinflammatory adipokine. Many studies aimed at explaining the role of leptin in IVD degeneration, though mostly in in vitro and on animal models, confirmed leptin’s “bad reputation”. However, several studies found that leptin might have protective role in IVD metabolism. This review examines the current literature on the metabolic role of different depots of adipose tissue, with focus on leptin, in pathogenesis of IVD degeneration.
Collapse
|
5
|
Song XX, Jin LY, Li XF, Luo Y, Yu BW. Substance P Mediates Estrogen Modulation Proinflammatory Cytokines Release in Intervertebral Disc. Inflammation 2020; 44:506-517. [PMID: 32965648 DOI: 10.1007/s10753-020-01347-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Intervertebral disc degeneration (IDD) is a main contributor to low back pain. A close relationship exists between inflammation and pain. Estrogen can affect inflammation and may play a crucial role in IDD and pain. Substance P (SP) can also regulate the expression of pro-inflammatory cytokines in intervertebral disc (IVD). This study aimed to investigate the potential role of SP in estrogen regulation of IDD. Nine-week-old C57BL/6 female mice were divided into four groups as follows: sham surgery (sham), ovariectomy (OVX), ovariectomy plus estrogen replacement therapy (ERT) group (OVX+E2), and ovariectomy, ERT plus neurokinin 1 receptor (NK1R) agonist (OVX+E2+G). Serum E2, body, and uterus weight were recorded. Immunohistochemistry study and quantitative real-time PCR were used for SP, NK1R, IL-1β, IL-6, and TNF-α examination and comparison in IVD at protein and gene levels. After OVX, the gene and protein expression of TNF-α, IL-1β, IL-6, SP, and NK1R in NP cells significantly increased compared with the sham group. ERT can reverse these impacts. ERT plays anti-inflammatory and anti-hyperalgesic roles in IDD of OVX mice. The estrogen-induced changes of the pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, are significantly inhibited by NK1R agonists. SP may be a mediator of estrogen regulating pro-inflammatory factors in IDD. Estrogen may affect IVD inflammation through two ways: one is to directly affect the level of pro-inflammatory cytokines and the other is by means of modulation of SP.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Lu, Shanghai, 200025, China
| | - Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Xin-Feng Li
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630, Dongfang Rd, Shanghai, 200127, People's Republic of China.
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Lu, Shanghai, 200025, China
| | - Bu-Wei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Lu, Shanghai, 200025, China.
| |
Collapse
|
6
|
Yu B, Jiang K, Chen B, Wang H, Li X, Liu Z. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates. BMC Musculoskelet Disord 2017; 18:235. [PMID: 28569158 PMCID: PMC5452289 DOI: 10.1186/s12891-017-1601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). METHODS We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. RESULTS Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). CONCLUSION Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.
Collapse
Affiliation(s)
- Bo Yu
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Kaibiao Jiang
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Bin Chen
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Hantao Wang
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Xinfeng Li
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Zude Liu
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
7
|
Martineau C, Martin-Falstrault L, Brissette L, Moreau R. Gender- and region-specific alterations in bone metabolism in Scarb1-null female mice. J Endocrinol 2014; 222:277-88. [PMID: 24928939 DOI: 10.1530/joe-14-0147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A positive correlation between plasma levels of HDL and bone mass has been reported by epidemiological studies. As scavenger receptor class B, type I (SR-BI), the gene product of Scarb1, is known to regulate HDL metabolism, we recently characterized bone metabolism in Scarb1-null mice. These mice display high femoral bone mass associated with enhanced bone formation. As gender differences have been reported in HDL metabolism and SR-BI function, we investigated gender-specific bone alterations in Scarb1-null mice by microtomography and histology. We found 16% greater relative bone volume and 39% higher bone formation rate in the vertebrae from 2-month-old Scarb1-null females. No such alteration was seen in males, indicating gender- and region-specific differences in skeletal phenotype. Total and HDL-associated cholesterol levels, as well as ACTH plasma levels, were increased in both Scarb1-null genders, the latter being concurrent to impaired corticosterone response to fasting. Plasma levels of estradiol did not differ between null and WT females, suggesting that the estrogen metabolism alteration is not relevant to the higher vertebral bone mass in female Scarb1-null mice. Constitutively, high plasma levels of leptin along with 2.5-fold increase in its expression in white adipose tissue were measured in female Scarb1-null mice only. In vitro exposure of bone marrow stromal cells to ACTH and leptin promoted osteoblast differentiation as evidenced by increased gene expression of osterix and collagen type I alpha. Our results suggest that hyperleptinemia may account for the gender-specific high bone mass seen in the vertebrae of female Scarb1-null mice.
Collapse
Affiliation(s)
- Corine Martineau
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| | - Louise Martin-Falstrault
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| | - Louise Brissette
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| | - Robert Moreau
- Laboratoire du Métabolisme OsseuxBioMed, Département des Sciences Biologiques Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Quebec, Canada H3C 3P8Laboratoire du Métabolisme des LipoprotéinesBioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada H3C 3P8
| |
Collapse
|
8
|
Song XX, Yu YJ, Li XF, Liu ZD, Yu BW, Guo Z. Estrogen receptor expression in lumbar intervertebral disc of the elderly: Gender- and degeneration degree-related variations. Joint Bone Spine 2014; 81:250-3. [DOI: 10.1016/j.jbspin.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/04/2013] [Indexed: 10/25/2022]
|
9
|
Li XF, Wang SJ, Jiang LS, Dai LY. Stage specific effect of leptin on the expressions of estrogen receptor and extracellular matrix in a model of chondrocyte differentiation. Cytokine 2013; 61:876-84. [PMID: 23357303 DOI: 10.1016/j.cyto.2012.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/20/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
Abstract
Endochondral ossification is a dynamic process. The interaction between leptin and estrogen in this process is complicated. Whether there is a stage specific crosstalk between leptin and estrogen in the differentiation process of the chondrocytes in the growth plate remains unknown. The aim of our study was to investigate the effect of leptin on the expression of estrogen receptors and extracellular matrix in ATDC5 cells, an in vitro model of endochondral ossification. First, we quantified the physiological expressions of estrogen receptors α, β (ERα, ERβ), leptin receptor (Ob-Rb), type II and type X collagens in definite stages of endochondral ossification in ATDC5 cells using real-time PCR. Dynamic and stage specific expression characteristics of these target genes were observed. Simultaneous expressions of Ob-Rb with ERα or ERβ in ATDC5 cells were also found with dual-label confocal immunofluorescency. Then using Western blotting analysis and/or real-time PCR, we detected that, leptin treatment up-regulated the expressions of ERα, ERβ and type II collagen, but down-regulated type X collagen expression and the ERα/ERβ ratio in the chondrogenic differentiation stage. Meanwhile, leptin down-regulated the expressions of ERα, type II and type X collagens, and the ERα/ERβ ratio, but up-regulated the expression of ERβ in the hypertrophic differentiation stage. Significant positive correlation existed between ERα and type II collagen expression, and between the ratio of ERα/ERβ and type X collagen production. In summary, the crosstalk between leptin and estrogen receptor might be differentiation stage specific in ATDC5 cells.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | | | | | | |
Collapse
|
10
|
Decker R, Albertsson-Wikland K, Kriström B, Halldin M, Dahlgren J. Decreased GH dose after the catch-up growth period maintains metabolic outcome in short prepubertal children with and without classic GH deficiency. Clin Endocrinol (Oxf) 2012; 77:407-15. [PMID: 22417085 DOI: 10.1111/j.1365-2265.2012.04386.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Few studies have evaluated metabolic outcomes following growth hormone (GH) treatment in short prepubertal children during different periods of growth. Previously, we found that individualized GH dosing in the catch-up period reduced the variation in fasting insulin levels by 34% compared with those receiving a standard GH dose. We hypothesized that the GH dose required to maintain beneficial metabolic effects is lower during the prepubertal growth phase after an earlier catch-up growth period. DESIGN Short prepubertal children with isolated GH deficiency or idiopathic short stature were randomized to individualized GH treatment (range, 17-100 μg/kg/day) or a standard dose in a preceding 2-year study. After achieving near mid-parental height(SDS) , children receiving an individualized dose were randomized to either a 50% reduced individualized dose (RID, n = 28) or an unchanged individualized dose (UID, n = 37) for 2 years. The dose remained unchanged in 33 children initially randomized to receive a standard dose (FIX, 43 μg/kg/day).We evaluated whether the variations in metabolic parameters measured during maintenance growth diminished in RID compared with UID or FIX. RESULTS We observed less variation in fasting insulin levels (-50%), insulin sensitivity as assessed by homoeostasis model assessment (-55·1%), lean soft tissue (-27·8%) and bone mineral content (-31·3%) in RID compared with UID (all P < 0·05), but no differences compared with FIX. CONCLUSIONS Continued reduced individualized GH treatment after the catch-up growth period is safe and reduces hyperinsulinism. Individualized GH dose can be reduced once the desired height(SDS) is achieved to avoid overtreatment in terms of metabolic outcome.
Collapse
Affiliation(s)
- Ralph Decker
- Gothenburg Pediatric Growth Research Center (GP-GRC), Institute of Clinical Sciences, Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
12
|
Li XF, Wang SJ, Jiang LS, Dai LY. Gender- and region-specific variations of estrogen receptor α and β expression in the growth plate of spine and limb during development and adulthood. Histochem Cell Biol 2011; 137:79-95. [PMID: 22057437 DOI: 10.1007/s00418-011-0877-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 11/25/2022]
Abstract
Although estrogen action is indispensable for normal bone growth in both genders, the roles of estrogen receptors (ERs) in mediating bone growth are not fully understood. The effects of ER inactivation on bone growth are sex and age dependent, and may differ between the axial and appendicular regions. In this study, the spatial and temporal expression of ERα and β in the tibial and spinal growth plates of the female and male rats during postnatal development was examined to explore the possible mechanisms. The level of mRNA was examined and compared with quantitative real-time PCR. The spatial location was determined by immunohistochemical analysis. The 1-, 4-, 7-, 12- and 16-week age stages correspond to early life, puberty and early adulthood after puberty, respectively. Gender- and region-specific differences in ERα and β expression were shown in the growth plates. Mainly nuclear staining of ERα and β immunoreactivity was demonstrated in the spinal and tibial growth plate chondrocytes for both genders. Moreover, our study indicated significant effect of gender on temporal ERα and β expression and of region on temporal ERα/ERβ expression ratio. However, spatial differences of region-related ERα and β expression were not observed. Gender-related spatial changes were detected only at 16 weeks of both spine and limb growth plates. ERα and β immunoreactivity was detected in the resting, proliferative and prehypertrophic chondrocytes in the early life stage and during puberty. After puberty, ERα expression was mainly located in the late proliferative and hypertrophic chondrocytes in female, whereas the expression still extended from the resting to hypertrophic chondrocytes in males. Gender- and region-specific expression patterns of ERα and β gene might be one possible reason for differences in sex- and region-related body growth phenotypes. Gender, age and region differences should be taken into consideration when the roles of ERs in the growth plate are investigated.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, 200092 Shanghai, China
| | | | | | | |
Collapse
|