1
|
Ning H, Liang C, Mei H, Yuan D, Wei X, Huang X, Tan D, Tan J. A Novel Homozygous Synonymous Variant in CCDC134 as a Cause of Osteogenesis Imperfecta Type XXII. Clin Genet 2025; 107:446-452. [PMID: 39623602 DOI: 10.1111/cge.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 03/04/2025]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous group of rare, inherited connective tissue disorders. It includes over 20 defined subtypes, each of which is associated with distinct causative genes that are listed in the Online Mendelian Inheritance in Man (OMIM) database. Type XXII OI (OI 22) is caused by a homozygous variant in the coiled-coil domain containing 134 (CCDC134) gene, which is located on chromosome 22q13. OI, which is associated with CCDC134, is extremely rare with only five cases reported worldwide. All known cases involve the c.2 T > C (p. Met1Thr) homozygous missense variant in the CCDC134 gene. We present the case of a 13-year-old Chinese girl with non-union fracture, short stature and specific radiographic findings, which include scoliosis, pelvic tilt, thin clavicles, ribs, and limbs. Whole exome sequencing revealed a novel, homozygous c.492G > C (p. Leu164=) variation in the CCDC134 gene. RNA sequencing (RNA-seq) analysis identified this variant as an abnormal splicing variant that causes the deletion of Exon 5, which result in the observed disease phenotype. This case demonstrates the clinical phenotype of OI 22 associated with the c.492G > C (p. Leu164=) novel synonymous variation in the coding region of the CCDC134 gene in a female patient. This is the first reported case of OI 22 in the Chinese population, the sixth reported worldwide and the fourth reported genotype for diseases associated with a CCDC134 variant. It also enriches the global clinical phenotype spectrum of OI 22 patients.
Collapse
Affiliation(s)
- Haiping Ning
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dejian Yuan
- Department of Medical Genetics, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Xiaobao Wei
- Department of Medical Genetics, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Xiao Huang
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Dongdong Tan
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Jianqiang Tan
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| |
Collapse
|
2
|
Bernaleau L, Drobek M, Blank F, Walch P, Delacrétaz M, Drobek A, Monguió-Tortajada M, Broz P, Majer O, Rebsamen M. CCDC134 controls TLR biogenesis through the ER chaperone Gp96. J Exp Med 2025; 222:e20240825. [PMID: 39656203 PMCID: PMC11629888 DOI: 10.1084/jem.20240825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Toll-like receptors (TLRs) are central to initiate immune responses against invading pathogens. To ensure host defense while avoiding aberrant activation leading to pathogenic inflammation and autoimmune diseases, TLRs are tightly controlled by multilevel regulatory mechanisms. Through a loss-of-function genetic screen in a reporter cell line engineered to undergo cell death upon TLR7-induced IRF5 activation, we identified here CCDC134 as an essential factor for TLR responses. CCDC134 deficiency impaired endolysosomal TLR-induced NF-κB, MAPK, and IRF5 activation, as well as downstream production of proinflammatory cytokines and type I interferons. We further demonstrated that CCDC134 is an endoplasmic reticulum (ER)-resident interactor of Gp96 (HSP90B1/Grp94), an ER chaperone essential for folding and trafficking of plasma membrane and endolysosomal TLRs. CCDC134 controlled Gp96 stability as its loss led to Gp96 hyperglycosylation and ER-associated protein degradation (ERAD)-mediated clearance. Accordingly, CCDC134 deficiency impaired the folding, maturation, and trafficking of TLRs, resulting in blunted inflammatory responses upon stimulation. Altogether, this study reveals CCDC134 as a central regulator of the chaperone Gp96, thereby controlling TLR biogenesis and responses.
Collapse
Affiliation(s)
- Léa Bernaleau
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Michaela Drobek
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Fenja Blank
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Philipp Walch
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Ales Drobek
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
3
|
Ma M, Dubey R, Jen A, Pusapati GV, Singal B, Shishkova E, Overmyer KA, Cormier-Daire V, Fedry J, Aravind L, Coon JJ, Rohatgi R. Regulated N-glycosylation controls chaperone function and receptor trafficking. Science 2024; 386:667-672. [PMID: 39509507 PMCID: PMC7617332 DOI: 10.1126/science.adp7201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
One-fifth of human proteins are N-glycosylated in the endoplasmic reticulum (ER) by two oligosaccharyltransferases, OST-A and OST-B. Contrary to the prevailing view of N-glycosylation as a housekeeping function, we identified an ER pathway that modulates the activity of OST-A. Genetic analyses linked OST-A to HSP90B1, an ER chaperone for membrane receptors, and CCDC134, an ER luminal protein. During its translocation into the ER, an N-terminal peptide in HSP90B1 templates the assembly of a translocon complex containing CCDC134 and OST-A that protects HSP90B1 during folding, preventing its hyperglycosylation and degradation. Disruption of this pathway impairs WNT and IGF1R signaling and causes the bone developmental disorder osteogenesis imperfecta. Thus, N-glycosylation can be regulated by specificity factors in the ER to control cell surface receptor signaling and tissue development.
Collapse
Affiliation(s)
- Mengxiao Ma
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramin Dubey
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI53506, USA
| | - Ganesh V. Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bharti Singal
- Stanford SLAC CryoEM Initiative, Stanford, CA 94305, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI53515, USA
| | - Katherine A. Overmyer
- Morgridge Institute for Research, Madison, WI53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI53506, USA
| | - Valérie Cormier-Daire
- Université de Paris Cité, Génétique clinique, INSERM UMR 1163, Institut Imagine, Hôpital Necker-Enfants Malades (AP-HP), Paris, France
| | - Juliette Fedry
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD20894, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI53506, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Liu GY, Chen XY, Liu XL, Zhou RY, Zhao XY, Xu LJ, Ning ZH, Wang DH. Further screening of SNP loci of eggshell translucency related genes and evaluation of genetic effects. Poult Sci 2024; 103:103963. [PMID: 39013295 PMCID: PMC11519685 DOI: 10.1016/j.psj.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Eggshell translucency is a widespread issue in the field of egg quality. Previous research has established that the heritability of eggshell translucency is relatively low or moderate. Scientists have also successfully identified SNP loci related to eggshell translucency on different chromosomes by using gene chips and single-variant GWAS. However, the specific impact of single or multiple genes on the trait of eggshell translucency remains unknown. In an effort to investigate this, we examined 170 SNPs associated with eggshell translucency obtained by our research group. We selected 966 half-sibling laying hens from 2 generations in 3 pure lines: Dwarf Layer-White, Rhode Island Red-White Strain, and Rhode Island Red. Eggs were collected from each hen over a period of 5 consecutive days, and eggshell translucency was measured using a grading method in which the hens were divided into 2 groups: an opaque group and a translucent group. We collected blood samples from the laying hens and extracted DNA. Time of flight mass spectrometry (TOF-MS) was used for genotyping to identify SNP loci that influence the trait of eggshell translucency. The results of our analysis revealed that using TOF-MS in 3 chicken strains, we were able to eliminate loci with low gene polymorphism, genetic effect contribution less than 1%, and deviation from Hardy-Weinberg equilibrium. Ultimately, 5 SNPs (Affx-50362599, rs15050262, rs312943734, rs316121113, and rs317389181) were identified on chromosomes 1, 5, and 19. Additionally, nine candidate genes (DCN, BTG1, ZFP92, POU2F1, NUCB2, FTL, GGNBP2, ACACA, and TADA2A) were found to be associated with these SNPs. No linkage disequilibrium relationship was observed between the 2 pairs of SNP loci on chromosomes 1 and 19. Based on previous studies on the formation mechanism of eggshell translucency, we hypothesize that NUCB2, FTL, and ACACA genes may be affecting the eggshell structure through different mechanisms, such as increase the water permeability or make thin of eggshell membrane, which promote moisture or part of other egg contents and ultimately lead to the formation of eggshell translucency. These findings validate and identify five SNP loci that regulate the translucency trait, and provide molecular markers for breeding non-translucent populations. Furthermore, this study serves as a reference for further investigation of the genetic regulatory mechanisms underlying eggshell translucency.
Collapse
Affiliation(s)
- Geng-Yun Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xiang-Yu Chen
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Baoding livestock husbandry workstation, Baoding, Hebei 071001, China
| | - Xue-Lu Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Rong-Yan Zhou
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xiao-Yu Zhao
- Baoding Xingrui Agriculture and Animal Husbandry Technology Co., Ltd., Baoding, 072550, China
| | - Li-Jun Xu
- Baoding livestock husbandry workstation, Baoding, Hebei 071001, China
| | - Zhong-Hua Ning
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - De-He Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
5
|
Zhang T, Shi Q, Gu H, Yu B, Yin S, Ge Q, Mo X, Liu X, Huang J. CCDC134 facilitates T cell activation through the regulation of early T cell receptor signaling. Front Immunol 2023; 14:1133111. [PMID: 37234153 PMCID: PMC10206301 DOI: 10.3389/fimmu.2023.1133111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Modulation of surface T cell antigen receptor (TCR) expression is crucial for proper T cell development and maintenance of mature T cell function at steady state and upon stimulation. We previously determined that CCDC134 (coiled-coil domain containing 134), a cytokine-like molecule that served as a potential member of the γc cytokine family, contributes to antitumor responses by augmenting CD8+ T cell-mediated immunity. Here we show that T cell-specific deletion of Ccdc134 decreased peripheral mature CD4+ and CD8+ T cells, which resulted in impaired T cell homeostasis. Moreover, Ccdc134-deficient T cells exhibited an attenuated response to TCR stimulation in vitro, showing lower activation and proliferative capacity. This was further reflected in vivo, rendering mice refractory to T cell-mediated inflammatory and antitumor responses. More importantly, CCDC134 is associated with TCR signaling components, including CD3ϵ, and attenuated TCR signaling in Ccdc134-deficient T cells via altered CD3ϵ ubiquitination and degradation. Taken together, these findings suggest a role for CCDC134 as a positive regulator of TCR-proximal signaling and provide insight into the cell-intrinsic functional consequences of Ccdc134 deficiency in the attenuation of T cell-mediated inflammatory and antitumor responses.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Huining Gu
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Biaoyi Yu
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Shaanxi Institute for Pediatric Diseases, Xi’an Key Laboratory of Children’s Health and Diseases, Xi’an Children’s Hospital, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
6
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
7
|
Huang Z, Yang L, Chen J, Li S, Huang J, Chen Y, Liu J, Wang H, Yu H. CCDC134 as a Prognostic-Related Biomarker in Breast Cancer Correlating With Immune Infiltrates. Front Oncol 2022; 12:858487. [PMID: 35311121 PMCID: PMC8927640 DOI: 10.3389/fonc.2022.858487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background The expression of Coiled-Coil Domain Containing 134(CCDC134) is up-regulated in different pan-cancer species. However, its prognostic value and correlation with immune infiltration in breast cancer are unclear. Therefore, we evaluated the prognostic role of CCDC134 in breast cancer and its correlation with immune invasion. Methods We downloaded the transcription profile of CCDC134 between breast cancer and normal tissues from the Cancer Genome Atlas (TCGA). CCDC134 protein expression was assessed by the Clinical Proteomic Cancer Analysis Consortium (CPTAC) and the Human Protein Atlas. Gene set enrichment analysis (GSEA) was also used for pathway analysis. Receiver operating characteristic (ROC) curve was used to differentiate breast cancer from adjacent normal tissues. Kaplan-Meier method was used to evaluate the effect of CCDC134 on survival rate. The protein-protein interaction (PPI) network is built from STRING. Function expansion analysis is performed using the ClusterProfiler package. Through tumor Immune Estimation Resource (TIMER) and tumor Immune System Interaction database (TISIDB) to determine the relationship between CCDC134 expression level and immune infiltration. CTD database is used to predict drugs that inhibit CCDC134 and PubChem database is used to determine the molecular structure of identified drugs. Results The expression of CCDC134 in breast cancer tissues was significantly higher than that of CCDC134 mRNA expression in adjacent normal tissues. ROC curve analysis showed that the AUC value of CCDC134 was 0.663. Kaplan-meier survival analysis showed that patients with high CCDC134 had a lower prognosis (57.27 months vs 36.96 months, P = 2.0E-6). Correlation analysis showed that CCDC134 mRNA expression was associated with tumor purity immune invasion. In addition, CTD database analysis identified abrine, Benzo (A) Pyrene, bisphenol A, Soman, Sunitinib, Tetrachloroethylene, Valproic Acid as seven targeted therapy drugs that may be effective treatments for seven targeted therapeutics. It may be an effective treatment for inhibiting CCDC134. Conclusion In breast cancer, upregulated CCDC134 is significantly associated with lower survival and immune infiltrates invasion. Our study suggests that CCDC134 can serve as a biomarker of poor prognosis and a potential immunotherapy target in breast cancer. Seven drugs with significant potential to inhibit CCDC134 were identified.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China.,The Graduate School of Fujian Medical University, Fuzhou, China
| | - Linhui Yang
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jian Chen
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jing Huang
- Department of Pharmacy, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yijie Chen
- Department of Ultrasound, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jingbo Liu
- Pathology Department, Daqing Longnan Hospital, The Fifth Affiliated Hospital of Qiqihar Medical College, Daqing, China
| | - Hongyan Wang
- Department of Pathology, Daqing Oilfield General Hospital, Daqing, China
| | - Hui Yu
- Department of Pharmacy, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
8
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Lee JY, Kim H, Jo A, Khang R, Park CH, Park SJ, Kwag E, Shin JH. α-Synuclein A53T Binds to Transcriptional Adapter 2-Alpha and Blocks Histone H3 Acetylation. Int J Mol Sci 2021; 22:ijms22105392. [PMID: 34065515 PMCID: PMC8161267 DOI: 10.3390/ijms22105392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
α-Synuclein (α-syn) is a hallmark amyloidogenic protein component of Lewy bodies in dopaminergic neurons affected by Parkinson’s disease (PD). Despite the multi-faceted gene regulation of α-syn in the nucleus, the mechanism underlying α-syn crosstalk in chromatin remodeling in PD pathogenesis remains elusive. Here, we identified transcriptional adapter 2-alpha (TADA2a) as a novel binding partner of α-syn using the BioID system. TADA2a is a component of the p300/CBP-associated factor and is related to histone H3/H4 acetylation. We found that α-syn A53T was more preferentially localized in the nucleus than the α-syn wild-type (WT), leading to a stronger disturbance of TADA2a. Indeed, α-syn A53T significantly reduced the level of histone H3 acetylation in SH-SY5Y cells; its reduction was also evident in the striatum (STR) and substantia nigra (SN) of mice that were stereotaxically injected with α-syn preformed fibrils (PFFs). Interestingly, α-syn PFF injection resulted in a decrease in TADA2a in the STR and SN of α-syn PFF-injected mice. Furthermore, the levels of TADA2a and acetylated histone H3 were significantly decreased in the SN of patients with PD. Therefore, histone modification through α-syn A53T-TADA2a interaction may be associated with α-syn-mediated neurotoxicity in PD pathology.
Collapse
Affiliation(s)
- Ji-Yeong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (J.-Y.L.); (H.K.); (A.J.); (R.K.); (S.-J.P.); (E.K.)
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hanna Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (J.-Y.L.); (H.K.); (A.J.); (R.K.); (S.-J.P.); (E.K.)
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Areum Jo
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (J.-Y.L.); (H.K.); (A.J.); (R.K.); (S.-J.P.); (E.K.)
| | - Rin Khang
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (J.-Y.L.); (H.K.); (A.J.); (R.K.); (S.-J.P.); (E.K.)
| | | | - Soo-Jeong Park
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (J.-Y.L.); (H.K.); (A.J.); (R.K.); (S.-J.P.); (E.K.)
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Eunsang Kwag
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (J.-Y.L.); (H.K.); (A.J.); (R.K.); (S.-J.P.); (E.K.)
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (J.-Y.L.); (H.K.); (A.J.); (R.K.); (S.-J.P.); (E.K.)
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-031-299-6192; Fax: +82-031-299-6209
| |
Collapse
|
10
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
11
|
Soghli N, Qujeq D, Yousefi T, Soghli N. The regulatory functions of circular RNAs in osteosarcoma. Genomics 2020; 112:2845-2856. [DOI: 10.1016/j.ygeno.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
12
|
Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, Huang K, Wang G, Wang J, Ma J, Shen S, Fan S. Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer 2019; 18:73. [PMID: 30940151 PMCID: PMC6444890 DOI: 10.1186/s12943-019-1007-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND As a subclass of noncoding RNAs, circular RNAs (circRNAs) have been demonstrated to play a critical role in regulating gene expression in eukaryotes. Recent studies have revealed the pivotal functions of circRNAs in cancer progression. However, little is known about the role of circTADA2A, also named hsa_circ_0043278, in osteosarcoma (OS). METHODS CircTADA2A was selected from a previously reported circRNA microarray comparing OS cell lines and normal bone cells. QRT-PCR was used to detect the expression of circTADA2A in OS tissue and cell lines. Luciferase reporter, RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization (FISH) assays were performed to confirm the binding of circTADA2A with miR-203a-3p. OS cells were stably transfected with lentiviruses, and Transwell migration, Matrigel invasion, colony formation, proliferation, apoptosis, Western blotting, and in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circTADA2A, miR-203a-3p and CREB3. RESULTS Our findings demonstrated that circTADA2A was highly expressed in both OS tissue and cell lines, and circTADA2A inhibition attenuated the migration, invasion and proliferation of OS cells in vitro as well as tumorigenesis and metastasis in vivo. A mechanistic study revealed that circTADA2A could readily sponge miR-203a-3p to upregulate the expression of CREB3, which was identified as a driver gene in OS. Furthermore, miR-203a-3p inhibition or CREB3 overexpression could reverse the circTADA2A silencing-induced impairment of malignant tumor behavior. CONCLUSIONS CircTADA2A functions as a tumor promoter in OS to increase malignant tumor behavior through the miR-203a-3p/CREB3 axis, which could be a novel target for OS therapy.
Collapse
Affiliation(s)
- Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Gangliang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
13
|
Xia P, Gong X, Xiao L, Wang Y, Zhang T, Liao Q, Mo X, Qiu X, Huang J. CCDC134 ameliorated experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Brain Behav Immun 2018; 71:158-168. [PMID: 29548993 DOI: 10.1016/j.bbi.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 01/12/2023] Open
Abstract
CCDC134 (coiled-coil domain containing 134), a cytokine-like molecule, was previously reported to exert antitumor effects by augmenting CD8+ T-cell mediated immunity. However, the dynamic changes in CCDC134 expression patterns in the spinal cord that may be involved in the progression of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, remains unclear. In this study, we found that CCDC134 expression was markedly increased in the spinal cord during the progression of EAE. Furthermore, we demonstrated that CCDC134 significantly reduced the severity and slowed the progression of EAE, which correlated with reduced spinal cord inflammation and demyelination. The underlying mechanism of CCDC134-induced effects involved inhibition of T helper (Th)-1 and Th17 cell differentiation and secretion of its key effector molecules IFN-γ and IL-17A via regulation of JAK/STAT signaling. These findings indicate that CCDC134 exerts potent anti-inflammatory effects through the selective modulation of pathogenic Th1 and Th17 cells by targeting critical signaling pathways. The study provides insights into the role of CCDC134 as a unique therapeutic agent for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Xiaoting Gong
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Lin Xiao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Tianzhuo Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Qinyuan Liao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China.
| |
Collapse
|
14
|
Yu B, Zhang T, Xia P, Gong X, Qiu X, Huang J. CCDC134 serves a crucial role in embryonic development. Int J Mol Med 2017; 41:381-390. [PMID: 29115376 PMCID: PMC5746300 DOI: 10.3892/ijmm.2017.3196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 10/17/2017] [Indexed: 01/31/2023] Open
Abstract
Coiled-coil domain containing 134 (CCDC134), a characterized secreted protein, may serve as an immune cytokine and illustrates its potent antitumor effects by augmenting CD8+ T-cell-mediated immunity. Additionally, CCDC134 may also act as a novel regulator of human alteration/deficiency in activation 2a, and be involved in the p300-CBP-associated factor complex and affect its acetyltransferase activity. To clarify the biological and pathological function of CCDC134, the present study generated a viable and fertile Ccdc134fl/fl mouse strain that allowed temporal and spatial control of gene ablation. Ccdc134−/− embryos generated by crossing of Ccdc134fl/fl mice with human β-actin-Cre or zona pellucida 3-Cre transgenic mice were embryonic lethal from embryonic day (E)12.5 to birth. Ccdc134 loss was associated with severe hemorrhages in the brain ventricular space and neural tube, pale and abnormal livers, cardiac hypertrophy and placental distress. Furthermore, it was demonstrated that a fraction of E13.5 fetal livers and brains exhibited reduced cell proliferation and vascular endothelial cell defects. CCDC134 also exhibited a dynamic and specific expression pattern during embryo development. The present results suggest that Ccdc134 may have specific biological functions in regulating mouse embryonic development.
Collapse
Affiliation(s)
- Biaoyi Yu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Tianzhuo Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiaoting Gong
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
15
|
Mu P, Akashi T, Lu F, Kishida S, Kadomatsu K. A novel nuclear complex of DRR1, F-actin and COMMD1 involved in NF-κB degradation and cell growth suppression in neuroblastoma. Oncogene 2017; 36:5745-5756. [DOI: 10.1038/onc.2017.181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
|
16
|
Caburet S, Anttonen M, Todeschini AL, Unkila-Kallio L, Mestivier D, Butzow R, Veitia RA. Combined comparative genomic hybridization and transcriptomic analyses of ovarian granulosa cell tumors point to novel candidate driver genes. BMC Cancer 2015; 15:251. [PMID: 25884336 PMCID: PMC4407711 DOI: 10.1186/s12885-015-1283-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/27/2015] [Indexed: 12/23/2022] Open
Abstract
Background Ovarian granulosa cell tumors (GCTs) are the most frequent sex cord-stromal tumors. Several studies have shown that a somatic mutation leading to a C134W substitution in the transcription factor FOXL2 appears in more than 95% of adult-type GCTs. Its pervasive presence suggests that FOXL2 is the main cancer driver gene. However, other mutations and genomic changes might also contribute to tumor formation and/or progression. Methods We have performed a combined comparative genomic hybridization and transcriptomic analyses of 10 adult-type GCTs to obtain a picture of the genomic landscape of this cancer type and to identify new candidate co-driver genes. Results Our results, along with a review of previous molecular studies, show the existence of highly recurrent chromosomal imbalances (especially, trisomy 14 and monosomy 22) and preferential co-occurrences (i.e. trisomy 14/monosomy 22 and trisomy 7/monosomy 16q). In-depth analyses showed the presence of recurrently broken, amplified/duplicated or deleted genes. Many of these genes, such as AKT1, RUNX1 and LIMA1, are known to be involved in cancer and related processes. Further genomic explorations suggest that they are functionally related. Conclusions Our combined analysis identifies potential candidate genes, whose alterations might contribute to adult-type GCT formation/progression together with the recurrent FOXL2 somatic mutation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandrine Caburet
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| | - Mikko Anttonen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Anne-Laure Todeschini
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Leila Unkila-Kallio
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Denis Mestivier
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Department of pathology, University of Helsinki, and HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| |
Collapse
|
17
|
Huang J, Xiao L, Gong X, Shao W, Yin Y, Liao Q, Meng Y, Zhang Y, Ma D, Qiu X. Cytokine-like molecule CCDC134 contributes to CD8⁺ T-cell effector functions in cancer immunotherapy. Cancer Res 2014; 74:5734-45. [PMID: 25125657 DOI: 10.1158/0008-5472.can-13-3132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CCDC134 is a poorly characterized secreted protein that may act as an immune cytokine. Here, we show that CCDC134 is differentially expressed on resting and activated immune cells and that it promotes CD8(+) T-cell activation, proliferation, and cytotoxicity by augmenting expression of the T-cell effector molecules IFNγ, TNFα, granzyme B, and perforin. CCDC134 facilitated infiltration of CD8(+) T cells with enhanced cytolytic activity into tumors, demonstrating strong antitumor effects in a CD8(+) T-cell-dependent manner. Mechanistically, in CD8(+) T cells, exposure to CCDC134 promoted cell proliferation through the JAK3-STAT5 pathway, a classic feature of many cytokines of the common γ-chain (γ(c)) cytokine receptor family. Overall, our results provide evidence that CCDC134 may serve as a member of the γ(c) cytokine family and illustrate its potent antitumor effects by augmenting CD8(+) T-cell-mediated immunity.
Collapse
Affiliation(s)
- Jing Huang
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China
| | - Lin Xiao
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Department of Clinical Laboratory, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China
| | - Xiaoting Gong
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China
| | - Wenwei Shao
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China
| | - Yanhui Yin
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China
| | - Yang Meng
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingmei Zhang
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China
| | - Dalong Ma
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China. Peking University Center for Human Disease Genomics, Beijing, China.
| |
Collapse
|
18
|
Yang GY, Chen X, Sun YC, Ma CL, Qian G. Chemokine-like factor 1 (CLFK1) is over-expressed in patients with atopic dermatitis. Int J Biol Sci 2013; 9:759-65. [PMID: 23983609 PMCID: PMC3753440 DOI: 10.7150/ijbs.6291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022] Open
Abstract
Background: Human chemokine-like factor 1 (CKLF1), a recently discovered chemokine, has a broad spectrum of biological functions in immune-mediated diseases. It is highly expressed on Th2 lymphocytes and is a functional ligand for human CCR4. CKLF1 has a major role in the recruitment and activation of leucocytes, which plays an important role in the pathogenesis of allergic diseases. The present study was designed to determine the expression of CKLF1 in skin and serum in patients with atopic dermatitis (AD). Methods: The CKLF1 protein expression in skin lesion was analyzed by immunohistochemistry and ELISA. The mRNA expression of CKLF1 in skin lesion was detected by Real-time PCR. The serum levels of CKLF1, IgE, eotaxin, IL-4, IL-5, and IL-13 were measured by ELISA. Results: Histopathological changes in the skin of AD patients showed local inflammation with epidermal thickening and significant inflammatory cellular infiltration. Immunohistochemistry results demonstrated that CKLF1-staining positive cells were located in the epidermal and dermis, and that the CKLF1 expression in AD patients was significantly higher than that in normal control. The CKLF1 mRNA expression in AD patients was significantly higher than that in healthy controls. Serum CKLF1 and IgE levels were significantly increased in AD patients, as were the serum levels of IL-4, IL-5, IL-13 and eotaxin. Conclusions: Both CKLF1 protien and mRNA levels are overexpressed in the skin lesion of AD patients, along with an increase in serum CKLF1 level, indicating that CKLF1 may play an important role in the development of atopic dermatitis.
Collapse
Affiliation(s)
- Gao-Yun Yang
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | | | | | | | | |
Collapse
|
19
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology compendium: a review of 2012. Histochem Cell Biol 2013; 139:815-46. [PMID: 23665922 DOI: 10.1007/s00418-013-1098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
Abstract
The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
20
|
Zhao T, Jia H, Li L, Zhang G, Zhao M, Cheng Q, Zheng J, Li D. Inhibition of CK2 enhances UV-triggered apoptotic cell death in lung cancer cell lines. Oncol Rep 2013; 30:377-84. [PMID: 23595577 DOI: 10.3892/or.2013.2407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/11/2013] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is a high-grade malignancy with poor 5 year-survival rates that remains incurable with current therapies. Different cellular stresses, including antitumor agents, ionizing radiation and ultraviolet (UV) light, can induce apoptosis and activate signaling pathways. UV has multiple effects on tumor cells, including DNA damage, and increases the expression of some genes involved in tumor cell apoptosis and DNA repair. It has been reported that UV can also activate casein kinase 2 (CK2). CK2, a Ser/Thr protein kinase, has been reported to be frequently overexpressed in various types of human cancer, including lung cancer, and is associated with tumor development. Thus, combination of UV and CK2 inhibitors may be a new strategy for the treatment of lung cancer. Our results demonstrated that inhibition of CK2a through CK2 siRNA or a CK2 inhibitor [(4,5,6,7-tetrabromobenzotriazole (TBB)] enhances the decrease in cell viability of lung cancer cells (A549 and H2030) induced by UV. Western blot analysis demonstrated that the combination increased the expression of apoptotic protein markers cytochrome c and the cleavage of poly ADP-ribose polymerase (PARP) and caspase-3. Furthermore, our results indicated that UV decreased the expression of the tumor suppressor protein PML through activation of CK2. Inhibition of CK2 by CK2 siRNA and TBB can recover the reduction of PML induced by UV. Collectively, these results demonstrate the significant apoptosis of lung cancer cells induced by combination treatment of the CK2 inhibitor and UV radiation. CK2 enhanced cell apoptosis by UV radiation may due, at least partly, to recover the expression of PML. These findings warrant the clinical testing of CK2 inhibitors which, when used in conjunction with DNA-damaging agents such as radiation, may be an effective cancer therapeutic strategy.
Collapse
Affiliation(s)
- Tiesuo Zhao
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|