1
|
Kurenkova AD, Presniakova VS, Mosina ZA, Kibirskiy PD, Romanova IA, Tugaeva GK, Kosheleva NV, Vinogradov KS, Kostjuk SV, Kotova SL, Rochev YA, Medvedeva EV, Timashev PS. Resveratrol's Impact on the Chondrogenic Reagents' Effects in Cell Sheet Cultures of Wharton's Jelly-Derived MSCs. Cells 2023; 12:2845. [PMID: 38132166 PMCID: PMC10741663 DOI: 10.3390/cells12242845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest in tissue engineering. We obtained hWJ-MSCs from four patients, and then we stimulated their chondrogenic phenotype formation in vitro by adding resveratrol (during cell expansion) and a canonical Wnt pathway activator, LiCl, as well as a Rho-associated protein kinase inhibitor, Y27632 (during differentiation). The effects of the added reagents on the formation of hWJ-MSC sheets destined to repair osteochondral injuries were investigated. Three-dimensional hWJ-MSC sheets grown on P(NIPAM-co-NtBA)-based matrices were characterized in vitro and in vivo. The combination of resveratrol and LiCl showed effects on hWJ-MSC sheets similar to those of the basal chondrogenic medium. Adding Y27632 decreased both the proportion of hypertrophied cells and the expression of the hyaline cartilage markers. In vitro, DMSO was observed to impede the effects of the chondrogenic factors. The mouse knee defect model experiment revealed that hWJ-MSC sheets grown with the addition of resveratrol and Y27632 were well integrated with the surrounding tissues; however, after 3 months, the restored tissue was identical to that of the naturally healed cartilage injury. Thus, the combination of chondrogenic supplements may not always have additive effects on the progress of cell culture and could be neutralized by the microenvironment after transplantation.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Zlata A. Mosina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina A. Romanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Gilyana K. Tugaeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- FSBSI “Institute of General Pathology and Pathophysiology”, Baltiyskaya St. 8, Moscow 125315, Russia
| | - Kirill S. Vinogradov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Sergei V. Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Chemistry, Belarussian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Svetlana L. Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Yury A. Rochev
- Center for Research in Medical Devices (CÚRAM), National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
2
|
Mahajan A, Nengroo MA, Datta D, Katti DS. Converse modulation of Wnt/β-catenin signaling during expansion and differentiation phases of Infrapatellar fat pad-derived MSCs for improved engineering of hyaline cartilage. Biomaterials 2023; 302:122296. [PMID: 37696204 DOI: 10.1016/j.biomaterials.2023.122296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are potential candidates in cell-based therapy for cartilage repair and regeneration. However, during chondrogenic differentiation, MSCs undergo undesirable hypertrophic maturation. This poses a risk of ossification in the neo-tissue formed that eventually impedes the clinical use of MSCs for cartilage repair. TGF-β is a potent growth factor used for chondrogenic differentiation of MSCs, however, its role in hypertrophy remains ambiguous. In the present work, we decipher that TGF-β activates Wnt/β-catenin signaling through SMAD3 and increases the propensity of Infrapatellar fat pad derived MSCs (IFP-MSCs) towards hypertrophy. Notably, inhibiting TGF-β induced Wnt/β-catenin signaling suppresses hypertrophic progression and enhances chondrogenic ability of IFP-MSCs in plasma hydrogels. Additionally, we demonstrate that activating Wnt signaling during expansion phase, promotes proliferation and reduces senescence, while improving stemness of IFP-MSCs. Thus, conversely modulating Wnt signaling in vitro during expansion and differentiation phases generates hyaline-like cartilage with minimal hypertrophy. Importantly, pre-treatment of IFP-MSCs encapsulated in plasma hydrogel with Wnt modulators followed by subcutaneous implantation in nude mice resulted in formation of a cartilage tissue with negligible calcification. Overall, this study provides technological advancement on targeting Wnt/β-catenin pathway in a 3D scaffold, while maintaining the standard chondro-induction protocol to overcome the challenges associated with the clinical use of MSCs to engineer hyaline cartilage.
Collapse
Affiliation(s)
- Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Mushtaq A Nengroo
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Dipak Datta
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
3
|
Shan Z, Xie L, Liu H, Shi J, Zeng P, Gui M, Wei X, Huang Z, Gao G, Chen S, Chen S, Chen Z. "Gingival Soft Tissue Integrative" Lithium Disilicate Glass-Ceramics with High Mechanical Properties and Sustained-Release Lithium Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54572-54586. [PMID: 36468286 DOI: 10.1021/acsami.2c17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to their good mechanical performances and high biocompatibility, all-ceramic materials are widely applied in clinics, especially in orthopedic and dental areas. However, the "hard" property negatively affects its integration with "soft" tissue, which greatly limits its application in soft tissue-related areas. For example, dental implant all-ceramic abutments should be well integrated with the surrounding gingival soft tissue to prevent the invasion of bacteria. Mimicking the gingival soft tissue and dentine integration progress, we applied the modified ion-exchange technology to "activate" the biological capacity of lithium disilicate glass-ceramics, via introducing OH- to weaken the stability of Si-O bonds and release lithium ions to promote multi-reparative functions of gingival fibroblasts. The underlying mechanism was found to be closely related to the activation of mitochondrial activity and oxidative phosphorylation. In addition, during the ion-exchange process, the larger radius sodium ions (Na+) replaced the smaller radius lithium ions (Li+), so that the residual compressive stress was applied to the glass-ceramics surface to counteract the tensile stress, thus improving the mechanical properties. This successful case in simultaneous improvement of mechanical properties and biological activities proves the feasibility of developing "soft tissue integrative" all-ceramic materials with high mechanical properties. It proposes a new strategy to develop advanced bioactive and high strength all-ceramic materials by modified ion-exchange, which can pave the way for the extended applications of such all-ceramic materials in soft tissue-related areas.
Collapse
Affiliation(s)
- Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, No. 74, Zhongshan Second Road, Guangzhou510080, China
| | - Lv Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Haiwen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Jiamin Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Peisheng Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Xianzhe Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, No. 1219, Zhongguan West Road, Ningbo315201, China
| | - Zhuwei Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Guangqi Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Shijie Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| |
Collapse
|
4
|
Wei P, Xu Y, Gu Y, Yao Q, Li J, Wang L. IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering. Drug Deliv 2021; 27:1106-1114. [PMID: 32715779 PMCID: PMC7470157 DOI: 10.1080/10717544.2020.1797239] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study is to fabricate and test a 3D-printed PCL scaffold incorporating IGF-1-releasing PLGA nanoparticles for cartilage tissue engineering. IGF-1 loaded PLGA nanoparticles were produced by the double-emulsion method, and were incorporated onto 3D printed PCL scaffolds via PDA. Particle size, loading effciency (LE) and encapsulation effciency (EE) of the nanoparticles were examined. SEM, pore size, porosity, compression testing, contact angle, IGF-1 release kinetics of the composite scaffolds were also determined. For cell culture studies, CCK-8, Live/dead, MTT, GAG content and expression level of chondrocytes specific proteins and genes and HIF-1α were also tested. There was no difference of the nanoparticle size. And the LE and EE of IGF-1 in PLGA nanoparticles was about 5.53 ± 0.12% and 61.26 ± 2.71%, respectively. There was a slower, sustained release for all drug-loaded nanoparticles PLGA/PDA/PCL scaffolds. There was no difference of pore size, porosity, compressive strength of each scaffold. The contact angles PCL scaffolds were significant decreased when coated with PDA and PLGA nanoparticales. (p < .05) Live/dead staining showed more cells attached to the IGF-1 PLGA/PDA/PCL scaffolds. The CCK-8 and MTT assay showed higher cell proliferation and better biocompatibility of the IGF-1 PLGA/PDA/PCL scaffolds. (p < .05) GAG content, chondrogenic protein and gene expression level of SOX-9, COL-II, ACAN, and HIF pathway related gene (HIF-1α) were significantly higher in IGF-1 PLGA/PDA/PCL scaffolds group compared to other groups. (p < .05) IGF-1 PLGA/PDA/PCL scaffolds may be a better method for sustained IGF-1 administration and a promising scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Peiran Wei
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayin Li
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liming Wang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
The preconditioning of lithium promotes mesenchymal stem cell-based therapy for the degenerated intervertebral disc via upregulating cellular ROS. Stem Cell Res Ther 2021; 12:239. [PMID: 33853670 PMCID: PMC8048279 DOI: 10.1186/s13287-021-02306-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Abstract Adipose-derived stem cell (ADSC) is one of the most widely used candidate cell for intervertebral disc (IVD) degeneration-related disease. However, the poor survival and low differentiation efficacy in stressed host microenvironment limit the therapeutic effects of ADSC-based therapy. The preconditioning has been found effective to boost the proliferation and the functioning of stem cells in varying pathological condition. Lithium is a common anti-depression drug and has been proved effective to enhance stem cell functioning. In this study, the effects of preconditioning using LiCl on the cellular behavior of ADSC was investigated, and specially in a degenerative IVD-like condition. Method The cellular toxicity on rat ADSC was assessed by detecting lactate dehydrogenase (LDH) production after treatment with a varying concentration of lithium chloride (LiCl). The proliferative capacity of ADSC was determined by detecting Ki67 expression and the relative cell number of ADSC. Then, the preconditioned ADSC was challenged by a degenerative IVD-like condition. And the cell viability as well as the nucleus pulpous (NP) cell differentiation efficacy of preconditioned ADSC was evaluated by detecting the major marker expression and extracellular matrix (ECM) deposit. The therapeutic effects of preconditioned ADSC were evaluated using an IVD degeneration rat model, and the NP morphology and ECM content were assessed. Results A concentration range of 1–10 mmol/L of LiCl was applied in the following study, since a higher concentration of LiCl causes a major cell death (about 40%). The relative cell number was similar between preconditioned groups and the control group after preconditioning. The Ki67 expression was elevated after preconditioning. Consistently, the preconditioned ADSC showed stronger proliferation capacity. Besides, the preconditioned groups exhibit higher expression of NP markers than the control group after NP cell induction. Moreover, the preconditioning of LiCl reduced the cell death and promoted ECM deposits, when challenged with a degenerative IVD-like culture. Mechanically, the preconditioning of LiCl induced an increased cellular reactive oxidative species (ROS) level and activation of ERK1/2, which was found closely related to the enhanced cell survival and ECM deposits after preconditioning. The treatment with preconditioned ADSC showed better therapeutic effects than control ADSC transplantation, with better NP preservation and ECM deposits. Conclusion These results suggest that the preconditioning with a medium level of LiCl boosts the cell proliferation and differentiation efficacy under a normal or hostile culture condition via the activation of cellular ROS/ERK axis. It is a promising pre-treatment of ADSC to promote the cell functioning and the following regenerative capacity, with superior therapeutic effects than untreated ADSC transplantation.
Collapse
|
6
|
Woods S, Humphreys PA, Bates N, Richardson SA, Kuba SY, Brooks IR, Cain SA, Kimber SJ. Regulation of TGFβ Signalling by TRPV4 in Chondrocytes. Cells 2021; 10:726. [PMID: 33805168 PMCID: PMC8064313 DOI: 10.3390/cells10040726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
The growth factor TGFβ and the mechanosensitive calcium-permeable cation channel TRPV4 are both important for the development and maintenance of many tissues. Although TRPV4 and TGFβ both affect core cellular functions, how their signals are integrated is unknown. Here we show that pharmacological activation of TRPV4 significantly increased the canonical response to TGFβ stimulation in chondrocytes. Critically, this increase was only observed when TRPV4 was activated after, but not before TGFβ stimulation. The increase was prevented by pharmacological TRPV4 inhibition or knockdown and is calcium/CamKII dependent. RNA-seq analysis after TRPV4 activation showed enrichment for the TGFβ signalling pathway and identified JUN and SP1 as key transcription factors involved in this response. TRPV4 modulation of TGFβ signalling represents an important pathway linking mechanical signalling to tissue development and homeostasis.
Collapse
Affiliation(s)
- Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (P.A.H.); (N.B.); (S.A.R.); (S.Y.K.); (I.R.B.); (S.A.C.)
| | | | | | | | | | | | | | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (P.A.H.); (N.B.); (S.A.R.); (S.Y.K.); (I.R.B.); (S.A.C.)
| |
Collapse
|
7
|
Tan Z, Zhou B, Zheng J, Huang Y, Zeng H, Xue L, Wang D. Lithium and Copper Induce the Osteogenesis-Angiogenesis Coupling of Bone Marrow Mesenchymal Stem Cells via Crosstalk between Canonical Wnt and HIF-1 α Signaling Pathways. Stem Cells Int 2021; 2021:6662164. [PMID: 33763142 PMCID: PMC7962875 DOI: 10.1155/2021/6662164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 01/17/2023] Open
Abstract
The combination of osteogenesis and angiogenesis dual-delivery trace element-carrying bioactive scaffolds and stem cells is a promising method for bone regeneration and repair. Canonical Wnt and HIF-1α signaling pathways are vital for BMSCs' osteogenic differentiation and secretion of osteogenic factors, respectively. Simultaneously, lithium (Li) and copper (Cu) can activate the canonical Wnt and HIF-1α signaling pathway, respectively. Moreover, emerging evidence has shown that the canonical Wnt and HIF signaling pathways are related to coupling osteogenesis and angiogenesis. However, it is still unclear whether the lithium- and copper-doped bioactive scaffold can induce the coupling of the osteogenesis and angiogenesis in BMSCs and the underlying mechanism. So, we fabricated a lithium- (Li+-) and copper- (Cu2+-) doped organic/inorganic (Li 2.5-Cu 1.0-HA/Col) scaffold to evaluate the coupling osteogenesis and angiogenesis effects of lithium and copper on BMSCs and further explore its mechanism. We investigated that the sustained release of lithium and copper from the Li 2.5-Cu 1.0-HA/Col scaffold could couple the osteogenesis- and angiogenesis-related factor secretion in BMSCs seeding on it. Moreover, our results showed that 500 μM Li+ could activate the canonical Wnt signaling pathway and rescue the XAV-939 inhibition on it. In addition, we demonstrated that the 25 μM Cu2+ was similar to 1% oxygen environment in terms of the effectiveness of activating the HIF-1α signaling pathway. More importantly, the combination stimuli of Li+ and Cu2+ could couple the osteogenesis and angiogenesis process and further upregulate the osteogenesis- and angiogenesis-related gene expression via crosstalk between the canonical Wnt and HIF-1α signaling pathway. In conclusion, this study revealed that lithium and copper could crosstalk between the canonical Wnt and HIF-1α signaling pathways to couple the osteogenesis and angiogenesis in BMSCs when they are sustainably released from the Li-Cu-HA/Col scaffold.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Baochun Zhou
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianrui Zheng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yongcan Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lixiang Xue
- Center of Basic Medical Research, Peking University Third Hospital Institute of Medical Innovation and Research, Beijing 100191, China
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
8
|
Fu R, Liu C, Yan Y, Li Q, Huang RL. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021; 12:20417314211004211. [PMID: 33868628 PMCID: PMC8020769 DOI: 10.1177/20417314211004211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ruan Y, Ogana H, Gang E, Kim HN, Kim YM. Wnt Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:107-121. [PMID: 33123996 DOI: 10.1007/978-3-030-47189-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulated Wnt signaling plays a central role in initiation, progression, and metastasis in many types of human cancers. Cancer development and resistance to conventional cancer therapies are highly associated with the tumor microenvironment (TME), which is composed of numerous stable non-cancer cells, including immune cells, extracellular matrix (ECM), fibroblasts, endothelial cells (ECs), and stromal cells. Recently, increasing evidence suggests that the relationship between Wnt signaling and the TME promotes the proliferation and maintenance of tumor cells, including leukemia. Here, we review the Wnt pathway, the role of Wnt signaling in different components of the TME, and therapeutic strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Eunji Gang
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Losenkov IS, Plotnikov EV, Epimakhova EV, Bokhan NA. [Lithium in the psychopharmacology of affective disorders and mechanisms of its effects on cellular physiology]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:108-115. [PMID: 33340305 DOI: 10.17116/jnevro2020120111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
However, despite successful use of lithium in the treatment of affective disorders for almost 40 years, the mechanisms of its therapeutic action are still poorly understood. This review presents and summarizes the current literature about the use of lithium in treatment of affective disorders, as well as its effects on cellular physiology, with a separate description of the effect of this ion on the functioning of nerve tissue and ion-molecular mechanisms.
Collapse
Affiliation(s)
- I S Losenkov
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E V Plotnikov
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E V Epimakhova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
11
|
Limraksasin P, Kosaka Y, Zhang M, Horie N, Kondo T, Okawa H, Yamada M, Egusa H. Shaking culture enhances chondrogenic differentiation of mouse induced pluripotent stem cell constructs. Sci Rep 2020; 10:14996. [PMID: 32929163 PMCID: PMC7490351 DOI: 10.1038/s41598-020-72038-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanical loading on articular cartilage induces various mechanical stresses and strains. In vitro hydrodynamic forces such as compression, shear and tension impact various cellular properties including chondrogenic differentiation, leading us to hypothesize that shaking culture might affect the chondrogenic induction of induced pluripotent stem cell (iPSC) constructs. Three-dimensional mouse iPSC constructs were fabricated in a day using U-bottom 96-well plates, and were subjected to preliminary chondrogenic induction for 3 days in static condition, followed by chondrogenic induction culture using a see-saw shaker for 17 days. After 21 days, chondrogenically induced iPSC (CI-iPSC) constructs contained chondrocyte-like cells with abundant ECM components. Shaking culture significantly promoted cell aggregation, and induced significantly higher expression of chondrogenic-related marker genes than static culture at day 21. Immunohistochemical analysis also revealed higher chondrogenic protein expression. Furthemore, in the shaking groups, CI-iPSCs showed upregulation of TGF-β and Wnt signaling-related genes, which are known to play an important role in regulating cartilage development. These results suggest that shaking culture activates TGF-β expression and Wnt signaling to promote chondrogenic differentiation in mouse iPSCs in vitro. Shaking culture, a simple and convenient approach, could provide a promising strategy for iPSC-based cartilage bioengineering for study of disease mechanisms and new therapies.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukihiro Kosaka
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Naohiro Horie
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, 90095-1668, USA
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
12
|
Schizas NP, Savvidou O, Diamantopoulou K, Papadakis S, Papagelopoulos PJ, Triantafyllopoulos IK. The combination of microfracture with induction of Wnt / β- Catenin pathway, leads to enhanced cartilage regeneration. J Orthop Surg Res 2019; 14:428. [PMID: 31829205 PMCID: PMC6907130 DOI: 10.1186/s13018-019-1484-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Microfracture does not lead to complete healing of full-thickness cartilage defects. The aim of this study was to evaluate the effect of modifying Wnt/β-catenin signaling following microfracture, on the restoration of a full-thickness cartilage defect in a rabbit model. The modification of the canonical Wnt pathway was achieved through per os administration of lithium carbonate, which is an intracellular inhibitor of glycogen synthase kinase 3-β (Gsk3-β) and therefore induces Wnt/β-catenin signaling. MATERIALS AND METHODS Full-thickness cartilage defects of 4 mm in diameter were created in the patellar groove of the right femurs of 18 male New Zealand white rabbits. The rabbits were divided into three groups of six (n = 6) based on post-surgery treatment differences, as follows: microfracture only (group 1), microfracture plus lithium carbonate 7 mM in the drinking water for 1 week (group 2), microfracture plus lithium carbonate 7 mM in the drinking water for 4 weeks (group 3). All animals were sacrificed 9 weeks after surgery. The outcome was assessed histologically, by using the International Cartilage Repair Society (ICRS) visual histological scale. Immunohistochemistry for type II collagen was also conducted. RESULTS Statistical analysis of the histological ICRS scores showed that group 3 was significantly superior to group 1 in four out of six ICRS categories, while group 2 was superior to 1 in only two out of six. CONCLUSION The combination of microfracture and systematic administration of lithium carbonate 7 mM for 4 weeks shows statistically significant superiority in four out of six ICRS categories compared with microfracture only for the treatment of full-thickness cartilage defects in a rabbit experimental model.
Collapse
Affiliation(s)
- Nikitas P Schizas
- Laboratory for the Research of Musculoskeletal System, Medical School, National and Kapodistrian University of Athens, 10 Athinas Street, 14561, Kifissia, Greece.
| | - Olga Savvidou
- First Department of Orthopaedics, Athens University Medical School, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Kalliopi Diamantopoulou
- Pathology Department, KAT Hospital Kifissia, 2 Nikis Street, 14561, Kifissia, Athens, Greece
| | - Stamatios Papadakis
- 2nd Department of Orthopaedic Surgery, KAT Hospital Kifissia, 2 Nikis Street, 14561, Kifissia, Athens, Greece
| | - Panayiotis J Papagelopoulos
- First Department of Orthopaedics, Athens University Medical School, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Ioannis K Triantafyllopoulos
- Laboratory for the Research of Musculoskeletal System, Medical School, National and Kapodistrian University of Athens, 10 Athinas Street, 14561, Kifissia, Greece
| |
Collapse
|
13
|
Li J, Yao Q, Xu Y, Zhang H, Li LL, Wang L. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration. Med Sci Monit 2019; 25:4041-4050. [PMID: 31147532 PMCID: PMC6559007 DOI: 10.12659/msm.916918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background We synthetized a 3D printed poly-ɛ-caprolactone (PCL) scaffold with polydopamine (PDA) coating and lithium chloride (LiCl) deposition for cartilage tissue engineering and analyzed its effect on promoting rabbit bone marrow mesenchymal stem cells (rBMSC) chondrogenesis in vitro. Material/Methods PCL scaffolds were prepared by 3D printing with a well-designed CAD digital model, then modified by PDA coating to produce PCL-PDA scaffolds. Finally, LiCl was deposited on the PDA coating to produce PCL-PDA-Li scaffolds. The physicochemical properties, bioactivity, and biocompatibility of PCL-PDA-Li scaffolds were accessed by comparing them with PCL scaffolds and PCL-PDA scaffolds. Results 3D PCL scaffolds exhibited excellent mechanical integrity as designed. PDA coating and LiCl deposition improved surface hydrophilicity without sacrificing mechanical strength. Li+ release was durable and ion concentration did not reach the cytotoxicity level. This in vitro study showed that, compared to PCL scaffolds, PCL-PDA and PCL-PDA-Li scaffolds significantly increased glycosaminoglycan (GAG) formation and chondrogenic marker gene expression, while PCL-PDA-Li scaffolds showed far higher rBMSC viability and chondrogenesis. Conclusions 3D printed PCL-PDA-Li scaffolds promoted chondrogenesis in vitro and may provide a good method for lithium administration and be a potential candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yan Xu
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Huikang Zhang
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Liang-Liang Li
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Liming Wang
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, nstitute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
14
|
Improved Protocol for Chondrogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells -Effect of PTHrP and FGF-2 on TGFβ1/BMP2-Induced Chondrocytes Hypertrophy. Stem Cell Rev Rep 2018; 14:755-766. [PMID: 29691795 DOI: 10.1007/s12015-018-9816-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Growth factors have a pivotal role in chondrogenic differentiation of stem cells. The differential effects of known growth factors involved in the maintenance and homeostasis of cartilage tissue have been previously studied in vitro. However, there are few reported researches about the interactional effects of growth factors on chondrogenic differentiation of stem cells. The aim of this study is to examine the combined effects of four key growth factors on chondrogenic differentiation of mesenchymal stem cells (MSCs). Isolated and expanded rabbit bone marrow-derived MSCs underwent chondrogenic differentiation in a micromass cell culture system that used a combination of the following growth factors: transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP2), parathyroid hormone related protein (PTHrP), and fibroblast growth factor 2 (FGF2) according to a defined program. The chondrogenic differentiation program was analyzed by histochemistry methods, quantitative RT-PCR (qRT-PCR), and measurement of matrix deposition of sulfated glycosaminoglycan (sGAG) and collagen content at days 16, 23, and 30. The results showed that the short-term combination of TGF-β1 and BMP-2 increased sGAG and collagen content, Alkaline phosphates (ALP) activity, and type X collagen (COL X) expression. Application of either PTHrP or FGF2 simultaneously decreased TGF-β1/BMP-2 induced hypertrophy and chondrogenic markers (at least for FGF2). However, successive application of PTHrP and FGF2 dramatically maintained the synergistic effects of TGF-β1/BMP-2 on the chondrogenic differentiation potential of MSCs and decreased unwanted hypertrophic markers. This new method can be used effectively in chondrogenic differentiation programs.
Collapse
|
15
|
Abbasi F, Ghanian MH, Baharvand H, Vahidi B, Eslaminejad MB. Engineering mesenchymal stem cell spheroids by incorporation of mechanoregulator microparticles. J Mech Behav Biomed Mater 2018; 84:74-87. [PMID: 29751274 DOI: 10.1016/j.jmbbm.2018.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Mechanical forces throughout human mesenchymal stem cell (hMSC) spheroids (mesenspheres) play a predominant role in determining cellular functions of cell growth, proliferation, and differentiation through mechanotransductional mechanisms. Here, we introduce microparticle (MP) incorporation as a mechanical intervention method to alter tensional homeostasis of the mesensphere and explore MSC differentiation in response to MP stiffness. The microparticulate mechanoregulators with different elastic modulus (34 kPa, 0.6 MPa, and 2.2 MPa) were prepared by controlled crosslinking cell-sized microdroplets of polydimethylsiloxane (PDMS). Preparation of MP-MSC composite spheroids enabled us to study the possible effects of MPs through experimental and computational assays. Our results showed that MP incorporation selectively primed MSCs toward osteogenesis, yet hindered adipogenesis. Interestingly, this behavior depended on MP mechanics, as the spheroids that contained MPs with intermediate stiffness behaved similar to control MP-free mesenspheres with more tendencies toward chondrogenesis. However, by using the soft or stiff MPs, the MP-mesenspheres significantly showed signs of osteogenesis. This could be explained by the complex of forces which acted in the cell spheroid and, totally, provided a homeostasis situation. Incorporation of cell-sized polymer MPs as mechanoregulators of cell spheroids could be utilized as a new engineering toolkit for multicellular organoids in disease modeling and tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Department of Cell Engineering, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Bahman Vahidi
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
16
|
Li S, Maçon ALB, Jacquemin M, Stevens MM, Jones JR. Sol–gel derived lithium-releasing glass for cartilage regeneration. J Biomater Appl 2017. [DOI: 10.1177/0885328217706640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wnt-signalling cascade is one of the crucial pathways involved in the development and homeostasis of cartilage. Influencing this pathway can potentially contribute to improved cartilage repair or regeneration. One key molecular regulator of the Wnt pathway is the glycogen synthase kinase-3 enzyme, the inhibition of which allows initiation of the signalling pathway. This study aims to utilise a binary SiO2–Li2O sol–gel derived glass for controlled delivery of lithium, a known glycogen synthase kinase-3 antagonist. The effect of the dissolution products of the glass on chondrogenic differentiation in an in vitro 3D pellet culture model is reported. Dissolution products that contained 5 mM lithium and 3.5 mM silicon were capable of inducing chondrogenic differentiation and hyaline cartilaginous matrix formation without the presence of growth factors such as TGF-β3. The results suggest that sol–gel derived glass has the potential to be used as a delivery vehicle for therapeutic lithium ions in cartilage regeneration applications.
Collapse
Affiliation(s)
- Siwei Li
- Department of Materials, Imperial College London, London, UK
| | | | - Manon Jacquemin
- Department of Materials, Imperial College London, London, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| |
Collapse
|
17
|
Tanthaisong P, Imsoonthornruksa S, Ngernsoungnern A, Ngernsoungnern P, Ketudat-Cairns M, Parnpai R. Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors. PLoS One 2017; 12:e0168059. [PMID: 28060847 PMCID: PMC5217863 DOI: 10.1371/journal.pone.0168059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 01/01/2023] Open
Abstract
Articular cartilage is an avascular, alymphatic, and aneural system with very low regeneration potential because of its limited capacity for self-repair. Mesenchymal stem cells (MSCs) are the preferred choice for cell-based therapies. Glycogen synthase kinase 3 (GSK-3) inhibitors are compounds that can induce the Wnt signaling pathway, which is involved in chondrogenesis and cartilage development. Here, we investigated the influence of lithium chloride (LiCl) and SB216763 synergistically with TGF-β3 on chondrogenic differentiation in human mesenchymal stem cells derived from Wharton’s jelly tissue (hWJ-MSCs). hWJ-MSCs were cultured and chondrogenic differentiation was induced in monolayer and pellet experiments using chondrogenic medium, chondrogenic medium supplemented with LiCl, or SB216763 for 4 weeks. After in vitro differentiation, cultured cells were examined for the expression of Sox9, ACAN, Col2a1, and β-catenin markers. Glycosaminoglycan (GAG) accumulation was also examined by Alcian blue staining. The results indicated that SB216763 was more effective than LiCl as evidenced by a higher up-regulation of the expression of cartilage-specific markers, including Sox9, ACAN, Col2a1 as well as GAG accumulation. Moreover, collagen type II expression was strongly observed in cells cultured in the chondrogenic medium + SB216763 as evidenced by western blot analysis. Both treatments appeared to mediate the Wnt signaling pathway by up-regulating β-catenin gene expression. Further analyses showed that all treatments suppressed the progression of chondrocyte hypertrophy, determined by decreased expression of Col10a1 and Runx2. These results indicate that LiCl and SB216763 are potential candidates for further in vivo therapeutic trials and would be of great importance for cartilage regeneration.
Collapse
Affiliation(s)
- Prapot Tanthaisong
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Apichart Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Piyada Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- * E-mail:
| |
Collapse
|
18
|
Histologic tissue response to furcation perforation repair using mineral trioxide aggregate or dental pulp stem cells loaded onto treated dentin matrix or tricalcium phosphate. Clin Oral Investig 2016; 21:1579-1588. [PMID: 27761672 PMCID: PMC5442265 DOI: 10.1007/s00784-016-1967-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Objectives The aim of this study is to compare the effect of treated dentine matrix (TDM) and tricalcium phosphate (TCP) scaffolds on odontogenic differentiation and mineralization of dental pulp stem cells (DPSCs) in furcation perforations created in the pulp chamber floor of premolar teeth in dogs. Material and methods DPSCs were isolated and cultured from the dental pulp of the maxillary left second and third premolars of dogs. The DPSCs were loaded on TCP (SC+TCP) and TDM (SC+TDM) scaffolds and inserted into intentionally perforated pulp chamber floors of premolars in dogs; six teeth were used for each group. Three more groups of six specimens were created, and mineral trioxide aggregate (MTA), TDM, and TCP were inserted into the perforations to act as controls. An intact premolar and no treatment in the perforation site were used as positive and negative controls respectively. After 3 months, the animals were sacrificed and the type of inflammation, presence of dentine, continuation and type of cementum, type of connective tissue, and presence of foreign body reaction were evaluated, and significant differences were between groups determined using the Fisher’s exact test. The evaluation of the amount of inflammation and the percentage of new bone formation was evaluated using the Mann-Whitney U test. Results The negative control group was associated with severe inflammation and granulation tissue formation. In the positive control group, intact periodontal tissues and no inflammation were observed. Dentine bridge formation was not seen in specimens of any group. The specimens in the SC+TDM group were associated with significantly more bone formation than other groups (P < 0.001). The amount of inflammation was less than 10 % in specimens of all groups with the exception of three specimens in the TCP group that were categorized as 10–30 %. Chronic inflammation without foreign body reactions was the major pattern of inflammation in groups. Formation of cementum with a cellular and continuous appearance was seen in all specimens. Conclusions SC+TDM was associated with significantly more bone formation when used to repair uninfected furcation perforations in the premolar teeth of dogs. Clinical relevance Application of TDM as a biological scaffold in combination with DPSCs may offer an advantage during the repair of root perforation defects.
Collapse
|
19
|
Maçon ALB, Jacquemin M, Page SJ, Li S, Bertazzo S, Stevens MM, Hanna JV, Jones JR. Lithium-silicate sol-gel bioactive glass and the effect of lithium precursor on structure-property relationships. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2016; 81:84-94. [PMID: 32009741 PMCID: PMC6961499 DOI: 10.1007/s10971-016-4097-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/27/2016] [Indexed: 06/10/2023]
Abstract
ABSTRACT This work reports the synthesis of lithium-silicate glass, containing 10 mol% of Li 2 O by the sol-gel process, intended for the regeneration of cartilage. Lithium citrate and lithium nitrate were selected as lithium precursors. The effects of the lithium precursor on the sol-gel process, and the resulting glass structure, morphology, dissolution behaviour, chondrocyte viability and proliferation, were investigated. When lithium citrate was used, mesoporous glass containing lithium as a network modifier was obtained, whereas the use of lithium nitrate produced relatively dense glass-ceramic with the presence of lithium metasilicate, as shown by X-ray diffraction, 29 Si and 7 Li MAS NMR and nitrogen sorption data. Nitrate has a better affinity for lithium than citrate, leading to heterogeneous crystallisation from the mesopores, where lithium salts precipitated during drying. Citrate decomposed at a lower temperature, where the crystallisation of lithium-silicate crystal is not thermodynamically favourable. Upon decomposition of the citrate, a solid-state salt metathesis reaction between citrate and silanol occurred, followed by the diffusion of lithium within the structure of the glass. Both glass and glass-ceramic released silica and lithium ions in culture media, but release rate was lower for the glass-ceramic. Both samples did not affect chondrocyte viability and proliferation.
Collapse
Affiliation(s)
| | - Manon Jacquemin
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Samuel J. Page
- Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Siwei Li
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Sergio Bertazzo
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| | - John V. Hanna
- Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
20
|
Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni SM. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine 2016; 85:51-60. [PMID: 27288632 DOI: 10.1016/j.cyto.2016.06.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Arash Pourgholaminejad
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Ferensztajn-Rochowiak E, Rybakowski JK. The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacol Rep 2016; 68:224-30. [DOI: 10.1016/j.pharep.2015.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/01/2022]
|
22
|
Shen J, Jia W, Yu Y, Chen J, Cao X, Du Y, Zhang X, Zhu S, Chen W, Xi J, Wei T, Wang G, Yuan D, Duan T, Jiang C, Kang J. Pwp1 is required for the differentiation potential of mouse embryonic stem cells through regulating Stat3 signaling. Stem Cells 2015; 33:661-73. [PMID: 25335925 DOI: 10.1002/stem.1876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/19/2014] [Accepted: 09/04/2014] [Indexed: 11/08/2022]
Abstract
Leukemia inhibitory factor/Stat3 signaling is critical for maintaining the self-renewal and differentiation potential of mouse embryonic stem cells (mESCs). However, the upstream effectors of this pathway have not been clearly defined. Here, we show that periodic tryptophan protein 1 (Pwp1), a WD-40 repeat-containing protein associated with histone H4 modification, is required for the exit of mESCs from the pluripotent state into all lineages. Knockdown (KD) of Pwp1 does not affect mESC proliferation, self-renewal, or apoptosis. However, KD of Pwp1 impairs the differentiation potential of mESCs both in vitro and in vivo. PWP1 chromatin immunoprecipitation-seq results revealed that the PWP1-occupied regions were marked with significant levels of H4K20me3. Moreover, Pwp1 binds to sites in the upstream region of Stat3. KD of Pwp1 decreases the level of H4K20me3 in the upstream region of Stat3 gene and upregulates the expression of Stat3. Furthermore, Pwp1 KD mESCs recover their differentiation potential through suppressing the expression of Stat3 or inhibiting the tyrosine phosphorylation of STAT3. Together, our results suggest that Pwp1 plays important roles in the differentiation potential of mESCs.
Collapse
Affiliation(s)
- Junwei Shen
- Shanghai Key Laboratory of Signaling and Disease Research, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Jankauskas SS, Zorov SD, Babenko VA, Skulachev MV, Zorov DB. Lithium salts — Simple but magic. BIOCHEMISTRY (MOSCOW) 2014; 79:740-9. [DOI: 10.1134/s0006297914080021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Alizadeh E, Zarghami N, Eslaminejad MB, Akbarzadeh A, Barzegar A, Mohammadi SA. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:157-64. [PMID: 24978442 DOI: 10.3109/21691401.2014.928778] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are suitable choices in autologous stem cell treatment of liver-associated diseases due to their hepatic differentiation potential. Dimethyl sulfoxide (DMSO) is an amphipathic molecule with potential of delivering both lipophilic and hydrophilic agents into cells, also a common cryoprotectant for freezing of the cells. DMSO was used in some protocols for induction of AT-MSCs towards hepatocyte like cells. However, the effect of DMSO on hepatogenic differentiation of AT-MSCs were not surveyed, previously. In the present study, we aimed at evaluation of the effect of DMSO on differentiation of AT-MSCs into hepatic lineage. METHODS We isolated mesenchymal stem cells (MSCs) from adipose tissue, and then verifies multi-potency and surface markers of AT-MSCs . Isolated AT-MSCs randomly dispensed in four groups including Group 1: HGF treated, 2: HGF+ DMSO treated, 3: HGF+ DMSO+ OSM treated, and group control for a period of 3 weeks in the expansion medium without serum; EGF and bFGF were also included in the first days of inductions. The morphologic changes during induction period was observed with microscopy. The secretion of albumin (ALB) of the differentiating MSCs was investigated using ELISA, and urea production was evaluated using colorimetric assay. The qRT-PCR was performed for quantitation of hepatocyte marker genes including AFP, ALB, CK18, HNF4a, and HNF6. The glycogen storage of differentiated cells was visualized by periodic-acid Schiff‘s staining. RESULTS The results demonstrate that DMSO speeds up hepatic differentiation of AT-MSCs characterized by rapid changes in morphology; higher expression of hepatic marker gene (ALB) in both mRNA and protein level (P < 0.05); also increased transcriptional levels of other liver genes including CK18, HNF4a, and HNF6 (P < 0.01); and moreover, greater percentage of glycogen storage(p < 0.05) in DMSO-treated groups. CONCLUSION DMSO catalyzes hepatic differentiation; therefore, using DMSO for acceleration of the hepatogenic protocols of AT-MSCs appears advantageous.
Collapse
Affiliation(s)
- Effat Alizadeh
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,b The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohamadreza Baghaban Eslaminejad
- c Department of Stem Cells and Developmental Biology at Cell Sciences Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Abolfazl Akbarzadeh
- d Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Barzegar
- e Research Institute for Fundamental Sciences (RIFS), University of Tabriz , Tabriz , Iran
| | - Seyed Abolghasem Mohammadi
- f Department of Agronomy and Plant Breeding , Faculty of Agriculture, University of Tabriz , Tabriz , Iran
| |
Collapse
|
25
|
The Histochem Cell Biol conspectus: the year 2013 in review. Histochem Cell Biol 2014; 141:337-63. [PMID: 24610091 PMCID: PMC7087837 DOI: 10.1007/s00418-014-1207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Herein, we provide a brief synopsis of all manuscripts published in Histochem Cell Biol in the year 2013. For ease of reference, we have divided the manuscripts into the following categories: Advances in Methodologies; Molecules in Health and Disease; Organelles, Subcellular Structures and Compartments; Golgi Apparatus; Intermediate Filaments and Cytoskeleton; Connective Tissue and Extracellular Matrix; Autophagy; Stem Cells; Musculoskeletal System; Respiratory and Cardiovascular Systems; Gastrointestinal Tract; Central Nervous System; Peripheral Nervous System; Excretory Glands; Kidney and Urinary Bladder; and Male and Female Reproductive Systems. We hope that the readership will find this annual journal synopsis of value and serve as a quick, categorized reference guide for “state-of-the-art” manuscripts in the areas of histochemistry, immunohistochemistry, and cell biology.
Collapse
|