1
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
2
|
Zhao Q, Wang Y, Yu D, Leng JY, Zhao Y, Chu M, Xu Z, Ding H, Zhou J, Zhang T. Comprehensive analysis of ID genes reveals the clinical and prognostic value of ID3 expression in acute myeloid leukemia using bioinformatics identification and experimental validation. BMC Cancer 2022; 22:1229. [PMID: 36443709 PMCID: PMC9707109 DOI: 10.1186/s12885-022-10352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Dysregulation of inhibitor of differentiation/DNA binding (ID) genes is linked to cancer growth, angiogenesis, invasiveness, metastasis and patient survival. Nevertheless, few investigations have systematically determined the expression and prognostic value of ID genes in acute myeloid leukemia (AML). METHODS The expression and clinical prognostic value of ID genes in AML were first identified by public databases and further validated by our research cohort. RESULTS Using public data, the expression of ID1/ID3 was markedly downregulated in AML, and the expression of ID2 was greatly upregulated in AML, whereas ID4 showed no significant difference. Among the ID genes, only ID3 expression may be the most valuable prognostic biomarker in both total AML and cytogenetically normal AML (CN-AML) and especially in CN-AML. Clinically, reduced ID3 expression was greatly associated with higher white blood cell counts, peripheral blood/bone marrow blasts, normal karyotypes and intermediate cytogenetic risk. In addition, low ID3 expression was markedly related to FLT3 and NPM1 mutations as well as wild-type TP53. Despite these associations, multivariate Cox regression analysis revealed that ID3 expression was an independent risk factor affecting overall survival (OS) and disease free survival (DFS) in CN-AML patients. Biologically, a total of 839 mRNAs/lncRNAs and 72 microRNAs were found to be associated with ID3 expression in AML. Importantly, the expression of ID3 with discriminative value in AML was further confirmed in our research cohort. CONCLUSION The bioinformatics analysis and experimental verification demonstrate that low ID3 expression independently affects OS and DFS in patients with CN-AML, which might be seen as a potential prognostic indicator in CN-AML.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China.,Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Yun Wang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Di Yu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Yangjing Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 212013, Zhenjiang, Jiangsu, P. R. China
| | - Mingqiang Chu
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China.,Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Zijun Xu
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.
| | - Jingdong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China. .,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China. .,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.
| | - Tingjuan Zhang
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China. .,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China. .,Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.
| |
Collapse
|
3
|
Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci 2018; 75:417-446. [PMID: 28819864 PMCID: PMC5765206 DOI: 10.1007/s00018-017-2620-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
B cell leukaemia is one of the most frequent malignancies in the paediatric population, but also affects a significant proportion of adults in developed countries. The majority of infant and paediatric cases initiate the process of leukaemogenesis during foetal development (in utero) through the formation of a chromosomal translocation or the acquisition/deletion of genetic material (hyperdiploidy or hypodiploidy, respectively). This first genetic insult is the major determinant for the prognosis and therapeutic outcome of patients. B cell leukaemia in adults displays similar molecular features as its paediatric counterpart. However, since this disease is highly represented in the infant and paediatric population, this review will focus on this demographic group and summarise the biological, clinical and epidemiological knowledge on B cell acute lymphoblastic leukaemia of four well characterised subtypes: t(4;11) MLL-AF4, t(12;21) ETV6-RUNX1, t(1;19) E2A-PBX1 and t(9;22) BCR-ABL1.
Collapse
Affiliation(s)
- Camille Malouf
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
4
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Zhou JD, Ma JC, Zhang TJ, Li XX, Zhang W, Wu DH, Wen XM, Xu ZJ, Lin J, Qian J. High bone marrow ID2 expression predicts poor chemotherapy response and prognosis in acute myeloid leukemia. Oncotarget 2017; 8:91979-91989. [PMID: 29190891 PMCID: PMC5696157 DOI: 10.18632/oncotarget.20559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of ID proteins is a frequent event in various human cancers and has a direct role in cancer initiation, maintenance, progression and drug resistance. Our previous study has revealed ID1 expression and its prognostic value in acute myeloid leukemia (AML). Herein, we further reported ID2 expression and its clinical significance in AML. Real-time quantitative PCR was performed to detect ID2 transcript level in bone marrow mononuclear cells of 145 de novo AML patients. ID2 expression was significantly up-regulated in AML patients compared with controls. ID2 overexpression occurred with the highest frequency in poor karyotype (10/17, 59%), lower in intermediate karyotype (35/83, 42%), and the lowest in favorable karyotype (7/40, 18%). Moreover, high ID2 expression correlated with lower complete remission (CR) rate, shorter overall survival, and acted as an independent prognostic biomarker in whole-cohort AML and non-M3-AML patients. Importantly, the prognostic value of ID2 expression in AML was validated by The Cancer Genome Atlas (TCGA) data. In the follow-up of patients, ID2 expression at CR phase was decreased than at the time of diagnosis, and was increased again at the time of relapse. These findings demonstrated that bone marrow ID2 overexpression was a frequent event in AML patients, and predicts poor chemotherapy response and prognosis.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of KunShan City, Suzhou, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Zhao TF, Jia HZ, Zhang ZZ, Zhao XS, Zou YF, Zhang W, Wan J, Chen XF. LncRNA H19 regulates ID2 expression through competitive binding to hsa-miR-19a/b in acute myelocytic leukemia. Mol Med Rep 2017; 16:3687-3693. [PMID: 28765931 DOI: 10.3892/mmr.2017.7029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/06/2017] [Indexed: 11/06/2022] Open
Abstract
Acute myelocytic leukemia (AML) is the most common type of acute leukemia. Long non‑coding RNAs (lncRNAs) serve an important role in regulating gene expression through chromatin modification, transcription and post‑transcriptional processing. LncRNA H19 was considered as an independent prognostic marker for patients with tumors. The expression of lncRNA H19 was identified to be significantly upregulated in bone marrow samples from patients with AML‑M2. Furthermore, it was demonstrated that the knockdown of lncRNA H19 resulted in increased expression of hsa‑microRNA (miR)‑19a/b and decreased expression of inhibitor of DNA binding 2 (ID2) in AML cells. The knockdown of lncRNA H19 inhibited the proliferation of AML cells in vitro, which could be partially reversed by ID2 overexpression. Furthermore, the results of the bioinformatic analysis revealed potential hsa‑miR‑19a/b‑3p binding sites in lncRNA H19 and ID2. Altogether, the results of the present study suggest that lncRNA H19 regulates the expression of ID2 through competitive binding to hsa‑miR‑19a and hsa‑miR‑19b, which may serve a role in AML cell proliferation.
Collapse
Affiliation(s)
- Tong-Feng Zhao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University‑The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Hui-Zhen Jia
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University‑The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhen-Zhen Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University‑The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiao-Su Zhao
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China
| | - Yan-Fen Zou
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University‑The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University‑The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiao-Fan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University‑The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
7
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
8
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
9
|
Zheng Y, Zhang H, Wang Y, Li X, Lu P, Dong F, Pang Y, Ma S, Cheng H, Hao S, Tang F, Yuan W, Zhang X, Cheng T. Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia 2016; 30:2373-2384. [PMID: 27133822 DOI: 10.1038/leu.2016.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic disorder with a poor prognosis. Abnormal DNA methylation is involved in the initiation and progression of AML. The de novo methyltransferases Dnmt3a and Dnmt3b are responsible for the generation of genomic methylation patterns. While DNMT3A is frequently mutated in hematological malignancies, DNMT3B is rarely mutated. Although it has been previously reported that Dnmt3b functions as a tumor suppressor in a mouse model of Myc-induced lymphomagenesis, its function in AML is yet to be determined. In this study, we demonstrated that deletion of Dnmt3b accelerated the progression of MLL-AF9 leukemia by increasing stemness and enhancing cell cycle progression. Gene profiling analysis revealed upregulation of the oncogenic gene set and downregulation of the cell differentiation gene set. Furthermore, loss of Dnmt3b was able to synergize with Dnmt3a deficiency in leukemia development. Taken together, these results demonstrate that Dnmt3b plays a tumor suppressive role in MLL-AF9 AML progression, thereby providing new insights into the roles of DNA methylation in leukemia development.
Collapse
Affiliation(s)
- Y Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - H Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Y Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - X Li
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing, China
| | - P Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - F Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Y Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - S Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - H Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - S Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - F Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - W Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - X Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - T Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Collaborative Innovation Center for Cancer Medicine, Tianjin, China
| |
Collapse
|
10
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|