1
|
Helal M, Sameh J, Gharib S, Merghany RM, Bozhilova-Sakova M, Ragab M. Candidate genes associated with reproductive traits in rabbits. Trop Anim Health Prod 2024; 56:94. [PMID: 38441694 PMCID: PMC10914644 DOI: 10.1007/s11250-024-03938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
In the era of scientific advances and genetic progress, opportunities in the livestock sector are constantly growing. The application of molecular-based methods and approaches in farm animal breeding would accelerate and improve the expected results. The current work aims to comprehensively review the most important causative mutations in candidate genes that affect prolificacy traits in rabbits. Rabbits are a source of excellent-tasting meat that is high in protein and low in fat. Their early maturity and intensive growth are highly valued all over the world. However, improving reproductive traits and prolificacy in rabbits could be very tricky with traditional selection. Therefore, traditional breeding programs need new methods based on contemporary discoveries in molecular biology and genetics because of the complexity of the selection process. The study and implementation of genetic markers related to production in rabbits will help to create populations with specific productive traits that will produce the desired results in an extremely short time. Many studies worldwide showed an association between different genes and productive traits in rabbits. The study of these polymorphisms and their effects could be useful for molecular-oriented breeding, particularly marker-assisted selection programs in rabbit breeding.
Collapse
Affiliation(s)
- Mostafa Helal
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Jana Sameh
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Sama Gharib
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Rana M Merghany
- Department of Pharmacognosy, National Research Centre, Giza, 12622, Egypt
| | | | - Mohamed Ragab
- Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Animal Breeding and Genetics Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, 28040, Spain
| |
Collapse
|
2
|
Feng Y, Wang H, Xu S, Huang J, Pei Q, Wang Z. The detection of Gper1 as an important gene promoting jawbone regeneration in the context of estrogen deficiency. Bone 2024; 180:116990. [PMID: 38141748 DOI: 10.1016/j.bone.2023.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Numerous studies have demonstrated that estrogen deficiency inhibit the proliferation and differentiation of pre-osteoblasts in skeleton by affecting osteogenic signaling, lead to decreased bone mass and impaired regeneration. To explore the mechanisms maintaining bone regeneration under estrogen deficiency, we randomly selected 1102 clinical cases, in which female patients aged between 18 and 75 have underwent tooth extraction in Stomatological Hospital of Tongji University, there is little difference in the healing effect of extraction defects, suggesting that to some extent, the regeneration of jawbone is insensitive to the decreased estrogen level. To illuminate the mechanisms promoting jawbone regeneration under estrogen deficiency, a tooth extraction defect model was established in the maxilla of female rats who underwent ovariectomy (OVX) or sham surgery, and jawbone marrow stromal cells (BMSCs) were isolated for single-cell sequencing. Further quantitative PCR, RNA interference, alizarin red staining, immunohistochemistry and western blotting experiments demonstrated that in the context of ovariectomy, maxillary defects promoted G protein-coupled estrogen receptor 1 (Gper1) expression, stimulate downstream cAMP/PKA/pCREB signaling, and facilitate cell proliferation, and thus provided sufficient progenitors for osteogenesis and enhanced the regeneration capacity of the jawbone. Correspondingly, the heterozygous deletion of the Gper1 gene attenuated the phosphorylation of CREB, led to decreased cell proliferation, and impaired the restoration of maxillary defects. This study demonstrates the importance of Gper1 in maintaining jawbone regeneration, especially in the context of estrogen deficiency.
Collapse
Affiliation(s)
- Yuan Feng
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Haicheng Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Shuyu Xu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Jie Huang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Zuolin Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China.
| |
Collapse
|
3
|
Kotula-Balak M, Lonc G, Zarzycka M, Tomiyasu J, Knapczyk-Stwora K, Płachno BJ, Korzekwa AJ, Kaczmarczyk J, Krakowska I. The uterusmasculinus of the Eurasian beaver (Castor fever L.) - The appraisal of fast hormone regulation by membrane androgen and estrogen receptors involvement. Gen Comp Endocrinol 2024; 345:114389. [PMID: 37797800 DOI: 10.1016/j.ygcen.2023.114389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The phenomenon of remaining paramesonephric ducts (uterus masculinus) in males of some animal species concerning its role is still an unresolved issue. Now it is well-recognized that sex hormonal regulation of reproductive physiology involves also fast nongenomic control of cellular processes through noncanonical signaling. Herein, in the uterus masculinus of Eurasian beaver membrane androgen receptor (metal ion transporter Zrt- and Irt-like protein 9; ZIP9) and membrane estrogen receptor (G protein-coupled estrogen receptor; GPER) were studied. Scanning electron microscopy together with anatomical analysis revealed that Eurasian male beavers possess one double uterus (uterus duplex). Two odd parts open into the vagina but do not form a common lumen. The length of the horns is the most differential feature of this organ in studied animals. Uterus masculinus is not a tightly closed tubular structure. Histological analysis showed an analogy to the female uterus structure however no glands but gland-like structures were observed. The presence and abundant localization of ZIP9 and GPER proteins in cells of uterus masculinus was confirmed by immunohistochemistry while their expression was measured by western blotting. GPER expression in remnants was lower (P < 0.001) than those in the female uterus. Parallelly, the concentration of progesterone and estradiol but not testosterone was lower (P < 0.05 and P < 0.01, respectively) in comparison to the female uterus. Our study, for the first time, reports the involvement of fast hormonal regulation in the uterus masculinus of Eurasian beavers reflecting the participation of this organ in the creation local hormonal environment. Moreover, the uterus masculinus seems to be a useful research model for understanding and resolving urgent biological problems such as gender identities and having children by women with a lack of uterus or anatomical barriers on this level.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - G Lonc
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - M Zarzycka
- Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - J Tomiyasu
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - K Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - A J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - J Kaczmarczyk
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - I Krakowska
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
4
|
Zhao YD, Yang CX, Du ZQ. Integrated single cell transcriptome sequencing analysis reveals species-specific genes and molecular pathways for pig spermiogenesis. Reprod Domest Anim 2023; 58:1745-1755. [PMID: 37874861 DOI: 10.1111/rda.14493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Mammalian spermatogenesis is a highly complicated and intricately organized process involving spermatogonia propagation (mitosis) and meiotic differentiation into mature sperm cells (spermiogenesis). In pigs, spermatogonia development and the role of somatic cells in spermatogenesis were previously investigated in detail. However, the characterization of key molecules fundamental to pig spermiogenesis remains less explored. Here we compared spermatogenesis between humans and pigs, focusing on spermiogenesis, by integrative testicular single-cell RNA sequencing (scRNA-seq) analysis. Human and pig testicular cells were clustered into 26 different groups, with cell-type-specific markers and signalling pathways. For spermiogenesis, pseudo-time analysis classified the lineage differentiation routes for round, elongated spermatids and spermatozoa. Moreover, markers and molecular pathways specific to each type of spermatids were examined for humans and pigs, respectively. Furthermore, high-dimensional weighted gene co-expression network analysis (hdWGCNA) identified gene modules specific for each type of human and pig spermatids. Hub genes (pig: SNRPD2.1 related to alternative splicing; human: CATSPERZ, Ca[2+] ion channel) potentially involved in spermiogenesis were also revealed. Taken together, our integrative analysis found that human and pig spermiogeneses involve specific genes and molecular pathways and provided resources and insights for further functional investigation on spermatid maturation and male reproductive ability.
Collapse
Affiliation(s)
- Ya-Dan Zhao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Duliban M, Pawlicki P, Kamińska A, Yurdakok-Dikmen B, Tekin K, Kotula-Balak M. Status of estrogen receptor expression and epigenetic methylation in Leydig cells after exposure to metalloestrogen - selenium. Reprod Toxicol 2023; 118:108389. [PMID: 37142062 DOI: 10.1016/j.reprotox.2023.108389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The trace element selenium (Se) is essential for the maintenance of spermatogenesis and fertility. A growing volume of evidence shows that Se is necessary for testosterone synthesis, and Se can stimulate Leydig cell proliferation. However, Se can also act as a metalloestrogen, which can mimic estrogen and activate the estrogen receptors. This study aimed to investigate Se effect on estrogen signaling and the epigenetic status of Leydig cells. Mouse Leydig cells (MA-10) were cultured in a medium supplemented with different Se concentrations (4, 8µM) for 24hours. Next, cells were assessed for morphological and molecular (qRT PCR, western blot, immunofluorescence) analyses. Immunofluorescence revealed strong immunosignal for 5-methylcytosine in both control and treated cells, with a stronger signal in the 8μM treated group. qRT-PCR confirmed an increased expression of methyltransferase 3β (Dnmt3b) in 8μM cells. Analysis of the expression of γH2AX (a marker for double-stranded DNA breaks) revealed an increase in the DNA breaks in cells exposed to 8μM Se. Selenium exposure did not affect the expression of canonical estrogen receptors (ERα and ERβ), however, an increase in membrane estrogen receptor G-protein coupled (GPER) protein expression was observed. To sum up, in a high concentration (8μM) Se affects GPER expression (non-genomic estrogen signaling) in Leydig cells possibly via acting on receptor protein and/or its binding. This causes DNA breaks and induces changes in Leydig cell methylation status, especially in de novo methylation which is mediated by Dnmt3b.
Collapse
Affiliation(s)
- M Duliban
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland.
| | - P Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248 Krakow, Poland
| | - A Kamińska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - B Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, Ankara 06110 Dışkapı, Turkey
| | - K Tekin
- Department of Reproduction and Artificial Insemination Ankara University Faculty of Veterinary Medicine, Ankara 06110 Dışkapı, Turkey
| | - M Kotula-Balak
- Department of Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
6
|
Pawlicki P, Koziorowska A, Koziorowski M, Pawlicka B, Duliban M, Wieczorek J, Płachno BJ, Pardyak L, Korzekwa AJ, Kotula-Balak M. Senescence and autophagy relation with the expressional status of non-canonical estrogen receptors in testes and adrenals of roe deer (Capreolus capreolus) during the pre-rut period. Theriogenology 2023; 198:141-152. [PMID: 36586352 DOI: 10.1016/j.theriogenology.2022.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The roe deer bucks represent a spontaneous model to study the synchronized testicular involution and recrudescence cycles. However, cellular processes and hormonal control of steroidogenic glands are scarcely known. For the present study testes and adrenal glands obtained from roe deer during the pre-rut season were used. We aimed to determine (i) senescence and autophagy involvement in testis atrophy (immunohistochemical analysis for tumor suppressor protein encoded by the cyclin-dependent kinase inhibitor 2A; p16 and microtubule-associated protein 1A/1B-light chain 3; LC3, respectively), (ii) the size of the adrenal cortex and medulla (morphometric analysis), (iii) G-protein coupled estrogen receptor (GPER) and estrogen-related receptors (ERRs; type α, β, and Y) distribution and expression (qRT-PCR and immunohistochemical analyses) and (iv) serum testosterone and estradiol levels (immunoassay ELISA). This study revealed pre-rut characteristics of testis structure with the presence of both senescence and autophagy-positive cells and higher involvement of senescence, especially in spermatogenic cells (P < 0.05). In the adrenal cortex, groups of cells exhibiting shrinkage were observed. The presence of ERRs in cells of the seminiferous epithelium and interstitial Leydig cells and GPER presence distinctly in Leydig cells was revealed. In adrenals, these receptors were localized in groups of normal-looking cells and those with shrinkage. Morphometric analysis showed differences in cortex width which was smaller (P < 0.05) than that of the medulla. A weak immunohistochemical signal was observed for ERRβ when compared to ERRα and ERRγ. The mRNA expression level of ERRα and ERRγ was lower (P < 0.001 and P < 0.05, respectively) while ERRβ was higher (P < 0.001) in adrenals when compared to testes. mRNA GPER expression was similar in both glands. In the pre-rut season, the testosterone level was 4.89 ng/ml while the estradiol level was 0.234 ng/ml. We postulate that: (i) senescence and autophagy may be involved in both reinitiation of testis function and/or induction of abnormal processes, (ii) hormonal modulation of testis inactivity may affect adrenal cortex causing cell shrinkage, (iii) ERRs and GPER localization in spermatogenic cells and interstitial cells, as well as cortex cells, may maintain and control the morpho-functional status of both glands, and (iv) androgens and estrogens (via ERRs and GPER) drive cellular processes in the testis and adrenal pre-rut physiology.
Collapse
Affiliation(s)
- Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna Koziorowska
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; College of Natural Sciences, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Marek Koziorowski
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszów, Poland
| | - Bernadetta Pawlicka
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Jarosław Wieczorek
- Department of Clinical Diagnostics and Internal Animal Diseases, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Malgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, 30-059, Krakow, Poland.
| |
Collapse
|
7
|
Expression of estrogen receptors, PELP1, and SRC in human spermatozoa and their associations with semen quality. Hum Cell 2023; 36:554-567. [PMID: 36577884 PMCID: PMC9947025 DOI: 10.1007/s13577-022-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Sperm cells are target cells for both estrogens and xenoestrogens. Due to the specific structure of spermatozoa, these hormonal compounds may act on sperm in a non-genomic mechanism only. However, the ESR-mediated signaling pathways are still poorly understood. In this study, we obtained 119 samples from male participants of Caucasian descent who donated semen for standard analysis. We analyzed gene expression of estrogen receptors (ESR1 and ESR2) and their coregulators-proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), and cellular kinase c-Src (SRC). RNA level was established using reverse-transcribed RNA as a template, followed by a polymerase chain reaction. Proteins' presence was confirmed by western blot and immunocytochemistry techniques. "Normal" values of semen parameters were defined as follows: > 32% sperm with progressive motility, > 4% sperm cells with normal morphology, > 15 × 106 sperm per mL, > 58% live spermatozoa and leukocyte amount < 106 cells per mL, according to WHO 2010 reference. Semen parameters that deviated from these "normal" values were labeled as "abnormal". Gene expression ratios revealed significant, moderate, and negative correlations for ESR1/ESR2 and weak, negative ESR2/PELP1 correlations in the subgroup of patients with abnormal values of semen parameters. In addition, SRC/PELP1 was moderately and positively correlated in the subgroup with parameters within the reference values established by WHO 2010. Our study showed that both PELP1 scaffolding protein and SRC kinase might influence semen quality via ESRs. It seems that not the expression of a single gene may affect the sperm quality, but more gene-to-gene mutual ratio. Characterization of estrogen-signaling pathway-related genes' modulated expression in sperm cells could aid in better understanding sperm biology and quality.
Collapse
|
8
|
Immunohistochemical Detection of Estrogen Receptor-Beta (ERβ) with PPZ0506 Antibody in Murine Tissue: From Pitfalls to Optimization. Biomedicines 2022; 10:biomedicines10123100. [PMID: 36551855 PMCID: PMC9775465 DOI: 10.3390/biomedicines10123100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
The estrogen receptor beta (ERβ) is physiologically essential for reproductive biology and is implicated in various diseases. However, despite more than 20 years of intensive research on ERβ, there are still uncertainties about its distribution in tissues and cellular expression. Several studies show contrasts between mRNA and protein levels, and the use of knockout strategies revealed that many commercially available antibodies gave false-positive expression results. Recently, a specific monoclonal antibody against human ERβ (PPZ0506) showed cross-reactivity with rodents and was optimized for the detection of rat ERβ. Herein, we established an immunohistochemical detection protocol for ERβ protein in mouse tissue. Staining was optimized on murine ovaries, as granulosa cells are known to strongly express ERβ. The staining results were confirmed by western blot analysis and RT-PCR. To obtain accurate and reliable staining results, different staining conditions were tested in paraffin-embedded tissues. Different pitfalls were encountered in immunohistochemical detection. Strong heat-induced epitope retrieval (HIER) and appropriate antibody dilution were required to visualize specific nuclear expression of ERβ. Finally, the specificity of the antibody was confirmed by using ovaries from Esr2-depleted mice. However, in some animals, strong (non-specific) background staining appeared. These signals could not be significantly alleviated with commercially available additional blocking solutions and are most likely due to estrus-dependent expression of endogenous immunoglobulins. In summary, our study showed that the antibody PPZ0506, originally directed against human ERβ, is also suitable for reliable detection of murine ERβ. An established staining protocol mitigated ambiguities regarding the expression and distribution of ERβ in different tissues and will contribute to an improved understanding of its role and functions in murine tissues in the future.
Collapse
|
9
|
Dewaele A, Dujardin E, André M, Albina A, Jammes H, Giton F, Sellem E, Jolivet G, Pailhoux E, Pannetier M. Absence of Testicular Estrogen Leads to Defects in Spermatogenesis and Increased Semen Abnormalities in Male Rabbits. Genes (Basel) 2022; 13:2070. [PMID: 36360307 PMCID: PMC9690781 DOI: 10.3390/genes13112070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 10/28/2023] Open
Abstract
Estrogens are steroid hormones produced by the aromatization of androgens by the aromatase enzyme, encoded by the CYP19A1 gene. Although generally referred to as "female sex hormones", estrogen is also produced in the adult testes of many mammals, including humans. To better understand the function of estrogens in the male, we used the rabbit model which is an important biomedical model. First, the expression of CYP19A1 transcripts was localized mainly in meiotic germ cells. Thus, testicular estrogen appears to be produced inside the seminiferous tubules. Next, the cells expressing ESR1 and ESR2 were identified, showing that estrogens could exert their function on post-meiotic germ cells in the tubules and play a role during sperm maturation, since ESR1 and ESR2 were detected in the cauda epididymis. Then, CRISPR/Cas9 CYP19A1-/- genetically modified rabbits were analyzed. CYP19A1-/- males showed decreased fertility with lower sperm count associated with hypo-spermatogenesis and lower spermatid number. Germ/sperm cell DNA methylation was unchanged, while sperm parameters were affected as CYP19A1-/- males exhibited reduced sperm motility associated with increased flagellar defects. In conclusion, testicular estrogens could be involved in the spermatocyte-spermatid transition in the testis, and in the acquisition of sperm motility in the epididymis.
Collapse
Affiliation(s)
- Aurélie Dewaele
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Emilie Dujardin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marjolaine André
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Audrey Albina
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Frank Giton
- APHP, Pôle Biologie-Pathologie Henri Mondor, 94040 Créteil, France
- INSERM IMRB U955, 94010 Créteil, France
| | - Eli Sellem
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Geneviève Jolivet
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Maëlle Pannetier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
10
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022; 12:570. [PMID: 35455061 PMCID: PMC9028943 DOI: 10.3390/life12040570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The steroidogenic cells in the testicle, Leydig cells, located in the interstitial compartment, play a vital role in male reproductive tract development, maintenance of proper spermatogenesis, and overall male reproductive function. Therefore, their dysfunction can lead to all sorts of testicular pathologies. Spermatogenesis failure, manifested as azoospermia, is often associated with defective Leydig cell activity. Spermatogenic failure is the most severe form of male infertility, caused by disorders of the testicular parenchyma or testicular hormone imbalance. This review covers current progress in knowledge on Leydig cells origin, structure, and function, and focuses on recent advances in understanding how Leydig cells contribute to the impairment of spermatogenesis.
Collapse
Affiliation(s)
| | | | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (D.A.); (J.S.-H.)
| |
Collapse
|
11
|
Walczak-Jędrzejowska R, Forma E, Oszukowska E, Bryś M, Marchlewska K, Kula K, Słowikowska-Hilczer J. Expression of G-Protein-Coupled Estrogen Receptor ( GPER) in Whole Testicular Tissue and Laser-Capture Microdissected Testicular Compartments of Men with Normal and Aberrant Spermatogenesis. BIOLOGY 2022; 11:biology11030373. [PMID: 35336747 PMCID: PMC8945034 DOI: 10.3390/biology11030373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Nowadays, there is no doubt that estrogens play an important role in male reproduction, affecting testicular cell differentiation, proliferation, apoptosis and metabolism. It is also widely believed that intratesticular balance of androgens and estrogens is crucial for the testicular development and function and that the increased testicular estrogen production may be associated with spermatogenic failure. There is also growing epidemiological evidence that the exposure of men to endocrine disruptors demonstrating estrogenic activity (xenoestrogens) may lead to impairment of male fertility via interference with estrogen signaling pathways. Besides the two classical nuclear estrogen receptors, the membrane-bound G protein-coupled estrogen receptor (GPER) was described in human testicular tissue. However, there are little data on its expression in testes with disturbed spermatogenesis. In this study, we investigated the GPER expression pattern in biopsies of azoospermic men with complete and aberrant spermatogenesis. Our results showed an increased expression of the GPER in testes with impaired spermatogenesis. Moreover, they indicate a possible involvement of estrogen signaling through GPER in disturbed function of Sertoli cells—the cells that support spermatogenic process. Abstract In this study, we retrospectively investigated GPER expression in biopsies of azoospermic men with complete (obstructive azoospermia—OA) and aberrant spermatogenesis (nonobstructive azoospermia—NOA). Each biopsy was histologically evaluated with morphometry. The testicular GPER expression was analyzed by the immunohistochemistry and RT-PCR technique in the whole testicular tissue and in seminiferous tubules and Leydig cells after laser-capture microdissection. In laser-microdissected compartments, we also analyzed transcriptional expression of selected Leydig (CYP17A1, HSD17B3, StAR) and Sertoli cell (AMH, SCF, BMP4) function markers. Immunohistochemical staining revealed expression of GPER in the cytoplasm of Leydig and Sertoli cells. Its stronger intensity was observed in Sertoli cells of NOA biopsies. The RT-PCR analysis of the GPER mRNA level unequivocally showed its increased expression in seminiferous tubules (i.e., Sertoli cells), not Leydig cells in NOA biopsies. This increased expression correlated positively with the transcriptional level of AMH—a marker of Sertoli cell immaturity, as well as FSH serum level in NOA but not in the OA group. Our results clearly demonstrate altered GPER expression in testes with primary spermatogenic impairment that might be related to Sertoli cell maturity/function.
Collapse
Affiliation(s)
- Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
- Correspondence: ; Tel.: +48-42-272-53-91
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (E.F.); (M.B.)
| | - Elżbieta Oszukowska
- II Clinic of Urology, Medical University of Lodz, Pabianicka Str. 62, 93-513 Lodz, Poland;
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (E.F.); (M.B.)
| | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
| | - Krzysztof Kula
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
| | - Jolanta Słowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
| |
Collapse
|
12
|
Hartmann K, Fietz D. In Situ Hybridization of Estrogen Receptors α and β in the Human Testis. Methods Mol Biol 2022; 2418:95-112. [PMID: 35119662 DOI: 10.1007/978-1-0716-1920-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ hybridization (ISH) is an excellent method for detecting RNA in histological sections, both to detect gene expression and to assign gene expression to a distinct cell population. Therefore, ISH may be used in basic cell biology to detect the expression of certain genes within a tissue containing various cell populations. Here, we describe the detection and cellular localization of two estrogen receptors, both isoforms of the genomic estrogen receptor (ERα and ERβ) in the human testis.
Collapse
Affiliation(s)
- Katja Hartmann
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
13
|
Galuszka A, Pawlicki P, Pardyak L, Chmurska-Gąsowska M, Pietsch-Fulbiszewska A, Duliban M, Turek W, Dubniewicz K, Ramisz G, Kotula-Balak M. Abundance of estrogen receptors involved in non-canonical signaling in the dog testis. Anim Reprod Sci 2021; 235:106888. [PMID: 34839117 DOI: 10.1016/j.anireprosci.2021.106888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
With estrogen regulation of the reproductive system, G-protein-coupled membrane estrogen receptor (GPER) and estrogen-related receptors (ERRs) are implicated. Non-canonical receptors can bind estrogens such as environmental and pharmacological chemicals. These compounds induce rapid non-genomic pathways or receptor interaction including autoactivation. Testicular tumors occur in dogs more frequently than in other domestic animals. Also, in recent decades there were increased occurrences of various tumor types in dogs. Using qRT-PCR, Western blot and immunohistochemistry procedures in the present study, there was determination of abundance pattern of GPER, ERRα, β and γ in dog tests when there were intratubular germ cell tumors. There was quantitation of estradiol, cyclic GMP and calcium ions (Ca2+). There were changes (P < 0.01; P < 0.001) in GPER, ERRα and β in both mRNA transcript and protein abundances including less (P < 0.001) co-abundance of ERRγ mRNA transcript and protein. Receptors were mainly located in Leydig cells with there being receptor delocalization to the cell cytoplasm or occasionally detections in the seminiferous tubule epithelia, especially of testicular tumor tissues. There were also greater estradiol (P < 0.05) and lesser cGMP and Ca2+ concentrations in testicular tumor tissues indicating there was a disrupted sex steroid milieu and tumor cell metastasis. Results from the present study provide further evidence that ERRγ has marked actions in testicular germ cell tumor initiation and development and in further structural-functional disruptions of dog testis. Concomitantly, abundance pattern of GPER and ERRs, relative to concentrations of cGMP and Ca2+, may be an additional indicator of intratubular germ cell tumors in dogs.
Collapse
Affiliation(s)
- Anna Galuszka
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248 Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248 Krakow, Poland
| | - Maria Chmurska-Gąsowska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Agnieszka Pietsch-Fulbiszewska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Wiktor Turek
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Klaudia Dubniewicz
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Grzegorz Ramisz
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland.
| |
Collapse
|
14
|
Qu J, Han Y, Zhao Z, Wu Y, Lu Y, Chen G, Jiang J, Qiu L, Gu A, Wang X. Perfluorooctane sulfonate interferes with non-genomic estrogen receptor signaling pathway, inhibits ERK1/2 activation and induces apoptosis in mouse spermatocyte-derived cells. Toxicology 2021; 460:152871. [PMID: 34303733 DOI: 10.1016/j.tox.2021.152871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread persistent organic pollutant. Both epidemiological survey and our previous in vivo study have revealed the associations between PFOS exposure and spermatogenesis disorder, while the underlying mechanisms are far from clear. In the present study, GC-2 cells, a mouse spermatocyte-derived cell line, was used to investigate the toxic effects of PFOS and its hypothetical mechanism of action. GC-2 cells were treated with PFOS (0, 50, 100 and 150 μM) for 24 h or 48 h. Results demonstrated that PFOS dose-dependently inhibited cell viability, induced G0/G1 cell cycle arrest and triggered apoptosis, which might be partly explained by the decrease in cyclin D1, PCNA and Bcl-2 protein expression; increase in Bax protein expression; and activation of caspase-9, -3. In addition, PFOS did not directly transactivate or repress estrogen receptors (ERs) in gene reporter assays, whereas the protein levels of both ERα and ERβ were significantly altered and the downstream ERK1/2 phosphorylation was inhibited by PFOS. Furthermore, pretreatment with specific ERα agonist PPT (1 μM) significantly attenuated the above PFOS-induced effects while specific ERβ agonist DPN (1 μM) accelerated them. These results suggest that PFOS may induce growth inhibition and apoptosis via non-genomic estrogen receptor/ERK1/2 signaling pathway in GC-2 cells, which provides a novel insight regarding the potential role of ERs in mediating PFOS-triggered spermatocyte toxicity.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
| | - Yu Han
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Ziyan Zhao
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ying Lu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Gang Chen
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Junkang Jiang
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
15
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Stewart MK, Mattiske DM, Pask AJ. Exogenous Oestrogen Impacts Cell Fate Decision in the Developing Gonads: A Potential Cause of Declining Human Reproductive Health. Int J Mol Sci 2020; 21:E8377. [PMID: 33171657 PMCID: PMC7664701 DOI: 10.3390/ijms21218377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of testicular dysgenesis syndrome-related conditions and overall decline in human fertility has been linked to the prevalence of oestrogenic endocrine disrupting chemicals (EDCs) in the environment. Ectopic activation of oestrogen signalling by EDCs in the gonad can impact testis and ovary function and development. Oestrogen is the critical driver of ovarian differentiation in non-mammalian vertebrates, and in its absence a testis will form. In contrast, oestrogen is not required for mammalian ovarian differentiation, but it is essential for its maintenance, illustrating it is necessary for reinforcing ovarian fate. Interestingly, exposure of the bi-potential gonad to exogenous oestrogen can cause XY sex reversal in marsupials and this is mediated by the cytoplasmic retention of the testis-determining factor SOX9 (sex-determining region Y box transcription factor 9). Oestrogen can similarly suppress SOX9 and activate ovarian genes in both humans and mice, demonstrating it plays an essential role in all mammals in mediating gonad somatic cell fate. Here, we review the molecular control of gonad differentiation and explore the mechanisms through which exogenous oestrogen can influence somatic cell fate to disrupt gonad development and function. Understanding these mechanisms is essential for defining the effects of oestrogenic EDCs on the developing gonads and ultimately their impacts on human reproductive health.
Collapse
Affiliation(s)
- Melanie K. Stewart
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (D.M.M.); (A.J.P.)
| | | | | |
Collapse
|
17
|
Stewart MK, Mattiske DM, Pask AJ. Estrogen suppresses SOX9 and activates markers of female development in a human testis-derived cell line. BMC Mol Cell Biol 2020; 21:66. [PMID: 32933467 PMCID: PMC7493336 DOI: 10.1186/s12860-020-00307-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background The increasing incidence of reproductive disorders in humans has been attributed to in utero exposure to estrogenic endocrine disruptors. In particular, exposure of the developing testis to exogenous estrogen can negatively impact male reproductive health. To determine how estrogens impact human gonad function, we treated the human testis-derived cell line NT2/D1 with estrogen and examined its impact on SOX9 and the expression of key markers of granulosa (ovarian) and Sertoli (testicular) cell development. Results Estrogen successfully activated its cognate receptor (estrogen receptor alpha; ESR1) in NT2/D1 cells. We observed a significant increase in cytoplasmic SOX9 following estrogen treatment. After 48 h of estrogen exposure, mRNA levels of the key Sertoli cell genes SOX9, SRY, AMH, FGF9 and PTGDS were significantly reduced. This was followed by a significant increase in mRNA levels for the key granulosa cell genes FOXL2 and WNT4 after 96 h of estrogen exposure. Conclusions These results are consistent with estrogen's effects on marsupial gonads and show that estrogen has a highly conserved impact on gonadal cell fate decisions that has existed in mammals for over 160 million years. This effect of estrogen presents as a potential mechanism contributing to the significant decrease in male fertility and reproductive health reported over recent decades. Given our widespread exposure to estrogenic endocrine disruptors, their effects on SOX9 and Sertoli cell determination could have considerable impact on the adult testis.
Collapse
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
18
|
Fietz D, Pilatz A, Diemer T, Wagenlehner F, Bergmann M, Schuppe HC. Excessive unilateral proliferation of spermatogonia in a patient with non-obstructive azoospermia - adverse effect of clomiphene citrate pre-treatment? Basic Clin Androl 2020; 30:13. [PMID: 32884817 PMCID: PMC7461256 DOI: 10.1186/s12610-020-00111-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/19/2020] [Indexed: 01/14/2023] Open
Abstract
Background Clomiphene citrate has been proposed as pre-treatment for infertile men with non-obstructive, testicular azoospermia (NOA) before surgery for testicular sperm extraction (TESE), especially when serum testosterone is low. Case presentation Here, we report on a 33-year old azoospermic patient with a previous history of repeated "fresh" TESE and clomiphene citrate therapy (50 mg/day over 6 months) before undergoing microscopically assisted, bilateral testicular biopsy. Comprehensive histological and immunohistochemical work-up revealed a heterogeneous spermatogenic arrest at the level of spermatogonia or primary spermatocytes, with focally preserved spermatogenesis up to elongated spermatids in the right testis. In the left testis, the majority of tubules (> 70%) showed no tubular lumen or regular seminiferous epithelium but a great number of spermatogonia-like cells. These cells proved to be normally differentiated spermatogonia (positive for melanoma associated antigen 4 (MAGEA4), negative for placental alkaline phosphatase (PlAP)) with increased proliferative activity (positive for proliferating cell nuclear antigen (PCNA)) and a slightly higher rate of apoptotic cells. When compared to a tissue control with normal spermatogenesis, expression of sex hormone receptors androgen receptor (AR), estrogen receptor (ER) alpha, and G-protein coupled estrogen receptor 1 (GPER1) was not altered in patient samples. Sertoli cells appeared to be mature (positive for vimentin, negative for cytokeratin 18), whereas the expression of zona occludens protein 1 (ZO-1), claudin 11, and connexin 43 was absent or dislocated in the tubules with abundance of spermatogonia. Conclusion This result suggests that formation of the blood-testis barrier is disturbed in affected tubules. To our knowledge this is the first observation of excessive, non-malignant proliferation of spermatogonia in a NOA patient. Although underlying molecular mechanisms remain to be elucidated, we hypothesize that the unusual pathology was triggered by the high-dose clomiphene citrate treatment preceding testicular biopsy.
Collapse
Affiliation(s)
- Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Straße 98, 35392 Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Adrian Pilatz
- Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany.,Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Thorsten Diemer
- Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany.,Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Florian Wagenlehner
- Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany.,Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Martin Bergmann
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Straße 98, 35392 Giessen, Germany
| | - Hans-Christian Schuppe
- Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany.,Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
19
|
Kotula-Balak M, Gorowska-Wojtowicz E, Milon A, Pawlicki P, Tworzydlo W, Płachno BJ, Krakowska I, Hejmej A, Wolski JK, Bilinska B. Towards understanding leydigioma: do G protein-coupled estrogen receptor and peroxisome proliferator-activated receptor regulate lipid metabolism and steroidogenesis in Leydig cell tumors? PROTOPLASMA 2020; 257:1149-1163. [PMID: 32180008 PMCID: PMC7329793 DOI: 10.1007/s00709-020-01488-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Leydig cell tumors (LCT) are the most common type of testicular stromal tumor. Herein, we investigate the G protein-coupled estrogen receptor (GPER) and peroxisome proliferator-activated receptor (PPAR) implication in regulation of lipid homeostasis including the expression of steroidogenesis-controlling molecules in clinical specimens of LCTs and tumor Leydig cells (MA-10). We showed the general structure and morphology of LCTs by scanning electron and light microscopy. In LCTs, mRNA and protein analyses revealed increased expression of GPER and decreased expression of PPARα, β, and γ. Concomitantly, changes in expression pattern of the lutropin receptor (LHR), protein kinase A (PKA), perilipin (PLIN), hormone sensitive lipase (HSL), steroidogenic acute regulatory protein (StAR), translocator protein (TSPO), HMG-CoA synthase, and reductase (HMGCS, HMGCR) were observed. Using MA-10 cells treated with GPER and PPAR antagonists (alone and in combination), we demonstrated GPER-PPAR-mediated control of estradiol secretion via GPER-PPARα and cyclic guanosine monophosphate (cGMP) concentration via GPER-PPARγ. It is assumed that GPER and PPAR can crosstalk, and this can be altered in LCT, resulting in a perturbed lipid balance and steroidogenesis. In LCTs, the phosphatidylinositol-3-kinase (PI3K)-Akt-mTOR pathway was disturbed. Thus, PI3K-Akt-mTOR with cGMP can play a role in LCT outcome and biology including lipid metabolism.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland.
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Kraków, Poland.
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - I Krakowska
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - A Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - J K Wolski
- nOvum Fertility Clinic, Bociania 13, 02-807, Warszawa, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
20
|
Wang Q, Shen JY, Zhang R, Hong JW, Li Z, Ding Z, Wang HX, Zhang JP, Zhang MR, Xu LC. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020; 438:152460. [PMID: 32278050 DOI: 10.1016/j.tox.2020.152460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Synthetic pyrethroids are used as insecticides in agriculture and a variety of household applications worldwide. Pyrethroids are widely distributed in all environmental compartments and the general populations are exposed to pyrethroids through various routes. Pyrethroids have been identified as endocrine-disrupting chemicals (EDCs) which are responsible for the male reproductive impairments. The data confirm pyrethroids cause male reproductive damages. The insecticides exert the toxic effects on male reproductive system through various complex mechanisms including antagonizing androgen receptor (AR), inhibiting steroid synthesis, affecting the hypothalamic-pituitary-gonadal (HPG) axis, acting as estrogen receptor (ER) modulators and inducing oxidative stress. The mechanisms of male reproductive toxicity of pyrethroids involve multiple targets and pathways. The review will provide further insight into pyrethroid-induced male reproductive toxicity and mechanisms, which is crucial to preserve male reproductive health.
Collapse
Affiliation(s)
- Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jun-Yu Shen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zheng Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zhen Ding
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Heng-Xue Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jin-Peng Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Mei-Rong Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
21
|
Li H, Li Y, Yang L, Zhang D, Liu Z, Wang Y, Han R, Li G, Li Z, Tian Y, Kang X, Liu X. Identification of a Novel Lipid Metabolism-Associated Hepatic Gene Family Induced by Estrogen via ERα in Chicken ( Gallus gallus). Front Genet 2020; 11:271. [PMID: 32296460 PMCID: PMC7136477 DOI: 10.3389/fgene.2020.00271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Liver is the main organ of lipid metabolism in chicken, especially for laying hens. To explore the molecular mechanism of lipid metabolism in chicken, five novel genes discovered in chicken liver tissue were systematically studied. Bioinformatic analysis was used to analyze the gene characteristics. The expression patterns and regulatory molecular mechanism of the five genes were examined. Our results showed that all five novel genes contain a common NADP-binding site that belongs to the NADB-Rossmann superfamily, and the genes were designated NADB-LER1-5. Phylogenetic tree of the NADB-LERs gene family in different species suggested these five genes originated from the same ancestor. Tissue distributions showed that NADB-LER1-4 genes were highly expressed in lipid metabolism organs, including liver, kidney and duodenum, and that the NADB-LER5 gene was highly expressed in liver and kidney. The spatiotemporal expression indicated that the expression levels of NADB-LER1-5 genes in liver tissue were significantly greater in sexually mature hens than that of immature pullets (P-value ≤ 0.05). The expression levels of NADB-LER1-5 were significantly induced by 17β-estradiol in primary cultured chicken embryo hepatocytes (P-value ≤ 0.05), and 17β-estradiol regulated the expression of NADB-LER1-5 mediated by ERα. Individual assays verified that under induction of 17β-estradiol, the five novel genes were significantly upregulated, with subsequent alteration in serum TG, TC, and VLDLs in 10-week-old pullets. This study proved NADB-LERs family mainly expressed in liver, kidney, and duodenum tissues. 17β-estradiol induces the expression of NADB-LER1-5 genes predominantly mediated via ERα. They likely involved in lipid metabolism in the liver of chicken.
Collapse
Affiliation(s)
- Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Liyu Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dingding Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ziming Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
22
|
Antalikova J, Secova P, Horovska L, Krejcirova R, Simonik O, Jankovicova J, Bartokova M, Tumova L, Manaskova-Postlerova P. Missing Information from the Estrogen Receptor Puzzle: Where Are They Localized in Bull Reproductive Tissues and Spermatozoa? Cells 2020; 9:cells9010183. [PMID: 31936899 PMCID: PMC7016540 DOI: 10.3390/cells9010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/10/2023] Open
Abstract
Estrogens are steroid hormones that affect a wide range of physiological functions. The effect of estrogens on male reproductive tissues and sperm cells through specific receptors is essential for sperm development, maturation, and function. Although estrogen receptors (ERs) have been studied in several mammalian species, including humans, they have not yet been described in bull spermatozoa and reproductive tissues. In this study, we analyzed the presence of all types of ERs (ESR1, ESR2, and GPER1) in bull testicular and epididymal tissues and epididymal and ejaculated spermatozoa, and we characterize them here for the first time. We observed different localizations of each type of ER in the sperm head by immunofluorescent microscopy. Additionally, using a selected polyclonal antibody, we found that each type of ER in bull sperm extracts had two isoforms with different molecular masses. The detailed detection of ERs is a prerequisite not only for understanding the effect of estrogen on all reproductive events but also for further studying the negative effect of environmental estrogens (endocrine disruptors) on processes that lead to fertilization.
Collapse
Affiliation(s)
- Jana Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Petra Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lubica Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Romana Krejcirova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Ondrej Simonik
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Jana Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Michaela Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lucie Tumova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Pavla Manaskova-Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, 252 50 Vestec, Czech Republic
- Correspondence: ; Tel.: +420-22438-2934
| |
Collapse
|
23
|
Li X, Wen Z, Wang Y, Mo J, Zhong Y, Ge RS. Bisphenols and Leydig Cell Development and Function. Front Endocrinol (Lausanne) 2020; 11:447. [PMID: 32849262 PMCID: PMC7411000 DOI: 10.3389/fendo.2020.00447] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the production and use of plastics and the degradation of wastes related to industrial plastics. Evidence from laboratory animal and human studies supports the view that BPA has an endocrine disrupting effect on Leydig cell development and function. To better understand the adverse effects of BPA, we reviewed its role and mechanism by analyzing rodent data in vivo and in vitro and human epidemiological evidence. BPA has estrogen and anti-androgen effects, thereby destroying the development and function of Leydig cells and causing related reproductive diseases such as testicular dysgenesis syndrome, delayed puberty, and subfertility/infertility. Due to the limitation of BPA production, the increased use of BPA analogs has also attracted attention to these new chemicals. They may share actions and mechanisms similar to or different from BPA.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zina Wen
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
- *Correspondence: Ying Zhong
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Ren-Shan Ge
| |
Collapse
|
24
|
Fénichel P, Chevalier N. Is Testicular Germ Cell Cancer Estrogen Dependent? The Role of Endocrine Disrupting Chemicals. Endocrinology 2019; 160:2981-2989. [PMID: 31617897 DOI: 10.1210/en.2019-00486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
Abstract
Testicular germ cell cancer (TGCC) is the most frequent cancer of the young male, with an increasing incidence worldwide. The pathogenesis and reasons for this increase remain unknown. However, epidemiological and experimental data have suggested that, similar to genital malformations and sperm impairment, it could result from the interaction of genetic and environmental factors including fetal exposure to endocrine-disrupting chemicals (EDCs) with estrogenic effects. In this review, we analyze the expression of classic and nonclassic estrogen receptors by TGCC cells, the way they may influence germ cell proliferation induced by EDCs, and discuss how this estrogen dependency supports the developmental and environmental hypothesis.
Collapse
Affiliation(s)
- Patrick Fénichel
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| | - Nicolas Chevalier
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| |
Collapse
|
25
|
Gorowska-Wojtowicz E, Duliban M, Kudrycka M, Dutka P, Pawlicki P, Milon A, Zarzycka M, Placha W, Kotula-Balak M, Ptak A, Wolski JK, Bilinska B. Leydig cell tumorigenesis - implication of G-protein coupled membrane estrogen receptor, peroxisome proliferator-activated receptor and xenoestrogen exposure. In vivo and in vitro appraisal. Tissue Cell 2019; 61:51-60. [PMID: 31759407 DOI: 10.1016/j.tice.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
Abstract
The etiology and molecular characteristics of Leydig cell tumor (LCT) are scarcely known. From the research data stems that estrogen can be implicated in LCT induction and development, however it is not investigated in detail. Considering the above, herein we analyzed the relation between G-protein coupled membrane estrogen receptor, peroxisome proliferator-activated receptor and insulin-like family peptides (insulin-like 3 peptide; INSL3 and relaxin; RLN) expressions as well as estrogen level with impact of xenoestrogen (bisphenol A; BPA, tetrabromobisphenol A; TBBPA, and tetrachlorobisphenol A; TCBPA). While in our previous studies altered GPER-PPAR partnership was found in human LCT being a possible cause and/or additionally effecting on LCT development, here mouse testes with experimentally induced LCT and mouse tumor Leydig cell (MA-10) treated with BPA chemicals were examined. We revealed either diverse changes in expression or co-expression of GPER and PPAR in mouse LCT as well as in MA-10 cells after BPA analogues when compared to human LCT. Relationships between expression of INSL3, RLN, including co-expression, and estrogen level in human LCT, mouse LCT and MA-10 cells xenoestrogen-treated were found. Moreover, involvement of PI3K-Akt-mTOR pathway or only mTOR in the interactions of examined receptors and hormones was showed. Taken together, species, cell of origin, experimental system used and type of used chemical differences may result in diverse molecular characteristics of LCT. Estrogen/xenoestrogen may play a role in tumor Leydig cell proliferation and biochemical nature but this issue requires further studies. Experimentally-induced LCT in mouse testis and MA-10 cells after BPA exposure seem to be additional models for understanding some aspects of human LCT biology.
Collapse
Affiliation(s)
- E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - M Kudrycka
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - P Dutka
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - M Zarzycka
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - W Placha
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - M Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - A Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - J K Wolski
- nOvum Fertility Clinic, Bociania 13, 02-807 Warszawa, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
26
|
Milon A, Kaczmarczyk M, Pawlicki P, Bilinska B, Duliban M, Gorowska-Wojtowicz E, Tworzydlo W, Kotula-Balak M. Do estrogens regulate lipid status in testicular steroidogenic Leydig cell? Acta Histochem 2019; 121:611-618. [PMID: 31126612 DOI: 10.1016/j.acthis.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
In this study mouse Leydig cell (MA-10) were treated with G-protein coupled membrane estrogen receptor antagonist (G-15; 10 nM). Cells were analyzed by Western blotting for expression of estrogen-related receptors (ERRα, β and γ), steroidogenic markers (lutropin receptor; LHR and 3β-hydroxysteroid dehydrogenase; 3β-HSD) and lipid droplet markers (perilipin; PLIN and microtubule-associated protein 1 A/1B-light chain 3; LC3). Concomitantly, microscopic analyses by light microscope (immunofluorescent staining for lipid droplets, PLIN and LC3) as well as by electron microscope (for lipid droplet ultrastructure) were utilized. For analysis of cholesterol content, cAMP level and progesterone secretion, G-15, estrogen receptor (ER) antagonist (ICI 182,780; 10 μM), 17β-estradiol (10 mM) and, bisphenol A (BPA; 10 nM) were used alone or in combinations. We revealed no changes in ERRs expression but alterations in ERRβ and γ localization in G-15-treated cells when compared to control. Partial translocation of ERRβ and γ from the cell nucleus to cytoplasm was observed. Decreased expression of LHR, 3β-HSD, PLIN and LC3 was detected. Moreover, in treated cells large lipid droplets and differences in their distribution were found. Very strong signal of co-localization for PLIN and LC3 was found in treated cells when compared to control. In ultrastructure of treated cells, degenerating lipid droplets and double membrane indicating on presence of lipophagosome were observed. We found, that only (i) BPA and G-15 did not effect on cholesterol content, (ii) BPA, G-15 and ICI did not effect on cAMP level and (iii) BPA, ICI alone and in combination, and BPA with G-15 did not modulate progesterone secretion. These findings showed complex and diverse estrogen effects on mouse Leydig cells at various steps of steroid hormone production (cholesterol storage, release and processing). Lipid homeostasis and metabolism in these cells were affected by endogenous and exogenous estrogen, interactions of receptors (GPER, ER and ERR) and GPER and ER antagonists.
Collapse
Affiliation(s)
- A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kaczmarczyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
27
|
Zhai J, Geng X, Ding T, Li J, Tang J, Chen D, Cui L, Wang Q. An increase of estrogen receptor α protein level regulates BDE-209-mediated blood-testis barrier disruption during spermatogenesis in F1 mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4801-4820. [PMID: 30565106 DOI: 10.1007/s11356-018-3784-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Deca-bromodiphenyl ether (BDE-209) regulates various aspects of spermatogenesis and male fertility through its effect on estrogen receptor α (ERα), but the underlying mechanism remains unclear. Because molecular mechanisms such as remodeling of the blood-testis barrier (BTB) play crucial roles in spermatogenesis, we investigated the disruptive effects of ERα agonists on the BTB in spermatogenesis. In this study, 0, 300, and 500 mg/kg/day of BDE-209 were administered to pregnant adult mice by oral gavage from gestation day 7 to postnatal day 21. SerW3 cells were treated with methylpiperidino pyrazole (MPP) for 30 min before being treated with 50 μg/mL of BDE-209. BDE-209 increases ERα in time- and dose-dependent manners and decreases formin 1 and BTB-associated protein in F1 male mice. Furthermore, BDE-209 impairs the structure and function of the BTB. Activation of ERα signaling could disrupt the BTB, leading to spermatogenesis dysfunction. The results identified the role of ERα in BTB disruption during spermatogenesis and suggested that BTB disruption occurs because of exposure to BDE-209, which could potentially affect spermatogenesis. In conclusion, Sertoli cells seem to be the primary target of BDE-209 in the perinatal period, and this period constitutes a critical window of susceptibility to BDE-209. Also, the SerW3 cell model may not be a particularly useful cell model for studying the function of the cytoskeleton.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| | - Xiya Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Tao Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jing Tang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Daojun Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Longjiang Cui
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Qizhi Wang
- School of Energy and Environment, Southeast University, Sipailou Rd 2, Nanjing, 210018, China
| |
Collapse
|
28
|
Milon A, Pawlicki P, Rak A, Mlyczynska E, Płachno BJ, Tworzydlo W, Gorowska-Wojtowicz E, Bilinska B, Kotula-Balak M. Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling. Gen Comp Endocrinol 2019; 271:39-48. [PMID: 30391242 DOI: 10.1016/j.ygcen.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
We aim to explore the presence of a novel cell type, telocytes (TCs), in the bank vole testis interstitium following G-coupled membrane estrogen receptor (GPER) signaling withdrawal. In addition, the involvement of interstitial cells in lipid homeostasis was investigated. Bank voles (actively reproducing or regressed) were administered with GPER antagonist (G-15; 50 μg/kg bw) injections. To examine TC distribution, ultrastructure, function, and their connotation in the interstitial tissue lipid balance, electron microscopic observations were implemented. Immunohistochemistry and Western blot for the TC marker, CD34, and lipid balance molecules: leptin, adiponectin, and perilipin were performed. Photoperiod-regulated testis steroidogenic function was estimated via serum melatonin level and intratesticular cholesterol concentrations in immunoenzymatic assays. We demonstrate the presence of TCs in bank vole testis interstitium. Distinctive TC morphology: small cell bodies with very long, slender prolongations, constituting a three-dimensional network around the interstitial cells was seen. Ultrastructurally, scarce mitochondria, a few cisternae of the endoplasmic reticulum, and lipid droplets indicated possible TC implications in lipid homeostasis. Changes in CD34 expression in TCs were seen in relation to GPER disturbances. In GPER-blocked testis, single TCs were present in the LD interstitium when in SD ones they were occasionally absent. Moreover, in TCs of SD voles, a lack of lipid droplets was revealed, likely reflecting attenuated TC function during regression. However, melatonin levels decreased in GPER-blocked LD and SD. Concomitantly, leptin, adiponectin, and perilipin expressions together with cholesterol content varied after blockage. Based on our results we suggest TCs are an important component of the bank vole testis interstitium as they are implicated in ultramorphology maintenance, protein interactions, and lipid homeostasis.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewa Mlyczynska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
29
|
Kotula-Balak M, Pawlicki P, Milon A, Tworzydlo W, Sekula M, Pacwa A, Gorowska-Wojtowicz E, Bilinska B, Pawlicka B, Wiater J, Zarzycka M, Galas J. The role of G-protein-coupled membrane estrogen receptor in mouse Leydig cell function-in vivo and in vitro evaluation. Cell Tissue Res 2018; 374:389-412. [PMID: 29876633 PMCID: PMC6209072 DOI: 10.1007/s00441-018-2861-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
In this study, G-coupled estrogen receptor (GPER) was inactivated, by treatment with antagonist (G-15), in testes of C57BL/6 mice: immature (3 weeks old), mature (3 months old) and aged (1.5 years old) (50 μg/kg bw), as well as MA-10 mouse Leydig cells (10 nM/24 h) alone or in combination with 17β-estradiol or antiestrogen (ICI 182,780). In G-15-treated mice, overgrowth of interstitial tissue was found in both mature and aged testes. Depending on age, differences in structure and distribution of various Leydig cell organelles were observed. Concomitantly, modulation of activity of the mitochondria and tubulin microfibers was revealed. Diverse and complex GPER regulation at the mRNA level and protein of estrogen signaling molecules (estrogen receptor α and β; ERα, ERβ and cytochrome P450 aromatase; P450arom) in G-15 Leydig cells was found in relation to age and the experimental system utilized (in vivo and in vitro). Changes in expression patterns of ERs and P450arom, as well as steroid secretion, reflected Leydig cell heterogeneity to estrogen regulation throughout male life including cell physiological status.We show, for the first time, GPER with ERs and P450arom work in tandem to maintain Leydig cell architecture and supervise its steroidogenic function by estrogen during male life. Full set of estrogen signaling molecules, with involvement of GPER, is crucial for proper Leydig cell function where each molecule acts in a specific and/or complementary manner. Further understanding of the mechanisms by which GPER controls Leydig cells with special regard to male age, cell of origin and experimental system used is critical for predicting and preventing testis steroidogenic disorders based on perturbations in estrogen signaling.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Sekula
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - A Pacwa
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Pawlicka
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - J Wiater
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Zarzycka
- Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - J Galas
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
30
|
Malivindi R, Aquila S, Rago V. Immunolocalization of G Protein-Coupled Estrogen Receptor in the Pig Epididymis. Anat Rec (Hoboken) 2018; 301:1467-1473. [PMID: 29679442 DOI: 10.1002/ar.23837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/12/2018] [Accepted: 02/08/2018] [Indexed: 01/01/2023]
Abstract
The presence of estrogen in the genital ducts of different mammalian species has been extensively studied and the estrogen influence on the functional activity of the male genital tract has been hypothesized. Conversely, very few data have been reported on pig excurrent ducts: the localization of classical estrogen receptors (ERα and ERβ) is scarcely known, while the expression of the G protein-coupled receptor (GPER1), a membrane estrogen receptor, is still unknown in pig. The aim of the present study was to evaluate GPER1 expression in the different regions of the mature pig epididymis, using immunohistochemistry, western blot and RT-PCR analyses. The results showed that GPER1 is mainly expressed in the epithelial cells of the corpus epididymis compared to the caput and the cauda, while muscle cells are moderately immunostained and stromal cells are unstained. The presence of GPER1 was confirmed by Western blot and RT-PCR analyses. In our study, we have demonstrated for the first time the GPER1 expression in male porcine epididymis, revealing a new mediator of estrogen signaling at this site. In conclusion, these new data suggest that estrogen action via GPER1 may contribute to sperm maturation in the corpus and sperm protection/storage in the cauda. Interestingly, the presence of GPER1 in the muscle layer may be indicative of a possible GPER1 involvement in the estrogen regulation of duct contractility. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
31
|
Krejčířová R, Maňasová M, Sommerová V, Langhamerová E, Rajmon R, Maňásková-Postlerová P. G protein-coupled estrogen receptor (GPER) in adult boar testes, epididymis and spermatozoa during epididymal maturation. Int J Biol Macromol 2018; 116:113-119. [PMID: 29730010 DOI: 10.1016/j.ijbiomac.2018.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
The G protein-coupled estrogen receptor (GPER) is a transmembrane receptor considered as a mediator of rapid non-genomic responses. GPER has been found in the male reproductive tract of many mammalian species. However, in adult boars, GPER has been reported only in ejaculated spermatozoa. Therefore, we focused on GPER detection in testicular and epididymal tissues and sperm cells in adult boars. We found GPER in Leydig cells and seminiferous tubules of boar testes and in the secretory epithelium of epididymis. A weaker signal was visible in smooth muscle cells and spermatozoa in the epididymal tubule. In spermatozoa isolated from epididymal parts, GPER was found to localize mainly in the sperm acrosome and flagellum. We immunodetected several protein bands in the extracts of the tissues and epididymal spermatozoa. A significantly higher amount of GPER mRNA was detected in the spermatozoa from caput epididymis, whereas the mRNA expression was lower in tissues of testes and caput epididymal. Our results showed the first evidence of GPER in boar epididymal spermatozoa. Moreover, the GPER localization in adult boar testes, epididymis, and mature spermatozoa suggests the involvement of estrogens via transmembrane receptor and rapid non-genomic signaling in both the sperm development and post-testicular maturation.
Collapse
Affiliation(s)
- Romana Krejčířová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Marie Maňasová
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Veronika Sommerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Eva Langhamerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Radko Rajmon
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Pavla Maňásková-Postlerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic; Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., Biocev, Vestec, Czech Republic.
| |
Collapse
|
32
|
Fietz D. Transporter for sulfated steroid hormones in the testis - expression pattern, biological significance and implications for fertility in men and rodents. J Steroid Biochem Mol Biol 2018; 179:8-19. [PMID: 29017936 DOI: 10.1016/j.jsbmb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
In various tissues, steroid hormones may be sulfated, glucuronidated or otherwise modified. For a long time, these hydrophilic molecules have been considered to be merely inactive metabolites for excretion via bile or urine. Nevertheless, different organs such as the placenta and breast tissue produce large amounts of sulfated steroids. After the discovery of the enzyme steroid sulfatase, which is able to re-activate sulfated steroids, these precursor molecules entered the focus of interest again as a local supply for steroid hormone synthesis with a prolonged half-life compared to their unconjugated counterparts. The first descriptions of this so-called sulfatase pathway in the placenta and breast tissue (with special regards to hormone-dependent breast cancer) were quickly followed by studies of steroid sulfate production and function in the testis. These hydrophilic molecules may not permeate the cell membrane by diffusion in the way that unbound steroids can, but need to be transported through the plasma membrane by transport systems. In the testis, a functional sulfatase pathway requires the expression of specific uptake carrier and efflux transporters in testicular cells, i.e. Sertoli, Leydig and germ cells. Main focus has to be placed on Sertoli cells, as these cells build up the blood-testis barrier. In this review, an overview of carrier expression pattern in the human as well as rodent testis is provided with special interest towards implications on fertility.
Collapse
Affiliation(s)
- D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
33
|
Rago V, Romeo F, Giordano F, Malivindi R, Pezzi V, Casaburi I, Carpino A. Expression of oestrogen receptors (GPER, ESR1, ESR2) in human ductuli efferentes and proximal epididymis. Andrology 2017; 6:192-198. [PMID: 29145706 DOI: 10.1111/andr.12443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Oestrogen targeting in the human genital ducts is still not well-known. In fact, to date, the localization of oestrogen receptors, ESR1 and ESR2, is controversial and the presence of the membrane oestrogen receptor GPER (G protein-coupled oestrogen receptor) is unexplored. This study has investigated the expression of GPER, ESR1, ESR2 in human ductuli efferentes and proximal caput epididymis by immunohistochemistry and Western blot analysis. Furthermore, the presence of PELP1 (proline-glutamic acid-leucine-rich protein 1), a co-regulator of the oestrogen receptors, was also evaluated. In ductuli efferentes, GPER and ESR1 were clearly localized in all epithelial cells, while ESR2 was evidenced only in ciliated cells. Conversely, the epithelial cells of proximal caput epididymis revealed moderate GPER immunoreactivity, the absence of ERS1 and the occasional presence of ESR2. Furthermore, PELP1 was observed in ciliated cells of ductuli efferentes and in principal cells of proximal caput epididymis. Therefore, this study firstly demonstrated the expression of GPER in human male genital ducts, revealing a new mediator of oestrogen action in these anatomical sites. ESR1 and ESR2 were differentially localized in the two genital tracts together with PELP1, but cell sites of ERs and their co-regulator were not homogeneous. So, a different regional/cellular association of GPER with the classical oestrogen receptors was highlighted, suggesting that oestrogen action could be mediated by GPER, ESR1, ESR2 in ductuli efferentes, while by GPER and, occasionally by ESR2, in proximal caput epididymis. This study suggests that the specific oestrogen-mediated functions in human genital ducts might result from the different local interactions of oestrogens with oestrogen receptors and their co-regulators.
Collapse
Affiliation(s)
- V Rago
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - F Romeo
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - F Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - R Malivindi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - V Pezzi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - I Casaburi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - A Carpino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
34
|
Hempfling AL, Lim SL, Adelson DL, Evans J, O'Connor AE, Qu ZP, Kliesch S, Weidner W, O'Bryan MK, Bergmann M. Expression patterns of HENMT1 and PIWIL1 in human testis: implications for transposon expression. Reproduction 2017; 154:363-374. [PMID: 28676534 DOI: 10.1530/rep-16-0586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to define the expression patterns of HENMT1 and PIWI proteins in human testis and investigate their association with transposon expression, infertility sub-type or development of testicular germ cell tumours (TGCTs). Testis biopsies showing normal spermatogenesis were used to identify normal localisation patterns of HENMT1 and PIWIL1 by immunolocalisation and RT-PCR after laser microdissection. 222 testis biopsies representing normal spermatogenesis, hypospermatogenesis, spermatogenic arrests, Sertoli cell-only (SCO) tumours and TGCTs were analysed by RT-qPCR for expression of HENMT1/PIWIL1/PIWIL2/PIWIL3/PIWIL4 and LINE-1 Additionally, HENMT1-overexpressing TCam2 seminoma cell lines were analysed for the same parameters by RT-qPCR. We found that HENMT1 and PIWIL1 are coexpressed in pachytene spermatocytes and spermatids. Expression of HENMT1, PIWIL1 and PIWIL2 was mainly dependent on germ cell content but low levels of expression were also detected in some SCO samples. Levels of HENMT1, PIWIL1 and PIWIL2 expression were low in TGCT. Samples with HENMT1, PIWIL2 and PIWIL4 expression showed significantly (P < 0.05) lower transposon expression compared to samples without expression in the same histological group. HENMT1-overexpressing TCam2 cells showed lower LINE-1 expression than empty vector-transfected control lines. Our findings support that the transposon-regulating function of the piRNA pathway found in the mouse is conserved in adult human testis. HENMT1 and PIWI proteins are expressed in a germ-cell-specific manner and required for transposon control.
Collapse
Affiliation(s)
- A L Hempfling
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia .,Institute for Veterinary AnatomyHistology and Embryology, Justus Liebig University, Giessen, Germany
| | - S L Lim
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia
| | - D L Adelson
- School of Biological SciencesThe University of Adelaide, Adelaide, Australia
| | - J Evans
- Centre for Reproductive HealthHudson Institute of Medical Research, Clayton, Australia
| | - A E O'Connor
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia
| | - Z P Qu
- School of Biological SciencesThe University of Adelaide, Adelaide, Australia
| | - S Kliesch
- Centre of Reproductive Medicine and AndrologyMuenster, Germany
| | - W Weidner
- Clinic for UrologyPediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - M K O'Bryan
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia.,The School of Biological SciencesMonash University, Clayton, Australia
| | - M Bergmann
- Institute for Veterinary AnatomyHistology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
35
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
36
|
Zanatta AP, Brouard V, Gautier C, Goncalves R, Bouraïma-Lelong H, Mena Barreto Silva FR, Delalande C. Interactions between oestrogen and 1α,25(OH) 2-vitamin D 3 signalling and their roles in spermatogenesis and spermatozoa functions. Basic Clin Androl 2017; 27:10. [PMID: 28491323 PMCID: PMC5421336 DOI: 10.1186/s12610-017-0053-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/16/2017] [Indexed: 02/07/2023] Open
Abstract
Oestrogens and 1α,25(OH)2-vitamin D3 (1,25-D3) are steroids that can provide effects by binding to their receptors localised in the cytoplasm and in the nucleus or the plasma membrane respectively inducing genomic and non-genomic effects. As confirmed notably by invalidation of the genes, coding for their receptors as tested with mice with in vivo and in vitro treatments, oestrogens and 1,25-D3 are regulators of spermatogenesis. Moreover, some functions of ejaculated spermatozoa as viability, DNA integrity, motility, capacitation, acrosome reaction and fertilizing ability are targets for these hormones. The studies conducted on their mechanisms of action, even though not completely elicited, have allowed the demonstration of putative interactions between their signalling pathways that are worth examining more closely. The present review focuses on the elements regulated by oestrogens and 1,25-D3 in the testis and spermatozoa as well as the interactions between the signalling pathways of both hormones.
Collapse
Affiliation(s)
- Ana Paula Zanatta
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Biochemistry Department, Laboratory of Hormones & Signal Transduction, UFSC, Florianópolis, Brazil
| | - Vanessa Brouard
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France
| | - Camille Gautier
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France
| | - Renata Goncalves
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Biochemistry Department, Laboratory of Hormones & Signal Transduction, UFSC, Florianópolis, Brazil
| | | | | | - Christelle Delalande
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Laboratoire Œstrogènes, Reproduction, Cancer (OeReCa), EA 2608 USC INRA1377, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032 CAEN cedex 5, France
| |
Collapse
|
37
|
Dostalova P, Zatecka E, Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int J Mol Sci 2017; 18:ijms18050904. [PMID: 28441342 PMCID: PMC5454817 DOI: 10.3390/ijms18050904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors’ variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens’ and oestrogen receptors’ effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Collapse
Affiliation(s)
- Pavla Dostalova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Eva Zatecka
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic.
| |
Collapse
|
38
|
Leavy M, Trottmann M, Liedl B, Reese S, Stief C, Freitag B, Baugh J, Spagnoli G, Kölle S. Effects of Elevated β-Estradiol Levels on the Functional Morphology of the Testis - New Insights. Sci Rep 2017; 7:39931. [PMID: 28045098 PMCID: PMC5206739 DOI: 10.1038/srep39931] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022] Open
Abstract
Elevated estradiol levels are correlated with male infertility. Causes of hyperestrogenism include diseases of the adrenal cortex, testis or medications affecting the hypothalamus-pituitary-gonadal axis. The aim of our study was to elucidate the effects of estradiol treatment on testicular cellular morphology and function, with reference to the treatment regimen received. Testes samples (n = 9) were obtained post-orchiectomy from male-to-female transsexuals within the age range of 26–52 years. Each patient had a minimum of 1–6 years estradiol treatment. For comparison, additional samples were obtained from microscopically unaltered testicular tissue surrounding tumors (n = 7). The tissues obtained were investigated by stereomicroscopy, histochemistry, scanning electron microscopy (SEM) and immunohistochemistry. Our studies revealed that estradiol treatment significantly decreased the diameter of the seminiferous tubules (p < 0.05) and induced fatty degeneration in the surrounding connective tissue. An increase in collagen fiber synthesis in the extracellular matrix (ECM) surrounding the seminiferous tubules was also induced. Spermatogenesis was impaired resulting in mainly spermatogonia being present. Sertoli cells revealed diminished expression of estrogen receptor alpha (ERα). Both Sertoli and Leydig cells showed morphological alterations and glycoprotein accumulations. These results demonstrate that increased estradiol levels drastically impact the human testis.
Collapse
Affiliation(s)
- Myles Leavy
- School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| | - Matthias Trottmann
- Department of Urology, Klinikum Grosshadern, University of Munich, Germany
| | - Bernhard Liedl
- Department of Urogenital Surgery, Clinics for Surgery Munich-Bogenhausen, Munich, Germany
| | - Sven Reese
- Institute of Veterinary Anatomy, Histology and Embryology, University of Munich, Germany
| | - Christian Stief
- Department of Urology, Klinikum Grosshadern, University of Munich, Germany
| | - Benjamin Freitag
- Department of Urology, Klinikum Grosshadern, University of Munich, Germany
| | - John Baugh
- School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| | - Giulio Spagnoli
- Department of Biomedicine, University Hospital Basel, Switzerland
| | - Sabine Kölle
- School of Medicine and Medical Science, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
39
|
Current insights into the sulfatase pathway in human testis and cultured Sertoli cells. Histochem Cell Biol 2016; 146:737-748. [DOI: 10.1007/s00418-016-1503-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
|
40
|
Yang WR, Zhu FW, Zhang JJ, Wang Y, Zhang JH, Lu C, Wang XZ. PI3K/Akt Activated by GPR30 and Src Regulates 17β-Estradiol-Induced Cultured Immature Boar Sertoli Cells Proliferation. Reprod Sci 2016; 24:57-66. [DOI: 10.1177/1933719116649696] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wei-Rong Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Feng-Wei Zhu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Jiao-Jiao Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Yi Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Xian-Zhong Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| |
Collapse
|
41
|
Abstract
In situ hybridization (ISH) is an excellent method for detecting RNA in histological sections, both to detect gene expression and to assign gene expression to a distinct cell population. Therefore, ISH may be used in basic cell biology to detect the expression of certain genes within a tissue containing various cell populations. Here, we describe the detection and cellular localization of three estrogen receptors, both isoforms of the genomic estrogen receptor (ERα and ERβ) as well as the membrane-bound G-protein-coupled estrogen receptor 1 (GPER) in the human testis.
Collapse
|
42
|
Retana-Márquez S, Juárez-Rojas L, Hernández A, Romero C, López G, Miranda L, Guerrero-Aguilera A, Solano F, Hernández E, Chemineau P, Keller M, Delgadillo JA. Comparison of the effects of mesquite pod and Leucaena extracts with phytoestrogens on the reproductive physiology and sexual behavior in the male rat. Physiol Behav 2016; 164:1-10. [PMID: 27163522 DOI: 10.1016/j.physbeh.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/19/2022]
Abstract
Mesquite (Prosopis sp.) and Leucaena leucocephala are widespread legumes, widely used to feed several livestock species and as food source for human populations in several countries. Both mesquite and Leucaena contain several phytoestrogens which might have potential estrogenic effects. Thus, the aim of this study was to evaluate the effects of mesquite pod and Leucaena extracts on several aspects of behavior and reproductive physiology of the male rat. The effects of the extracts were compared with those of estradiol (E2) and of two isoflavones: daidzein (DAI) and genistein (GEN). The following treatments were given to groups of intact male rats: vehicle; mesquite pod extract; Leucaena extract; E2; DAI; GEN. The results indicate that mesquite pod and Leucaena extracts disrupt male sexual behavior in a similar way to DAI and GEN, but less than E2. The main disruptor of sexual behavior was E2, however after 40 and 50days of administration, both extracts and phytoestrogens disrupted sexual behavior in a similar way to E2. The extracts also increased testicular germ cell apoptosis, decreased sperm quality, testicular weight, and testosterone levels, as phytoestrogens did, although these effects were less than those caused by estradiol. The number of seminiferous tubules with TUNEL-positive germ cells increased in extracts treated groups in a similar way to phytoestrogens groups, and E2 caused the greatest effect. The number of TUNEL-positive cells per tubule increased only in Leucaena extract and E2 groups, but not in mesquite- and phytoestrogens-treated groups. Spermatocytes and round spermatids were the TUNEL-positive cells observed in all experimental groups. This effect was associated with smaller testicular weights without atrophy in experimental groups compared with control. Testicular atrophy was only observed in estradiol-treated males. Testosterone decreased in males of all experimental groups, compared with control, this androgen was undetectable in E2 treated males. These results suggest that mesquite pod and Leucaena extracts cause effects similar to those of phytoestrogens in male rat reproduction, these effects were lower than those caused by E2.
Collapse
Affiliation(s)
- S Retana-Márquez
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico.
| | - L Juárez-Rojas
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico
| | - A Hernández
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico
| | - C Romero
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico
| | - G López
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico
| | - L Miranda
- Colegio de Posgraduados, Campus San Luis Potosí, Mexico
| | - A Guerrero-Aguilera
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico
| | - F Solano
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico
| | - E Hernández
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico
| | - P Chemineau
- INRA, Physiologie de la Reproduction et des Comportements, UMR 7247 INRA-CNRS-Université F. Rabelais-IFCE, 37380 Nouzilly, France
| | - M Keller
- INRA, Physiologie de la Reproduction et des Comportements, UMR 7247 INRA-CNRS-Université F. Rabelais-IFCE, 37380 Nouzilly, France
| | - J A Delgadillo
- Centro de Investigación en Reproducción Caprina, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, Mexico
| |
Collapse
|
43
|
Cerny KL, Garbacik S, Skees C, Burris WR, Matthews JC, Bridges PJ. Gestational form of Selenium in Free-Choice Mineral Mixes Affects Transcriptome Profiles of the Neonatal Calf Testis, Including those of Steroidogenic and Spermatogenic Pathways. Biol Trace Elem Res 2016; 169:56-68. [PMID: 26043916 DOI: 10.1007/s12011-015-0386-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
Abstract
In areas where soils are deficient in Selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Because Se status affects testosterone synthesis and frequency of sperm abnormalities, and the form of Se supplemented to cows affects tissue-specific gene expression, the objective of this study was to determine whether the form of Se consumed by cows during gestation would affect the expression of mRNAs that regulate steroidogenesis and/or spermatogenesis in the neonatal calf testis. Twenty-four predominantly Angus cows were assigned randomly to have individual, ad libitum, access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX), starting 4 months prior to breeding and continuing throughout gestation. Thirteen male calves were born over a 3-month period (ISe, n = 5; OSe, n = 4; MIX, n = 4), castrated within 2 days of birth, and extracted testis RNA subjected to transcriptomal analysis by microarray (Affymetrix Bovine 1.0 ST arrays) and targeted gene expression analysis by real-time reverse-transcription PCR (RT-PCR) of mRNAs encoding proteins known to affect steroidogenesis and/or spermatogenesis. The form of dam Se affected (P < 0.05) the expression of 853 annotated genes, including 17 mRNAs putatively regulating steroidogenesis and/or spermatogenesis. Targeted RT-PCR analysis indicated that the expression of mRNA encoding proteins CYP2S1 (cytochrome P450, family 2, subfamily S, polypeptide 1), HSD17B7 (hydroxysteroid (17β) dehydrogenase 7), SULT1E1 (sulfotransferase family 1E, estrogen preferring, member 1), LDHA (lactate dehydrogenase A), CDK5R1 (cyclin-dependent kinase 5, regulatory subunit 1), and LEP (leptin) was affected (P < 0.05) by form of Se consumed by dams of developing bull calves, while AKR1C4 (aldo-keto reductase family 1, member C4) and CCND2 (cyclin D2) tended (P < 0.09) to be affected. Our results indicate that form of Se fed to dams during gestation affected the transcriptome of the neonatal calf testis. If these profiles are maintained throughout maturation, then the form of Se fed to dams may impact bull fertility and the development of Se form-dependent mineral mixes that target gestational development of the testis are warranted.
Collapse
Affiliation(s)
- K L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - S Garbacik
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - C Skees
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - W R Burris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - J C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - P J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
44
|
Rago V, Romeo F, Giordano F, Ferraro A, Carpino A. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland. Andrology 2015; 4:121-7. [PMID: 26714890 DOI: 10.1111/andr.12131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements.
Collapse
Affiliation(s)
- V Rago
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - F Romeo
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - F Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - A Ferraro
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - A Carpino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| |
Collapse
|
45
|
Boscia F, Passaro C, Gigantino V, Perdonà S, Franco R, Portella G, Chieffi S, Chieffi P. High levels of GPR30 protein in human testicular carcinoma in situ and seminomas correlate with low levels of estrogen receptor-beta and indicate a switch in estrogen responsiveness. J Cell Physiol 2015; 230:1290-7. [PMID: 25413376 DOI: 10.1002/jcp.24864] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 02/03/2023]
Abstract
The G protein-coupled estrogen receptor (GPR30) is suggested to be involved in non-nuclear estrogen signalling and is expressed in a variety of hormone dependent cancer entities. It is well established that oestrogens are involved in pathological germ cell proliferation including testicular germ cell tumours. This study was performed to further elucidate the role of this receptor and the possible correlation with the estrogen receptor β in human testicular carcinoma in situ (CIS), seminomas and in GC1 and TCam-2 germ cell lines; in addition, a Tissue Micro-Array was built using the most representative areas from 25 cases of human testicular seminomas and 20 cases of CIS. The expression of ERβ and GPR30 were observed by using Western blot analysis in combination with immunocytochemistry and immunofluorescence analyses. Here, we show that down regulation of ERβ associates with GPR30 over-expression both in human testicular CIS and seminomas. In addition, we show that 17β-oestradiol induces the ERK1/2 activation and increases c-Fos expression through GPR30 associated with ERβ down-regulation in TCam-2 cell line. The present results suggest that exposure to oestrogens or oestrogen-mimics, in some as of yet undefined manner, diminishes the ERβ-mediated growth restraint in CIS and in human testicular seminoma, probably due to ERβ down-regulation associated to GPR30 increased expression indicating that GPR30 could be a potential therapeutic target to design specific inhibitors.
Collapse
Affiliation(s)
- Francesca Boscia
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università di Napoli "Federico II,", Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|