1
|
Szukiewicz D. Potential Therapeutic Exploitation of G Protein-Coupled Receptor 120 (GPR120/FFAR4) Signaling in Obesity-Related Metabolic Disorders. Int J Mol Sci 2025; 26:2501. [PMID: 40141148 PMCID: PMC11941992 DOI: 10.3390/ijms26062501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The increasing prevalence of overweight and obesity not only in adults but also among children and adolescents has become one of the most alarming health problems worldwide. Metabolic disorders accompanying fat accumulation during pathological weight gain induce chronic low-grade inflammation, which, in a vicious cycle, increases the immune response through pro-inflammatory changes in the cytokine (adipokine) profile. Obesity decreases life expectancy, largely because obese individuals are at an increased risk of many medical complications, often referred to as metabolic syndrome, which refers to the co-occurrence of insulin resistance (IR), impaired glucose tolerance, type 2 diabetes (T2D), atherogenic dyslipidemia, hypertension, and premature ischemic heart disease. Metabotropic G protein-coupled receptors (GPCRs) constitute the most numerous and diverse group of cell surface transmembrane receptors in eukaryotes. Among the GPCRs, researchers are focusing on the connection of G protein-coupled receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), with signaling pathways regulating the inflammatory response and insulin sensitivity. This review presents the current state of knowledge concerning the involvement of GPR120 in anti-inflammatory and metabolic signaling. Since both inflammation in adipose tissue and insulin resistance are key problems in obesity, there is a rationale for the development of novel, GPR120-based therapies for overweight and obese individuals. The main problems associated with introducing this type of treatment into clinical practice are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Moriyama R, Nakamura S, Mitsui I, Sugiyama M, Fukui H, Fukui H, Hagiwara T, Miyabe-Nishiwaki T, Suzuki J. Expression of SARS-CoV-2 entry molecules ACE2, NRP1, TMPRSS2, and FURIN in the reproductive tissues of male macaques. Histochem Cell Biol 2024; 162:465-475. [PMID: 39153130 DOI: 10.1007/s00418-024-02314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Coronavirus disease 2019 (COVID-19) reportedly affects male reproductive function by causing spermatogenesis dysfunction and suppressing testosterone secretion. However, the relationship between COVID-19 and impaired reproductive function, such as whether these effects on reproductive function are a direct effect of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in male reproductive organs or an indirect effect of high fever, is not known. Here, we examined whether the cell entry molecules of SARS-CoV-2, namely, ACE2, NRP1, TMPRSS2, and FURIN, are expressed in the male reproductive organs using the testes and accessory gonads of macaques during the breeding season. RT-PCR expression analysis showed that the testes alone expressed all four molecules. Immunohistochemical staining of testis tissue sections revealed that ACE2 is expressed in Leydig cells and the apical region of Sertoli cells, whereas NRP1 is expressed in the cell bodies surrounding the Leydig and Sertoli cell nuclei. FURIN is mainly expressed in Leydig cells, secondary spermatocytes, and spermatids. However, TMPRSS2 immunopositive cells were not observed. Therefore, it was not possible to observe cells expressing all four molecules in the gonads and accessory gonads of male primates. These results suggest that SARS-CoV-2 is unlikely to directly affect spermatogenesis in primates or proliferate in cells of the seminiferous tubules and undergo release into the semen through the previously known ACE2-mediated infection route. However, the expression of three molecules, including ACE2, was observed in Leydig cells, suggesting that testosterone synthesis and secretion may be affected when primates, including humans, are infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Department of Life Science, Kindai University, Higashiosaka, Osaka, 577-8502, Japan.
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ikki Mitsui
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan
| | - Hirotaka Fukui
- Fukui Veterinary Hospital, Higashiosaka, Osaka, 577-0809, Japan
| | - Hitomi Fukui
- Fukui Veterinary Hospital, Higashiosaka, Osaka, 577-0809, Japan
| | - Teruki Hagiwara
- Department of Life Science, Kindai University, Higashiosaka, Osaka, 577-8502, Japan
| | - Takako Miyabe-Nishiwaki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
3
|
Iwasa K, Yamamoto S, Yamashina K, Yagishita-Kyo N, Maruyama K, Awaji T, Takei Y, Hirasawa A, Yoshikawa K. A peripheral lipid sensor GPR120 remotely contributes to suppression of PGD 2-microglia-provoked neuroinflammation and neurodegeneration in the mouse hippocampus. J Neuroinflammation 2021; 18:304. [PMID: 34961526 PMCID: PMC8711188 DOI: 10.1186/s12974-021-02361-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuroinflammation is a key pathological component of neurodegenerative disease and is characterized by microglial activation and the secretion of proinflammatory mediators. We previously reported that a surge in prostaglandin D2 (PGD2) production and PGD2-induced microglial activation could provoke neuroinflammation. We also reported that a lipid sensor GPR120 (free fatty acid receptor 4), which is expressed in intestine, could be activated by polyunsaturated fatty acids (PUFA), thereby mediating secretion of glucagon-like peptide-1 (GLP-1). Dysfunction of GPR120 results in obesity in both mice and humans. METHODS To reveal the relationship between PGD2-microglia-provoked neuroinflammation and intestinal PUFA/GPR120 signaling, we investigated neuroinflammation and neuronal function with gene and protein expression, histological, and behavioral analysis in GPR120 knockout (KO) mice. RESULTS In the current study, we discovered notable neuroinflammation (increased PGD2 production and microglial activation) and neurodegeneration (declines in neurogenesis, hippocampal volume, and cognitive function) in GPR120 KO mice. We also found that Hematopoietic-prostaglandin D synthase (H-PGDS) was expressed in microglia, microglia were activated by PGD2, H-PGDS expression was upregulated in GPR120 KO hippocampus, and inhibition of PGD2 production attenuated this neuroinflammation. GPR120 KO mice exhibited reduced intestinal, plasma, and intracerebral GLP-1 contents. Peripheral administration of a GLP-1 analogue, liraglutide, reduced PGD2-microglia-provoked neuroinflammation and further neurodegeneration in GPR120 KO mice. CONCLUSIONS Our results suggest that neurological phenotypes in GPR120 KO mice are probably caused by dysfunction of intestinal GPR120. These observations raise the possibility that intestinal GLP-1 secretion, stimulated by intestinal GPR120, may remotely contributed to suppress PGD2-microglia-provoked neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Nan Yagishita-Kyo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoshinori Takei
- Department of Translational Research and Cellular Therapeutics, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| |
Collapse
|
4
|
Understanding the appetite modulation pathways: The role of the FFA1 and FFA4 receptors. Biochem Pharmacol 2021; 186:114503. [PMID: 33711286 DOI: 10.1016/j.bcp.2021.114503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
Pharmaconutrition is an area of current interest, especially concerning the advances in the pharmacology of nutrient-sensing receptors, as have been accomplished in the last 20 years. The family of free fatty acid (FFA) receptors is composed of four members, sequentially named as FFA1 to FFA4, which are activated by the short to long-chain fatty acids. The affinity of the FFA1 and FFA4 receptors for the omega-3 polyunsaturated fatty acids prompted pre-clinical and clinical investigations regarding their involvement in metabolic diseases. The main studies have been focused on the receptors' expression analyses, the featuring of knockout mice, and the assessment of selective synthetic ligands. These clearly have indicated a relevant role for FFA1 and FFA4 in the peripheral and central circuits for the regulation of energetic metabolism. This review article aimed to discuss the relevance of the FFA1 and FFA4 receptors in appetite-related complications, mainly related to obesity, cancer cachexia, and anorexia in the elderly, emphasizing whether their pharmacological modulation might be useful for the management of these disorders.
Collapse
|
5
|
Moriyama R, Fukushima N. Expression of lysophosphatidic acid receptor 1 in the adult female mouse pituitary gland. Neurosci Lett 2021; 741:135506. [PMID: 33220367 DOI: 10.1016/j.neulet.2020.135506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
Lysophosphatidic acid receptor 1 (LPA1) is a receptor of lysophosphatidic acid (LPA). The present study investigated Lpar1 mRNA expression in the mouse pituitary gland by RT-PCR, in situ hybridization, and immunohistochemistry. Lpar1 mRNA was abundantly expressed in the pituitary gland. In situ hybridization and immunohistochemistry revealed over 90 % of a common glycoprotein α-subunit, luteinizing hormone β-subunit, and thyroid-stimulating hormone β-subunit immunoreactive cells co-expressed Lpar1 mRNA in the anterior pituitary gland, but few growth hormone, adrenocorticotropic hormone, and prolactin cells co-expressed Lpar1. Furthermore, Lpar1 mRNA levels in the pituitary gland were increased after ovariectomy and decreased after E2 administration. These results demonstrate that LPA1-mediated signaling may play physiological roles in gonadotropes and thyrotropes in the mouse pituitary gland.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Department of Life Science, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | - Nobuyuki Fukushima
- Department of Life Science, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
6
|
Freitas RDS, Muradás TC, Dagnino APA, Rost FL, Costa KM, Venturin GT, Greggio S, da Costa JC, Campos MM. Targeting FFA1 and FFA4 receptors in cancer-induced cachexia. Am J Physiol Endocrinol Metab 2020; 319:E877-E892. [PMID: 32893672 DOI: 10.1152/ajpendo.00509.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Free fatty acid (FFA) receptors FFA1 and FFA4 are omega-3 molecular targets in metabolic diseases; however, their function in cancer cachexia remains unraveled. We assessed the role of FFA1 and FFA4 receptors in the mouse model of cachexia induced by Lewis lung carcinoma (LLC) cell implantation. Naturally occurring ligands such as α-linolenic acid (ALA) and docosahexaenoic acid (DHA), the synthetic FFA1/FFA4 agonists GW9508 and TUG891, or the selective FFA1 GW1100 or FFA4 AH7614 antagonists were tested. FFA1 and FFA4 expression and other cachexia-related parameters were evaluated. GW9508 and TUG891 decreased tumor weight in LLC-bearing mice. Regarding cachexia-related end points, ALA, DHA, and the preferential FFA1 agonist GW9508 rescued body weight loss. Skeletal muscle mass was reestablished by ALA treatment, but this was not reflected in the fiber cross-sectional areas (CSA) measurement. Otherwise, TUG891, GW1100, or AH7614 reduced the muscle fiber CSA. Treatments with ALA, GW9508, GW1100, or AH7614 restored white adipose tissue (WAT) depletion. As for inflammatory outcomes, ALA improved anemia, whereas GW9508 reduced splenomegaly. Concerning behavioral impairments, ALA and GW9508 rescued locomotor activity, whereas ALA improved motor coordination. Additionally, DHA improved grip strength. Notably, GW9508 restored abnormal brain glucose metabolism in different brain regions. The GW9508 treatment increased leptin levels, without altering uncoupling protein-1 downregulation in visceral fat. LLC-cachectic mice displayed FFA1 upregulation in subcutaneous fat, but not in visceral fat or gastrocnemius muscle, whereas FFA4 was unaltered. Overall, the present study shed new light on FFA1 and FFA4 receptors' role in metabolic disorders, indicating FFA1 receptor agonism as a promising strategy in mitigating cancer cachexia.
Collapse
Affiliation(s)
- Raquel D S Freitas
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaís C Muradás
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula A Dagnino
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda L Rost
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kesiane M Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gianina T Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (Brain Institute of Rio Grande do Sul - BraIns), Porto Alegre, Brazil
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (Brain Institute of Rio Grande do Sul - BraIns), Porto Alegre, Brazil
| | - Jaderson C da Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (Brain Institute of Rio Grande do Sul - BraIns), Porto Alegre, Brazil
| | - Maria M Campos
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Deura C, Kimura Y, Nonoyama T, Moriyama R. Gpr120 mRNA expression in gonadotropes in the mouse pituitary gland is regulated by free fatty acids. J Reprod Dev 2020; 66:249-254. [PMID: 32115468 PMCID: PMC7297631 DOI: 10.1262/jrd.2019-166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
GPR120 is a long-chain fatty acid (LCFA) receptor that is specifically expressed in gonadotropes in the anterior pituitary gland in mice. The aim of this study was to investigate
whether GPR120 is activated by free fatty acids in the pituitary of mice and mouse immortalized gonadotrope LβT2 cells. First, the effects of palmitate on GPR120, gonadotropic
hormone b-subunits, and GnRH-receptor expression in gonadotropes were investigated in vitro. We observed palmitate-induced an increase in Gpr120
mRNA expression and a decrease in follicle-stimulating hormone b-subunit (Fshb) expression in LβT2 cells. Furthermore, palmitate exposure caused the
phosphorylation of ERK1/2 in LβT2 cells, but no significant changes were observed in the expression levels of luteinizing hormone b-subunit (Lhb) and gonadotropin
releasing hormone-receptor (Gnrh-r) mRNA and number of GPR120 immunoreactive cells. Next, diurnal variation in Gpr120 mRNA expression in the male
mouse pituitary gland was investigated using ad libitum and night-time restricted feeding (active phase from 1900 to 0700 h) treatments. In ad
libitum feeding group mice, Gpr120 mRNA expression at 1700 h was transiently higher than that measured at other times, and the peak blood non-esterified
fatty acid (NEFA) levels were observed from 1300 to 1500 h. These results were not observed in night-time-restricted feeding group mice. These results suggest that GPR120 is
activated by LCFAs to regulate follicle stimulating hormone (FSH) synthesis in the mouse gonadotropes.
Collapse
Affiliation(s)
- Chikaya Deura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Yusuke Kimura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Takumi Nonoyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| |
Collapse
|
8
|
Deura C, Moriyama R. Short-term but not long-term high-fat diet induces an increase in gene expression of gonadotropic hormones and GPR120 in the male mouse pituitary gland. J Reprod Dev 2020; 66:143-148. [PMID: 31902809 PMCID: PMC7175384 DOI: 10.1262/jrd.2019-144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-fat diet (HFD) is associated with the regulation of reproductive functions. This study aimed to investigate the effects of short-term HFD on the mRNA expression levels of
follicle-stimulating hormone β subunit (FSHβ), luteinizing hormone β subunit (LHβ), gonadotropin-releasing hormone receptor, and long-chain fatty acid receptor, GPR120, in the matured male
mouse pituitary gland. Adult male mice were fed either control chow or HFD for 1, 2, 5, 10, 30 and 150 days. Fshb and Gpr120 mRNA expression levels in the
pituitary glands were significantly increased during 2 to 30 days of HFD feeding. Gnrh-r mRNA in the 30 days HFD fed group and body weight in the 30 and 150 days HFD fed
groups were higher than control. However, there were no significant differences in plasma non-esterified fatty acids or glucose levels during the 150 days of HFD feeding. These results
suggest that male mice feeding a short-term HFD induces FSHβ synthesis and GPR120 expression in their pituitary gonadotropes.
Collapse
Affiliation(s)
- Chikaya Deura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
9
|
Nakamura S, Noda K, Miwa M, Minabe S, Hagiwara T, Hirasawa A, Matsuyama S, Moriyama R. Colocalization of GPR120 and anterior pituitary hormone-producing cells in female Japanese Black cattle. J Reprod Dev 2019; 66:135-141. [PMID: 31902805 PMCID: PMC7175391 DOI: 10.1262/jrd.2019-111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Negative energy balance in domestic animals suppresses their reproductive function. These animals commonly use long-chain fatty acids (LCFAs) from adipocytes as an energy source under
states of malnutrition. The G-protein coupled receptor, GPR120, is a specific receptor for LCFAs, but its role in reproductive function remains unknown in domestic animals. The purpose of
this study was to examine whether GPR120 is involved in the reproductive system of cattle. GPR120 mRNA expression was evaluated in brain, pituitary, and ovarian tissue
samples by RT-PCR. GPR120 gene expression was detected with high intensity only in the anterior pituitary sample, and GPR120-immunoreactive cells were found in the anterior
pituitary gland. Double immunohistochemistry of GPR120 in the anterior pituitary hormone-producing cells, such as gonadotropes, thyrotropes, lactotropes, somatotropes, and corticotropes, was
performed to clarify the distribution of GPR120 in the anterior pituitary gland of ovariectomized heifers. Luteinizing hormone β subunit (LHβ)- and follicle-stimulating hormone β subunit
(FSHβ)-immunoreactive cells demonstrated GPR120 immunoreactivity at 80.7% and 85.9%, respectively. Thyrotropes, lactotropes, somatotropes, and corticotropes coexpressed GPR120 at 21.1%,
5.4%, 13.6%, and 14.5%, respectively. In conclusion, the present study suggests that GPR120 in the anterior pituitary gland might mediate LCFA signaling to regulate gonadotrope functions,
such as hormone secretion or production, in cattle.
Collapse
Affiliation(s)
- Sho Nakamura
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Ehime 794-8555, Japan
| | - Kohei Noda
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Masafumi Miwa
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan
| | - Shiori Minabe
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Teruki Hagiwara
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Shuichi Matsuyama
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
10
|
Moriyama R, Iwamoto K, Hagiwara T, Yoshida S, Kato T, Kato Y. AMP-activated protein kinase activation reduces the transcriptional activity of the murine luteinizing hormone β-subunit gene. J Reprod Dev 2019; 66:97-104. [PMID: 31813919 PMCID: PMC7175385 DOI: 10.1262/jrd.2019-143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is one of the factors that induces reproductive disorders. However, the underlying biological processes are unclear. AMP-activated protein kinase (AMPK) is an enzyme that plays crucial role as a cellular energy sensor. In the present study, we examined the effects of AMPK activation on the transcription of the murine gonadotropin subunit genes Cga, Lhb, and Fshb, and the gonadotropin-releasing hormone receptor Gnrh-r. Real-time PCR and transcription assay using LβT2 cells demonstrated that 5-amino-imidazole carboxamide riboside (AICAR), a cell-permeable AMP analog, repressed the expression of Lhb. Next, we examined deletion mutants of the upstream region of Lhb and found that the upstream regulatory region of Lhb (-2527 to -2198 b) was responsible for the repression by AICAR. Furthermore, putative transcription factors (SP1, STAT5a, and TEF) that might mediate transcriptional control of the Lhb repression induced by AICAR were identified. In addition, it was confirmed that both AICAR and a competitive inhibitor of glucose metabolism, 2-deoxy-D-glucose, induced AMPK phosphorylation in LβT2 cells. Therefore, the upstream region of Lhb is one of the target sites for glucoprivation inducing AMPK activation. In addition, AMPK plays a role in repressing Lhb expression through the distal -2527 to -2198 b region.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Koichi Iwamoto
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Teruki Hagiwara
- Laboratory of Molecular and Cellular Biology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan.,Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Takako Kato
- Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
11
|
Ren Z, Chen L, Wang Y, Wei X, Zeng S, Zheng Y, Gao C, Liu H. Activation of the Omega-3 Fatty Acid Receptor GPR120 Protects against Focal Cerebral Ischemic Injury by Preventing Inflammation and Apoptosis in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 202:747-759. [PMID: 30598514 DOI: 10.4049/jimmunol.1800637] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
Abstract
G protein-coupled receptor 120 (GPR120) has been shown to negatively regulate inflammation and apoptosis, but its role in cerebral ischemic injury remains unclear. Using an in vivo model of middle cerebral artery occlusion (MCAO) and an in vitro model of oxygen-glucose deprivation (OGD), we investigated the potential role and molecular mechanisms of GPR120 in focal cerebral ischemic injury. Increased GPR120 expression was observed in microglia and neurons following MCAO-induced ischemia in wild type C57BL/6 mice. Treatment with docosahexaenoic acid (DHA) inhibited OGD-induced inflammatory response in primary microglia and murine microglial BV2 cells, whereas silencing of GPR120 strongly exacerbated the inflammation induced by OGD and abolished the anti-inflammatory effects of DHA. Mechanistically, DHA inhibited OGD-induced inflammation through GPR120 interacting with β-arrestin2. In addition to its anti-inflammatory function, GPR120 also played a role in apoptosis as its knockdown impaired the antiapoptotic effect of DHA in OGD-induced rat pheochromocytoma (PC12) cells. Finally, using MCAO mouse model, we demonstrated that GPR120 activation protected against focal cerebral ischemic injury by preventing inflammation and apoptosis. Our study indicated that pharmacological targeting of GPR120 may provide a novel approach for the treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Zhiping Ren
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinbing Wei
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Shenglan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; .,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China;
| |
Collapse
|
12
|
Li S, Mbong EF, John DT, Terasaka T, Li D, Lawson MA. Induction of Stress Signaling In Vitro and Suppression of Gonadotropin Secretion by Free Fatty Acids in Female Mouse Gonadotropes. Endocrinology 2018; 159:1074-1087. [PMID: 29315384 PMCID: PMC5793794 DOI: 10.1210/en.2017-00638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
An emerging body of evidence supports the concept that the pituitary is a site for integration of multiple physiological and metabolic signals that inform and modulate endocrine pathways. Multiple endocrine mediators of energy balance and adiposity are known to impinge on the neuroendocrine axis regulating reproduction. Observations in humans show that obesity is correlated with decreased gonadotropin secretion, and studies have also suggested that pituitary sensitivity to stimulation by gonadotropin-releasing hormone (GnRH) is decreased in obese individuals. Free fatty acids are a potential mediator of adiposity and energy balance, but their impact as an endocrine modulator of pituitary function has not been closely examined. We evaluated the impact of free fatty acids on a pituitary gonadotrope cell line and in primary pituitary cultures of female mice. We show that increasing physiologically relevant doses of the monounsaturated ω-9 fatty acid oleate induces cellular stress and increases production of reactive oxygen species in a mouse gonadotrope cell line. In contrast, the unsaturated ω-3 α-linolenic and ω-6 linoleic fatty acids do not have this effect. Additionally, oleate can activate immediate-early gene expression independent of GnRH stimulation but has a negative impact on GnRH induction and expression of the gonadotropin subunit gene Lhb. Further, oleate suppresses gonadotropin secretion in response to pulsatile stimulation by GnRH. These results indicate that free fatty acids can directly alter gonadotropin gene expression and secretion in response to GnRH and may provide a link between energy sensing and reproduction.
Collapse
Affiliation(s)
- Song Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
- Neonatal Intensive Care Unit, Dongguan Eighth People’s Hospital, Dongguan 523000, People’s Republic of China
| | - Ekaette F. Mbong
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Denise T. John
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
13
|
Ran T, Li H, Liu Y, Zhou C, Tang S, Han X, Wang M, He Z, Kang J, Yan Q, Tan Z, Beauchemin KA. Cloning, Phylogenetic Analysis, and Distribution of Free Fatty Acid Receptor GPR120 Expression along the Gastrointestinal Tract of Housing versus Grazing Kid Goats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2333-2341. [PMID: 26914739 DOI: 10.1021/acs.jafc.5b06131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
G-protein-coupled receptor 120 (GPR120) is reported as a long-chain fatty acid (LCFA) receptor that elicits free fatty acid (FFA) regulation on metabolism homeostasis. The study aimed to clone the gpr120 gene of goats (g-GPR120) and subsequently investigate phylogenetic analysis and tissue distribution throughout the digestive tracts of kid goats, as well as the effect of housing versus grazing (H vs G) feeding systems on GPR120 expression. Partial coding sequence (CDS) of g-GPR120 was cloned and submitted to NCBI (accession no. KU161270 ). Phylogenetic analysis revealed that g-GPR120 shared higher homology in both mRNA and amino acid sequences for ruminants than nonruminants. Immunochemistry, real-time PCR, and Western blot analysis showed that g-GPR120 was expressed throughout the digestive tracts of goats. The expression of g-GPR120 was affected by feeding system and age, with greater expression of g-GPR120 in the G group. It was concluded that the g-GPR120-mediated LCFA chemosensing mechanism is widely present in the tongue and gastrointestinal tract of goats and that its expression can be affected by feeding system and age.
Collapse
Affiliation(s)
- Tao Ran
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Hengzhi Li
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yong Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México , Toluca, Estado de México C.P. 50090, Mexico
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Xuefeng Han
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Lethbridge Research Centre, Agriculture and Agri-Food Canada , Lethbridge, Alberta T1J 4B1, Canada
| | - Jinghe Kang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Qiongxian Yan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Karen A Beauchemin
- Lethbridge Research Centre, Agriculture and Agri-Food Canada , Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
14
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [PMID: 26878854 DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
15
|
Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62:195-9. [PMID: 26853521 PMCID: PMC4848577 DOI: 10.1262/jrd.2015-138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we assessed the effects of long-chain fatty acids (LCFAs) and the LCFA receptor agonist GW9508 on the
transcription of the gonadotropin subunit genes Cga, Lhb and
Fshb because LCFA receptor GPR120 was observed in mouse gonadotropes in our recent study. A
transcription assay using LβT2 cells demonstrated that LCFAs, oleic acid, α-linolenic acid, docosahexaenoic
acid and palmitate, repressed the expression of Cga, Lhb, and
Fshb at concentrations between 50 and 100 µM. On the other hand, treatment with 10 µM
unsaturated LCFAs, oleic acid, α-linolenic acid and docosahexaenoic acid, repressed only Fshb
expression, while the same dose of a saturated LCFA, palmitate, had no effect on the expression of
gonadotropin subunit genes. Furthermore, GW9508 did not affect promoter activity. Next, we examined deletion
mutants of the upstream region of Fshb and found that the upstream regulatory region (-2824
to -2343 bp) of Fshb was responsible for the notable repression by 10 µM unsaturated LCFAs.
Our results suggest that the upstream region of Fshb is susceptible to unsaturated LCFAs. In
addition, unsaturated LCFAs play a role in repressing Fshb expression through the distal
-2824 to -2343 bp region, which might be independent of the LCFA receptor GPR120 pathway.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kinki University, Osaka 577-8502, Japan
| | | | | | | |
Collapse
|
16
|
Moniri NH. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochem Pharmacol 2016; 110-111:1-15. [PMID: 26827942 DOI: 10.1016/j.bcp.2016.01.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022]
Abstract
Over the last decade, a subfamily of G protein-coupled receptors that are agonized by endogenous and dietary free-fatty acids (FFA) has been discovered. These free-fatty acid receptors include FFA2 and FFA3, which are agonized by short-chained FFA, as well as FFA1 and FFA4, which are agonized by medium-to-long chained FFA. Ligands for FFA1 and FFA4 comprise the family of long chain polyunsaturated omega-3 fatty acids including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), suggesting that many of the long-known beneficial effects of these fats may be receptor mediated. In this regard, FFA4 has gathered considerable interest due to its role in ameliorating inflammation, promoting insulin sensitization, and regulating energy metabolism in response to FFA ligands. The goal of this review is to summarize the body of evidence in regard to FFA4 signal transduction, its mechanisms of regulation, and its functional role in a variety of tissues. In addition, recent endeavors toward discovery of small molecules that modulate FFA4 activity are also presented.
Collapse
Affiliation(s)
- Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, United States.
| |
Collapse
|
17
|
Hirasawa A, Takeuchi M, Shirai R, Chen Z, Ishii S, Iida K. [Free fatty acid receptors as therapeutic targets for metabolic disorders]. Nihon Yakurigaku Zasshi 2015; 146:296-301. [PMID: 26657119 DOI: 10.1254/fpj.146.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|