1
|
Phadke K, D’Anna S, Vega ET, Xiao J, Lin X, Zhang M, Sall J, Liang FX, Park DS, Cerrone M, Lundby A, Delmar M, van Opbergen CJ. Atrial cardiomyopathy resulting from loss of plakophilin-2 expression: Response to adrenergic stimulation and implications for the exercise response. J Physiol 2024:10.1113/JP286985. [PMID: 39446303 PMCID: PMC12018593 DOI: 10.1113/jp286985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/25/2024] [Indexed: 04/25/2025] Open
Abstract
Atrial arrhythmias occur in 20-40% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) and are associated with an increased risk of sustained ventricular arrhythmias and inappropriate implantable cardioverter-defibrillator shocks. The pathophysiology of atrial arrhythmias in ARVC remains unclear. Most cases of gene-positive ARVC are linked to pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Here, we test the hypothesis that loss of PKP2 expression leads to pro-arrhythmic changes in atrial cardiomyocytes. Atrial cells/tissue were obtained from a cardiac-specific, tamoxifen-activated model of PKP2 deficiency (PKP2cKO). By contrast to PKP2cKO ventricular myocytes, PKP2cKO atrial cardiomyocytes presented no significant differences in intracellular calcium (Ca2+ i) transient dynamics, sarcoplasmic reticulum load or action potential morphology. PKP2cKO atrial cardiomyocytes showed elevated reactive oxygen species levels, increased frequency and amplitude of Ca2+ sparks, and increased diastolic [Ca2+]i compared to control; the latter two parameters were further increased by isoproterenol exposure and reversed by exposure to ryanodine receptor blocker dantrolene. We speculate that these isoproterenol-dependent effects may impact on the exercise-related atrial arrhythmia risk in ARVC patients. Despite absence of changes in Ca2+ i transient dynamics, PKP2cKO atrial cardiomyocytes showed enhanced sarcomere shortening and impaired sarcomere relaxation. Orthogonal transcriptomic analysis of human(GTEx) and PKP2cKO atrial tissue led to identification of 41 transcripts depending on PKP2 expression. Biochemical follow-up confirmed reduced abundance of sarcomeric protein myosin binding protein C, potentially playing a role in cellular shortening and relaxation changes observed. Our findings provide novel insights into the role of PKP2 in atrial myocardium with potential implications to therapeutic management of atrial fibrillation in patients with PKP2-related ARVC. KEY POINTS: Atrial arrhythmias occur in a large group of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), a cardiac disease mostly caused by pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Exercise is considered to be an independent risk factor for arrhythmias consequent to PKP2 deficiency. We show that loss of PKP2 expression affects cellular calcium handling and electrophysiology differently in left atrial vs. ventricular myocardium and causes extensive atrial fibrosis. PKP2-deficient atrial cardiomyocytes present increased spontaneous sarcoplasmic reticulum calcium release events, further enhanced by isoproterenol exposure and reversible by a ryanodine receptor blocker (dantrolene). In addition, PKP2-deficient atrial myocytes exhibit impaired relaxation and enhanced sarcomere shortening, most probably related to reduced abundance of myosin binding protein C. We speculate that cellular effects reported upon isoproterenol impact on the exercise-related atrial arrhythmia risk in ARVC patients. We further propose that therapeutic approaches aimed at mitigating ventricular damage may be effective to treat the atrial disease in ARVC.
Collapse
Affiliation(s)
- Kavya Phadke
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Sergio D’Anna
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Junhua Xiao
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Xianming Lin
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Mingliang Zhang
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Joseph Sall
- DART Microscopy Laboratory, New York University Grossmann School of Medicine
| | - Feng-Xia Liang
- DART Microscopy Laboratory, New York University Grossmann School of Medicine
- Department of Cell Biology, New York University Grossmann School of Medicine
| | - David S. Park
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Marina Cerrone
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | | |
Collapse
|
2
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Struckman HL, Moise N, Vanslembrouck B, Rothacker N, Chen Z, van Hengel J, Weinberg SH, Veeraraghavan R. Indirect Correlative Light and Electron Microscopy (iCLEM): A Novel Pipeline for Multiscale Quantification of Structure From Molecules to Organs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:318-333. [PMID: 38525890 PMCID: PMC11057817 DOI: 10.1093/mam/ozae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.
Collapse
Affiliation(s)
- Heather L Struckman
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Nicolae Moise
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Nathan Rothacker
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Zhenhui Chen
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Room E400, 1801 N. Senate Blvd., Suite E400, Indianapolis, IN 46202, USA
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Seth H Weinberg
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Struckman HL, Moise N, King DR, Soltisz A, Buxton A, Dunlap I, Chen Z, Radwański PB, Weinberg SH, Veeraraghavan R. Unraveling Impacts of Chamber-Specific Differences in Intercalated Disc Ultrastructure and Molecular Organization on Cardiac Conduction. JACC Clin Electrophysiol 2023; 9:2425-2443. [PMID: 37498248 PMCID: PMC11102000 DOI: 10.1016/j.jacep.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Propagation of action potentials through the heart coordinates the heartbeat. Thus, intercalated discs, specialized cell-cell contact sites that provide electrical and mechanical coupling between cardiomyocytes, are an important target for study. Impaired propagation leads to arrhythmias in many pathologies, where intercalated disc remodeling is a common finding, hence the importance and urgency of understanding propagation dependence on intercalated disc structure. Conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, because of lack of quantitative structural data at subcellular through nano scales. OBJECTIVES This study sought to quantify intercalated disc structure at these spatial scales in the healthy adult mouse heart and relate them to chamber-specific properties of propagation as a precursor to understanding the effects of pathological intercalated disc remodeling. METHODS Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. RESULTS By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by interchamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. CONCLUSIONS These data provide the first stepping stone to elucidating chamber-specific effects of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.
Collapse
Affiliation(s)
- Heather L Struckman
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nicolae Moise
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - D Ryan King
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew Soltisz
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Izabella Dunlap
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Zhenhui Chen
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Przemysław B Radwański
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Seth H Weinberg
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
6
|
Struckman HL, Moise N, King DR, Soltisz A, Buxton A, Dunlap I, Chen Z, Radwański PB, Weinberg SH, Veeraraghavan R. Unraveling Chamber-specific Differences in Intercalated Disc Ultrastructure and Molecular Organization and Their Impact on Cardiac Conduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528369. [PMID: 36824727 PMCID: PMC9949041 DOI: 10.1101/2023.02.13.528369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
During each heartbeat, the propagation of action potentials through the heart coordinates the contraction of billions of individual cardiomyocytes and is thus, a critical life process. Unsurprisingly, intercalated discs, which are cell-cell contact sites specialized to provide electrical and mechanical coupling between adjacent cardiomyocytes, have been the focus of much investigation. Slowed or disrupted propagation leads to potentially life-threatening arrhythmias in a wide range of pathologies, where intercalated disc remodeling is a common finding. Hence, the importance and urgency of understanding intercalated disc structure and its influence on action potential propagation. Surprisingly, however, conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, owing to lack of quantitative structural data at subcellular through nano scales. In order to address this critical gap in knowledge, we sought to quantify intercalated disc structure at these finer spatial scales in the healthy adult mouse heart and relate them to function in a chamber-specific manner as a precursor to understanding the impacts of pathological intercalated disc remodeling. Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by inter-chamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. These data provide the first stepping stone to elucidating chamber-specific impacts of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.
Collapse
|
7
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
8
|
Lewczuk B, Szyryńska N. Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies. Animals (Basel) 2021; 11:ani11123390. [PMID: 34944167 PMCID: PMC8698110 DOI: 10.3390/ani11123390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Ultrastructural studies of cells and tissues are usually performed using transmission electron microscopy (TEM), which enables imaging at the highest possible resolution. The weak point of TEM is the limited ability to analyze the ultrastructure of large areas and volumes of biological samples. This limitation can be overcome by using modern field-emission scanning electron microscopy (FE-SEM) with high-sensitivity detection, which enables the creation of TEM-like images from the flat surfaces of resin-embedded biological specimens. Several FE-SEM-based techniques for two- and three-dimensional ultrastructural studies of cells, tissues, organs, and organisms have been developed in the 21st century. These techniques have created a new era in structural biology and have changed the role of the scanning electron microscope (SEM) in biological and medical laboratories. Since the premiere of the first commercially available SEM in 1965, these instruments were used almost exclusively to obtain topographical information over a large range of magnifications. Currently, FE-SEM offers many attractive possibilities in the studies of cell and tissue ultrastructure, and they are presented in this review. Abstract The development of field-emission scanning electron microscopes for high-resolution imaging at very low acceleration voltages and equipped with highly sensitive detectors of backscattered electrons (BSE) has enabled transmission electron microscopy (TEM)-like imaging of the cut surfaces of tissue blocks, which are impermeable to the electron beam, or tissue sections mounted on the solid substrates. This has resulted in the development of methods that simplify and accelerate ultrastructural studies of large areas and volumes of biological samples. This article provides an overview of these methods, including their advantages and disadvantages. The imaging of large sample areas can be performed using two methods based on the detection of transmitted electrons or BSE. Effective imaging using BSE requires special fixation and en bloc contrasting of samples. BSE imaging has resulted in the development of volume imaging techniques, including array tomography (AT) and serial block-face imaging (SBF-SEM). In AT, serial ultrathin sections are collected manually on a solid substrate such as a glass and silicon wafer or automatically on a tape using a special ultramicrotome. The imaging of serial sections is used to obtain three-dimensional (3D) information. SBF-SEM is based on removing the top layer of a resin-embedded sample using an ultramicrotome inside the SEM specimen chamber and then imaging the exposed surface with a BSE detector. The steps of cutting and imaging the resin block are repeated hundreds or thousands of times to obtain a z-stack for 3D analyses.
Collapse
|
9
|
Ivanovic E, Kucera JP. Localization of Na + channel clusters in narrowed perinexi of gap junctions enhances cardiac impulse transmission via ephaptic coupling: a model study. J Physiol 2021; 599:4779-4811. [PMID: 34533834 PMCID: PMC9293295 DOI: 10.1113/jp282105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Abstract It has been proposed that when gap junctional coupling is reduced in cardiac tissue, action potential propagation can be supported via ephaptic coupling, a mechanism mediated by negative electric potentials occurring in narrow intercellular clefts of intercalated discs (IDs). Recent studies showed that sodium (Na+) channels form clusters near gap junction plaques in nanodomains called perinexi, where the ID cleft is even narrower. To examine the electrophysiological relevance of Na+ channel clusters being located in perinexi, we developed a 3D finite element model of two longitudinally abutting cardiomyocytes, with a central Na+ channel cluster on the ID membranes. When this cluster was located in the perinexus of a closely positioned gap junction plaque, varying perinexal width greatly modulated impulse transmission from one cell to the other, with narrow perinexi potentiating ephaptic coupling. This modulation occurred via the interplay of Na+ currents, extracellular potentials in the cleft and patterns of current flow within the cleft. In contrast, when the Na+ channel cluster was located remotely from the gap junction plaque, this modulation by perinexus width largely disappeared. Interestingly, the Na+ current in the ID membrane of the pre‐junctional cell switched from inward to outward during excitation, thus contributing ions to the activating channels on the post‐junctional ID membrane. In conclusion, these results indicate that the localization of Na+ channel clusters in the perinexi of gap junction plaques is crucial for ephaptic coupling, which is furthermore greatly modulated by perinexal width. These findings are relevant for a comprehensive understanding of cardiac excitation. Key points Ephaptic coupling is a cardiac conduction mechanism involving nanoscale‐level interactions between the sodium (Na+) current and the extracellular potential in narrow intercalated disc clefts. When gap junctional coupling is reduced, ephaptic coupling acts in conjunction with the classical cardiac conduction mechanism based on gap junctional current flow. In intercalated discs, Na+ channels form clusters that are preferentially located in the periphery of gap junction plaques, in nanodomains known as perinexi, but the electrophysiological role of these perinexi has never been examined. In our new 3D finite element model of two cardiac cells abutting each other with their intercalated discs, a Na+ channel cluster located inside a narrowed perinexus facilitated impulse transmission via ephaptic coupling. Our simulations demonstrate the role of narrowed perinexi as privileged sites for ephaptic coupling in pathological situations when gap junctional coupling is decreased.
Collapse
Affiliation(s)
- Ena Ivanovic
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Moise N, Struckman HL, Dagher C, Veeraraghavan R, Weinberg SH. Intercalated disk nanoscale structure regulates cardiac conduction. J Gen Physiol 2021; 153:212474. [PMID: 34264306 PMCID: PMC8287520 DOI: 10.1085/jgp.202112897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
The intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains such as the gap junction-adjacent perinexus and mechanical junction-associated adhesion-excitability nodes, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structures of the ID and intercellular cleft are not well characterized and, to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating nanoscale of the ID structure, based on experimental measurements from transmission electron microscopy images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances is sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations predict that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we found that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of postjunctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we found that disruption of local ID nanodomains can either slow or enhance conduction, depending on gap junctional coupling strength. Our study therefore suggests that ID nanoscale structure can play a significant role in regulating cardiac conduction.
Collapse
Affiliation(s)
| | | | | | - Rengasayee Veeraraghavan
- The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Seth H Weinberg
- The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
11
|
Delgado C, Bu L, Zhang J, Liu FY, Sall J, Liang FX, Furley AJ, Fishman GI. Neural cell adhesion molecule is required for ventricular conduction system development. Development 2021; 148:269045. [PMID: 34100064 PMCID: PMC8217711 DOI: 10.1242/dev.199431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system. Summary: The cell adhesion molecule NCAM-1 and its post-translational modification by polysialylation are required for normal formation and function of the specialized ventricular conduction system.
Collapse
Affiliation(s)
- Camila Delgado
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Lei Bu
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, NY 10016, USA
| | - Andrew J Furley
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| |
Collapse
|
12
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2020; 154:597-607. [PMID: 33277679 DOI: 10.1007/s00418-020-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
13
|
An accelerated procedure for approaching and imaging of optically branded region of interest in tissue. Methods Cell Biol 2020; 162:205-221. [PMID: 33707013 DOI: 10.1016/bs.mcb.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many areas of biology have benefited from advances in light microscopy (LM). However, one limitation of the LM approach is that numerous critically important aspects of subcellular machineries are well beyond the resolution of conventional LM. For studying these, electron microscopy (EM) remains the technique of choice to visualize and identify macromolecules at the ultrastructural level. The most powerful approach is combining both techniques, LM and EM (i.e., to apply correlative light/electron microscopy, CLEM) to image exactly the same region of interest. This combination allows, for example, to immuno-localize proteins by LM and then to visualize the ultrastructural context of the same region of the sample. However, the identification and correlation of the regions of interest (ROIs) at the levels of LM and EM remains a major challenge, mostly due to the difficulties with correlation along the Z-axis for both modalities. In this chapter, we address this difficulty and describe an approach for performing CLEM in tissue samples using marks from near-infrared branding as indicators of a ROI, and then using serial block face-scanning electron microscopy (SBF-SEM) to identify and approach this ROI. Once a ROI has been approached, serial sections are collected on grids for high-resolution imaging by transmission EM, and subsequent correlation with LM images showing labeled proteins.
Collapse
|
14
|
An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nat Commun 2020; 11:771. [PMID: 32034132 PMCID: PMC7005902 DOI: 10.1038/s41467-020-14529-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/16/2020] [Indexed: 11/08/2022] Open
Abstract
The recent advent of 3D in electron microscopy (EM) has allowed for detection of nanometer resolution structures. This has caused an explosion in dataset size, necessitating the development of automated workflows. Moreover, large 3D EM datasets typically require hours to days to be acquired and accelerated imaging typically results in noisy data. Advanced denoising techniques can alleviate this, but tend to be less accessible to the community due to low-level programming environments, complex parameter tuning or a computational bottleneck. We present DenoisEM: an interactive and GPU accelerated denoising plugin for ImageJ that ensures fast parameter tuning and processing through parallel computing. Experimental results show that DenoisEM is one order of magnitude faster than related software and can accelerate data acquisition by a factor of 4 without significantly affecting data quality. Lastly, we show that image denoising benefits visualization and (semi-)automated segmentation and analysis of ultrastructure in various volume EM datasets. Large 3D electron microscopy data sets frequently contain noisy data due to accelerated imaging, and denoising techniques require specialised skill sets. Here the authors introduce DenoisEM, an ImageJ plugin that democratises denoising EM data sets, enabling fast parameter tuning and processing through parallel computing.
Collapse
|
15
|
Vanslembrouck B, Kremer A, VAN Roy F, Lippens S, VAN Hengel J. Unravelling the ultrastructural details of αT-catenin-deficient cell-cell contacts between heart muscle cells by the use of FIB-SEM. J Microsc 2019; 279:189-196. [PMID: 31828778 DOI: 10.1111/jmi.12855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/30/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
The intercalated disc is an important structure in cardiomyocytes, as it is essential to maintain correct contraction and proper functioning of the heart. Adhesion and communication between cardiomyocytes are mediated by three main types of intercellular junctions, all residing in the intercalated disc: gap junctions, desmosomes and the areae compositae. Mutations in genes that encode junctional proteins, including αT-catenin (encoded by CTNNA3), have been linked to arrhythmogenic cardiomyopathy and sudden cardiac death. In mice, the loss of αT-catenin in cardiomyocytes leads to impaired heart function, fibrosis, changed expression of desmosomal proteins and increased risk for arrhythmias following ischemia-reperfusion. Currently, it is unclear how the intercalated disc and the intercellular junctions are organised in 3D in the hearts of this αT-catenin knockout (KO) mouse model. In order to scrutinise this, ventricular cardiac tissue of αT-catenin KO mice was used for volume electron microscopy (VEM), making use of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), allowing a careful 3D reconstruction of the intercalated disc, including gap junctions and desmosomes. Although αT-catenin KO and control mice display a comparable organisation of the sarcomere and the different intercalated disc regions, the folds of the plicae region of the intercalated disc are longer and more narrow in the KO heart, and the pale region between the sarcomere and the intercalated disc is larger. In addition, αT-catenin KO intercalated discs appear to have smaller gap junctions and desmosomes in the plicae region, while gap junctions are larger in the interplicae region of the intercalated disc. Although the reason for this remodelling of the ultrastructure after αT-catenin deletion remains unclear, the excellent resolution of the FIB-SEM technology allows us to reconstruct details that were not reported before. LAY DESCRIPTION: Cardiomyocytes are cells that make up the heart muscle. As the chief cell type of the heart, cardiomyocytes are primarily involved in the contractile function of the heart that enables the pumping of blood around the body. Cardiac muscle cells are connected to each other at their short end by numerous intercellular junctions forming together a structure called the intercalated disc. These intercellular junctions comprise specific protein complexes, which are crucial for both intercellular adhesion and correct contraction of the heart. Imaging by conventional electron microscopy (EM) revealed a heavily folded intercalated disc with apparently random organization of the intercellular junctions. However, this conclusion was based on analysis in two dimensions (2D). 3D information of these structures is needed to unravel their true organization and function. In the present study, we used a more contemporary technique, called volume EM, to image and reconstruct the intercalated discs in 3D. By this approach, EM images are made from a whole block of tissue what differs significantly from classical EM methods that uses only one very thin slice for imaging. Further, we analyzed in comparison to normal mice also a mouse model for cardiomyopathy in which a specific protein of the cardiac intercellular junctions, αT-catenin, is absent. Volume EM revealed that in the hearts of these mice with cardiomyopathy, the finger-like folds of the intercalated disc are longer and thinner compared to control hearts. Also the intercellular junctions on the folded parts of the intercalated disc are smaller and their connection to the striated cytoskeleton seems further away. In conclusion, our volume EM study has expanded our understanding of 3D structures at the intercalated discs and will pave the way for more detailed models of disturbed cell-cell contacts associated with heart failure.
Collapse
Affiliation(s)
- B Vanslembrouck
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - A Kremer
- VIB BioImaging Core, VIB, Ghent, Belgium.,VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - F VAN Roy
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - S Lippens
- VIB BioImaging Core, VIB, Ghent, Belgium.,VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - J VAN Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Lippens S, Kremer A, Borghgraef P, Guérin CJ. Serial block face-scanning electron microscopy for volume electron microscopy. Methods Cell Biol 2019; 152:69-85. [PMID: 31326027 DOI: 10.1016/bs.mcb.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There are different technologies that can be used to obtain a 3D image at nanometer resolution. Over the past decade, there has been a growing interest in applying Serial Block Face Scanning Electron Microscopy (SBF-SEM) in different fields of life science research. This technology has the advantage that it can cover a range of volumes, going from monolayers to multiple tissue layers in all three dimensions. SBF-SEM was originally used in neuroscience and then expanded to other research domains. The whole process of sample preparation for SBF-SEM is very long and consists of many steps, which makes adjustment of a given workflow very challenging. Here we describe the SBF-SEM workflow and those steps in the process that can be tweaked for any sample.
Collapse
Affiliation(s)
- Saskia Lippens
- VIB BioImaging Core, VIB, Ghent, Belgium; VIB Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Anna Kremer
- VIB BioImaging Core, VIB, Ghent, Belgium; VIB Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Borghgraef
- VIB BioImaging Core, VIB, Ghent, Belgium; VIB Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christopher J Guérin
- VIB BioImaging Core, VIB, Ghent, Belgium; VIB Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Alpár A, Zahola P, Hanics J, Hevesi Z, Korchynska S, Benevento M, Pifl C, Zachar G, Perugini J, Severi I, Leitgeb P, Bakker J, Miklosi AG, Tretiakov E, Keimpema E, Arque G, Tasan RO, Sperk G, Malenczyk K, Máté Z, Erdélyi F, Szabó G, Lubec G, Palkovits M, Giordano A, Hökfelt TG, Romanov RA, Horvath TL, Harkany T. Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J 2018; 37:e100087. [PMID: 30209240 PMCID: PMC6213283 DOI: 10.15252/embj.2018100087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.
Collapse
Affiliation(s)
- Alán Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Péter Zahola
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gergely Zachar
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Jessica Perugini
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Patrick Leitgeb
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joanne Bakker
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andras G Miklosi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gloria Arque
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| | - Miklós Palkovits
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Tomas Gm Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Departments of Comparative Medicine and Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
18
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2018; 149:449-450. [PMID: 29725751 DOI: 10.1007/s00418-018-1674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|