1
|
Feary J, Yu Y, Kabir T, Schofield S, Bevan A, Askinyte V, Honan K, Emirali L, Rubbi A, Willis AE, Cullinan P, Anand S, Martins LM. Assessment of cancer biomarkers in the Grenfell firefighter cohort study. Sci Rep 2025; 15:15784. [PMID: 40335574 PMCID: PMC12059041 DOI: 10.1038/s41598-025-95991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Firefighters are exposed to a diverse range of harmful substances, including polycyclic aromatic hydrocarbons, benzene, and other carcinogens. These toxic compounds induce DNA damage, often causing the formation of DNA adducts and other lesions that can contribute to the development of various diseases, including cancer. Recent advancements in molecular diagnostics have shown that circulating cell-free DNA (cfDNA) in plasma is a valuable biomarker for detecting DNA damage and disease states. In this study, we explored whether changes in the quantity and quality of plasma cfDNA might reveal DNA lesions or serve as early markers for diseases such as cancer in UK firefighters. Whilst there are few published epidemiological studies of risk of cancer in UK firefighters, there are none on molecular markers in this population. All the 685 firefighters who participated in the study were employed by the London Fire Brigade in 2017; many of them also attended the Grenfell Tower fire, the most devastating fire to occur in the UK in modern history. In this exploratory analysis, we sought to gain insights into the potential long-term health impacts of toxic smoke exposure on these first responders by analysing both the concentration of cfDNA present and specific genetic alterations in cfDNA. Using next-generation sequencing and a panel that detects pathogenic DNA variants linked to various cancers, we analysed a subset of 261 firefighters. Our findings revealed that 11 firefighters carried pathogenic DNA variants associated with cancer, but we found no association between fire smoke exposure and the presence of these variants.
Collapse
Affiliation(s)
- Johanna Feary
- National Heart & Lung Institute, Imperial College, Emmanuel Kaye Building 1B, Manresa Road, London, SW3 6LR, UK.
- Royal Brompton Hospital, Guys and St Thomas' NHS Foundation Trust, London, SW3 6LR, UK.
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Tamanna Kabir
- Royal Brompton Hospital, Guys and St Thomas' NHS Foundation Trust, London, SW3 6LR, UK
| | - Susie Schofield
- National Heart & Lung Institute, Imperial College, Emmanuel Kaye Building 1B, Manresa Road, London, SW3 6LR, UK
| | - Adrian Bevan
- London Fire Brigade, Union Street, London, UK, SE1 0LL
| | - Victoria Askinyte
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK
| | - Katherine Honan
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK
| | - Liza Emirali
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Andrea Rubbi
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | - Shubha Anand
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
2
|
Stec-Martyna E, Wojtczak K, Nowak D, Stawski R. Battle of the Biomarkers of Systemic Inflammation. BIOLOGY 2025; 14:438. [PMID: 40282303 PMCID: PMC12024891 DOI: 10.3390/biology14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Systemic inflammation is monitored with various biomarkers; of these, C-reactive protein (CRP) is widely used due to its cost effectiveness and widespread implementation. However, its lack of specificity and delayed kinetics have directed interest in cell-free DNA (cfDNA), which offers rapid responses to cellular damage. Our review compares the use of CRP and cfDNA in myocardial infarction, sepsis, and physical exercise, focusing on their origins, kinetics, and clinical utility. cfDNA release from apoptotic or damaged cells increases within minutes to hours, providing an early marker of cellular stress. In myocardial infarction, cfDNA peaks early, indicating acute injury, while CRP rises later, reflecting prolonged inflammation. In sepsis, cfDNA correlates strongly with disease severity and prognosis, outperforming CRP in early diagnosis. During physical exercise, cfDNA offers an immediate picture of cellular stress, whereas CRP's delayed response limits its utility in this context. The interaction between CRP and cfDNA suggests their combined application could improve diagnostic accuracy and prognostic assessments. As cfDNA testing becomes more widely available, researchers will need to develop standardized protocols and determine how it can best complement CRP measurements in clinical practice. This approach offers promise for improving the management of systemic inflammation across diverse medical conditions.
Collapse
Affiliation(s)
- Emilia Stec-Martyna
- Research Laboratory CoreLab, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland;
| | - Karolina Wojtczak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (K.W.); (D.N.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (K.W.); (D.N.)
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (K.W.); (D.N.)
| |
Collapse
|
3
|
Enders K, Hillen B, Haller N, Brahmer A, Weber V, Simon P, Neuberger EWI. Pre-analytical pitfalls: How blood collection tubes influence exercise-induced cell-free DNA concentrations. Exp Physiol 2025. [PMID: 40033650 DOI: 10.1113/ep092284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Circulating cell-free DNA (cfDNA) is a promising biomarker for physiological stress, including exercise-induced responses. However, the lack of standardization in blood collection tubes (BCTs) for quantification of cfDNA hampers inter-study comparisons. In this study, we assessed the impact of different BCTs on exercise-induced cfDNA dynamics. Eleven participants [25 (SD 2.3) years of age] performed three different treadmill exercise protocols, including an all-out test and combinations of constant and interval load. Blood samples were collected before, 5 min and 30 min post-exercise using EDTA, lithium-heparin (LH) and serum BCTs. Concentrations of cfDNA were quantified using quantitative PCR. The cfDNA increased significantly across all protocols and BCTs. A significant effect of BCT on cfDNA concentrations (P = 0.034) was found, with serum showing higher concentrations than EDTA and LH. Although absolute differences from pre- to post-exercise were comparable across BCTs (P = 0.476), fold changes differed significantly (P = 0.012), with the highest observed in EDTA and the lowest in serum. Bland-Altman analyses demonstrated better agreement between EDTA and LH compared with serum. Significant correlations of cfDNA with energy expenditure and peak oxygen uptake were found. These correlations were stronger in EDTA and LH than in serum. Our findings highlight the crucial influence of BCT choice on cfDNA measurements in exercise settings. Given that EDTA and LH reflected exercise load better, they could be preferred for exercise physiology research. This work underscores the need to account for the choice of BCT to improve data comparability across studies. Additionally, these findings might have broader implications for clinical settings where cfDNA is used as a biomarker.
Collapse
Affiliation(s)
- Kira Enders
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barlo Hillen
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nils Haller
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Alexandra Brahmer
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vincent Weber
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Elmo W I Neuberger
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Rodrigues KB, Weng Z, Graham ZA, Lavin K, McAdam J, Tuggle SC, Peoples B, Seay R, Yang S, Bamman MM, Broderick TJ, Montgomery SB. Exercise intensity and training alter the innate immune cell type and chromosomal origins of circulating cell-free DNA in humans. Proc Natl Acad Sci U S A 2025; 122:e2406954122. [PMID: 39805013 PMCID: PMC11761974 DOI: 10.1073/pnas.2406954122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD). Blood plasma was collected pre- and postexercise at weeks 0 and 12 and after 4 wk of detraining upon program completion. Whole-genome enzymatic methylation sequencing (EM-seq) with cell-type proportion deconvolution was applied to cfDNA obtained from the 50 plasma samples and paired to concentration measurements for 90 circulating cytokines. Acute exercise increased the release of cfDNA from neutrophils, dendritic cells (DCs), and macrophages proportional to exercise intensity. Exercise training reduced cfDNA released in HITT participants but not TRAD and from DCs and macrophages but not neutrophils. For most participants, training lowered mitochondrial cfDNA at rest, even after detraining. Using a sequencing analysis approach we developed, we concluded that rapid ETosis, a process of cell death where cells release DNA extracellular traps, was the likely source of cfDNA, demonstrated by enrichment of nuclear DNA. Further, several cytokines were induced by acute exercise, such as IL-6, IL-10, and IL-16, and training attenuated the induction of only IL-6 and IL-17F. Cytokine levels were not associated with cfDNA induction, suggesting that these cytokines are not the main cause of exercise-induced cfDNA. Overall, exercise intensity and training modulated cfDNA release and cytokine responses, contributing to the anti-inflammatory effects of regular exercise.
Collapse
Affiliation(s)
- Kameron B. Rodrigues
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Ziming Weng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Zachary A. Graham
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Kaleen Lavin
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Jeremy McAdam
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - S. Craig Tuggle
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Brandon Peoples
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Regina Seay
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Sufen Yang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Marcas M. Bamman
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Timothy J. Broderick
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | | |
Collapse
|
5
|
Juškevičiūtė E, Neuberger E, Eimantas N, Heinkel K, Simon P, Brazaitis M. Cell-free DNA kinetics in response to muscle-damaging exercise: A drop jump study. Exp Physiol 2024; 109:1341-1352. [PMID: 38875105 PMCID: PMC11291858 DOI: 10.1113/ep091986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
A significant increase in circulating cell-free DNA (cfDNA) occurs with physical exercise, which depends on the type of exertion and the duration. The aims of this study were as follows: (1) to investigate the time course of cfDNA and conventional markers of muscle damage from immediately after to 96 h after muscle-damaging exercise; and (2) to investigate the relationship between cfDNA and indicators of primary (low-frequency fatigue and maximal voluntary isometric contraction) and secondary (creatine kinase and delayed-onset muscle soreness) muscle damage in young healthy males. Fourteen participants (age, 22 ± 2 years; weight, 84.4 ± 11.2 kg; height, 184.0 ± 7.4 cm) performed 50 intermittent drop jumps at 20 s intervals. We measured cfDNA and creatine kinase concentrations, maximal voluntary isometric contraction torque, low-frequency fatigue and delayed-onset muscle soreness before and at several time points up to 96 h after exercise. Plasma cfDNA levels increased from immediately postexercise until 72 h postexercise (P < 0.01). Elevation of postexercise cfDNA was correlated with both more pronounced low-frequency fatigue (r = -0.52, P = 3.4 × 10-11) and delayed-onset muscle soreness (r = 0.32, P = 0.00019). Levels of cfDNA change in response to severe primary and secondary muscle damage after exercise. Levels of cfDNA exhibit a stronger correlation with variables related to primary muscle damage than to secondary muscle damage, suggesting that cfDNA is a more sensitive marker of acute loss of muscle function than of secondary inflammation or damaged muscle fibres.
Collapse
Affiliation(s)
- Ema Juškevičiūtė
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Elmo Neuberger
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Nerijus Eimantas
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Kirsten Heinkel
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Marius Brazaitis
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| |
Collapse
|
6
|
Lang HM, Duffourc MM, Bazyler CD, Ramsey MW, Gentles JA. The Relationship Between Cell-Free DNA and Resistance Training Volume Load. J Strength Cond Res 2024; 38:1008-1012. [PMID: 38373069 DOI: 10.1519/jsc.0000000000004751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
ABSTRACT Lang, HM, Duffourc, MM, Bazyler, CD, Ramsey, MW, and Gentles, JA. The relationship between cell-free DNA and resistance training volume load. J Strength Cond Res 38(6): 1008-1012, 2024-The primary purpose of this study was to assess the sensitivity of cell-free DNA (cf-DNA) to different resistance training volume loads. The secondary purpose was to examine the relationship between change in cf-DNA and relative strength. Researchers hypothesized that (a) cf-DNA concentrations would increase with increasing volume load and (b) increases in relative strength would result in predicted decreases to %Δ of cf-DNA. Thirty subjects were recruited for this study, 15 men and 15 women. Blood was collected through venous draws into 4-ml vacutainers at 3 time points: immediately before (T1), after 3 sets (T2), and after 6 sets (T3) of the back squat exercise. A critical alpha of 0.05 was set for inferential statistics. A repeated-measures ANOVA showed that cf-DNA increased significantly from T1 (407.72 ± 320.83) to T2 (1,244.6 ± 875.83) ( p < 0.01) and T1 (407.72 ± 320.83) to T3 (1,331.15 ± 1,141.66) ( p < 0.01), whereas no difference was found from T2 to T3 ( p = 1.00). The linear regression model used to examine the predictive capabilities relative strength had on cf-DNA %Δ from T1 to T3 was found to be significant ( p = 0.04; R2 = 0.15). The results of this study demonstrate the short response of cf-DNA in relation to variations in resistance training volume load. Results also demonstrated the positive relationship between relative strength and cf-DNA %Δ. The current study builds on the body of research that cf-DNA provides insight regarding the level of immune response after exercise training.
Collapse
Affiliation(s)
- Henry M Lang
- Department of Exercise Science, University of Mary, Bismarck, North Dakota
| | - Michelle M Duffourc
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; and
| | - Caleb D Bazyler
- Department of Exercise and Sport Science, East Tennessee State University, Johnson City, Tennessee
| | - Michael W Ramsey
- Department of Exercise and Sport Science, East Tennessee State University, Johnson City, Tennessee
| | - Jeremy A Gentles
- Department of Exercise and Sport Science, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
7
|
Nogiec CD, Karlic R, Taborda E, Dunkelbarger S, Fridlich O, Dor Y, Polak P, Li R. Exercise-Induced Cell-Free DNA Correlates with Energy Expenditure in Multiple Exercise Protocols. Med Sci Sports Exerc 2024; 56:813-821. [PMID: 38109167 DOI: 10.1249/mss.0000000000003363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
PURPOSE Exercise-induced cell-free DNA (ei-cfDNA) has been studied in response to various types of exercise. Its correlation with exercise intensity and duration has been observed consistently. However, comprehensive measurements and exploration of the tissue of origin are lacking. The aim of this study is to establish precise connections between exercise variables and the distribution of tissue of origin, aiming to provide further evidence supporting its use as a biomarker for exercise. METHODS Twelve self-identified active adults (six men and six women) performed a crossover study starting with either endurance testing or resistance testing under different intensities and protocols. We obtained blood before and after each exercise session and measured the levels of cfDNA and determined its tissue of origin utilizing cell type-specific DNA methylation patterns in plasma. RESULTS We found that when duration and intensity are fixed, ei-cfDNA fold change correlates with energy expenditure ( P = 0.001) in endurance testing and years trained ( P = 0.001) in resistance testing. Most of the ei-cfDNA comes from increases in white blood cells (~95%) where neutrophils make up the majority (~74%) and the distribution is different between exercise modalities and protocols. CONCLUSIONS This study highlights the potential of exercise-induced cfDNA as a biomarker for exercise, showing correlations with energy expenditure and a consistent pattern of tissue origin. Additional research is needed to investigate potential sex differences in the response of cfDNA to exercise, further exploring its clinical implications.
Collapse
Affiliation(s)
| | - Rosa Karlic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, CROATIA
| | - Eddie Taborda
- Department of Health Sciences, Northeastern University, Boston, MA
| | | | - Ori Fridlich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, ISRAEL
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, ISRAEL
| | | | - Rui Li
- Department of Health Sciences, Northeastern University, Boston, MA
| |
Collapse
|
8
|
Sawai A, Shida T, Hoshikawa Y, Hatanaka S, Ueda M, Kato Y, Tokinoya K, Natsui H, Kawakami Y, Takekoshi K. Effect of acute moderate-intensity cycling on cfDNA levels considering menstrual cycle phases. Front Sports Act Living 2024; 6:1322295. [PMID: 38348376 PMCID: PMC10859457 DOI: 10.3389/fspor.2024.1322295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction We aimed to determine the effects of exercise on cell-free DNA (cfDNA) levels and concentration changes during the menstrual cycle in participants with regular menstrual cycles and no exercise habits. Methods Eleven sedentary female students with regular menstrual cycles and ovulation performed bicycle exercises at 60% VO2max for 30 min during the menstrual, ovulatory, and luteal phases. Blood samples were collected before (Pre), immediately after (Post 0), 30 min after (Post 30), and 60 min after (Post 60) exercise. Blood concentrations of ovarian hormones, cfDNA, prostaglandin F2a (PGF2α), interleukin-6 (IL-6), and aromatase were evaluated. Results Based on the concentration of ovarian hormones, seven individuals were finally analyzed. No significant phase difference was observed in cfDNA across all time points. cfDNA (menstrual phase: p = 0.028, ovulatory phase: p = 0.018, and luteal phase: p = 0.048) and aromatase concentrations (menstrual phase: p = 0.040, ovulatory phase: p = 0.039, and luteal phase: p = 0.045) significantly increased from Pre to Post 0 in all phases. Serum estradiol (E2) levels were significantly higher in the luteal phase at all time points than in the menstrual phase (Pre: p < 0.001, Post 0: p < 0.001, Post 30: p = 0.005, and Post 60: p = 0.011); however, serum progesterone (P4) levels were significantly higher in the luteal phase at all time points than in the menstrual (Pre: p < 0.001, Post 0: p < 0.001, Post 30: p < 0.001, and Post 60: p < 0.001) and ovulatory phases (Pre: p = 0.005, Post 0: p = 0.005, Post 30: p = 0.003, and Post 60: p = 0.003). E2 levels significantly increased from Pre to Post 0 in the ovulatory and luteal phases, whereas P4 levels increased in the luteal phase. Progesterone to estradiol level ratio (P4/E2) changes from Pre to Post 0 (%baseline) during the luteal phase were significantly negatively correlated (r = -0.82, p = 0.046) with the changes in cfDNA from Pre to Post 0. Furthermore, the repeated measures correlation between P4/E2 and cfDNA level showed a significant negative correlation in ovulatory and luteal phases. Discussion The results indicate that while resting cfDNA levels are unlikely to be affected by a woman's menstrual cycle, the increase in cfDNA after exercise is higher in the ovulatory phase (when only E2 increases) and lower in the luteal phase (when E2 and P4 increase with exercise) compared to that in the menstrual phase (when E2 and P4 are in low levels), suggesting the contribution of increased ovarian hormone levels after exercise.
Collapse
Affiliation(s)
- Akemi Sawai
- Research Institute of Physical Fitness, Japan Women’s College of Physical Education, Setagaya City, Japan
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Takashi Shida
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi City, Japan
| | - Yoshihiro Hoshikawa
- Department of Sports Science, Japan Women’s College of Physical Education, Setagaya City, Japan
| | - Sho Hatanaka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi City, Japan
| | - Mashiro Ueda
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yuri Kato
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Katsuyuki Tokinoya
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
- Embodied Wisdom Division, Center for Liberal Education and Learning, Sophia University, Chiyoda City, Japan
| | - Hiroaki Natsui
- Department of Sports and Health Science, Japan Women’s College of Physical Education, Setagaya City, Japan
| | - Yasushi Kawakami
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Kazuhiro Takekoshi
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
9
|
Fridlich O, Peretz A, Fox-Fisher I, Pyanzin S, Dadon Z, Shcolnik E, Sadeh R, Fialkoff G, Sharkia I, Moss J, Arpinati L, Nice S, Nogiec CD, Ahuno ST, Li R, Taborda E, Dunkelbarger S, Fridlender ZG, Polak P, Kaplan T, Friedman N, Glaser B, Shemer R, Constantini N, Dor Y. Elevated cfDNA after exercise is derived primarily from mature polymorphonuclear neutrophils, with a minor contribution of cardiomyocytes. Cell Rep Med 2023:101074. [PMID: 37290439 DOI: 10.1016/j.xcrm.2023.101074] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/25/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Strenuous physical exercise causes a massive elevation in the concentration of circulating cell-free DNA (cfDNA), which correlates with effort intensity and duration. The cellular sources and physiological drivers of this phenomenon are unknown. Using methylation patterns of cfDNA and associated histones, we show that cfDNA in exercise originates mostly in extramedullary polymorphonuclear neutrophils. Strikingly, cardiomyocyte cfDNA concentration increases after a marathon, consistent with elevated troponin levels and indicating low-level, delayed cardiac cell death. Physical impact, low oxygen levels, and elevated core body temperature contribute to neutrophil cfDNA release, while muscle contraction, increased heart rate, β-adrenergic signaling, or steroid treatment fail to cause elevation of cfDNA. Physical training reduces neutrophil cfDNA release after a standard exercise, revealing an inverse relationship between exercise-induced cfDNA release and training level. We speculate that the release of cfDNA from neutrophils in exercise relates to the activation of neutrophils in the context of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Ori Fridlich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ayelet Peretz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Pyanzin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ziv Dadon
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eilon Shcolnik
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ronen Sadeh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Gavriel Fialkoff
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Israa Sharkia
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ludovica Arpinati
- Institute of Pulmonary Medicine, Hadassah Medical Center and Hebrew University of Jerusalem, Israel
| | - Shachar Nice
- Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Christopher D Nogiec
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Samuel Terkper Ahuno
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rui Li
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Eddie Taborda
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Sonia Dunkelbarger
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah Medical Center and Hebrew University of Jerusalem, Israel
| | - Paz Polak
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Naama Constantini
- Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
10
|
Panizzi L, Dittmer KE, Vignes M, Doucet JS, Gedye K, Waterland MR, Rogers CW, Sano H, McIlwraith CW, Riley CB. Plasma and Synovial Fluid Cell-Free DNA Concentrations Following Induction of Osteoarthritis in Horses. Animals (Basel) 2023; 13:ani13061053. [PMID: 36978592 PMCID: PMC10044647 DOI: 10.3390/ani13061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Biomarkers for osteoarthritis (OA) in horses have been extensively investigated, but translation into clinical use has been limited due to cost, limited sensitivity, and practicality. Identifying novel biomarkers that overcome these limitations could facilitate early diagnosis and therapy. This study aimed to compare the concentrations of synovial fluid (SF) and plasma cell-free DNA (cfDNA) over time in control horses with those with induced carpal OA. Following an established model, unilateral carpal OA was induced in 9 of 17 healthy Thoroughbred fillies, while the remainder were sham-operated controls. Synovial fluid and plasma samples were obtained before induction of OA (Day 0) and weekly thereafter until Day 63, and cfDNA concentrations were determined using fluorometry. The SF cfDNA concentrations were significantly higher for OA joints than for sham-operated joints on Days 28 (median 1430 μg/L and 631 μg/L, respectively, p = 0.017) and 63 (median 1537 μg/L and 606 μg/L, respectively, p = 0.021). There were no significant differences in plasma cfDNA between the OA and the sham groups after induction of carpal OA. Plasma cfDNA measurement is not sufficiently sensitive for diagnostic purposes in this induced model of OA. Synovial fluid cfDNA measurement may be used as a biomarker to monitor early disease progression in horses with OA.
Collapse
Affiliation(s)
- Luca Panizzi
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- Correspondence:
| | - Keren E. Dittmer
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - Matthieu Vignes
- School of Mathematical and Computational Sciences, College of Science, Massey University, Palmerston North 4442, New Zealand;
| | - Jennie S. Doucet
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Kristene Gedye
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - Mark R. Waterland
- School of Natural Sciences, College of Science, Massey University, Palmerston North 4442, New Zealand;
| | - Chris W. Rogers
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- School of Agriculture and Environment, College of Science, Massey University, Palmerston North 4442, New Zealand
| | - Hiroki Sano
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, School of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523-1601, USA;
| | - Christopher B. Riley
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- Department of Clinical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
12
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: from snapshot to temporal genome analysis. J LAB MED 2022; 46:207-224. [DOI: 10.1515/labmed-2022-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Abstract
Genomes of diverse origins are continuously shed into human body fluids in the form of fragmented cell-free DNA (cfDNA). These molecules maintain the genetic and epigenetic codes of their originating source, and often carry additional layers of unique information in newly discovered physico-chemical features. Characterization of cfDNA thus presents the opportunity to non-invasively reconstruct major parts of the host- and metagenome in silico. Data from a single specimen can be leveraged to detect a broad range of disease-specific signatures and has already enabled the development of many pioneering diagnostic tests. Moreover, data from serial sampling may allow unparalleled mapping of the scantily explored landscape of temporal genomic changes as it relates to various changes in different physiological and pathological states of individuals. In this review, we explore how this vast dimension of biological information accessible through cfDNA analysis is being tapped towards the development of increasingly powerful molecular assays and how it is shaping emerging technologies. We also discuss how this departure from traditional paradigms of snapshot genetic testing may pave the way for an onrush of new and exciting discoveries in human biology.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Vida Ungerer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Angela Oberhofer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| |
Collapse
|
13
|
Dumić J, Cvetko A, Abramović I, Šupraha Goreta S, Perović A, Njire Bratičević M, Kifer D, Sinčić N, Gornik O, Žarak M. Changes in Specific Biomarkers Indicate Cardiac Adaptive and Anti-inflammatory Response of Repeated Recreational SCUBA Diving. Front Cardiovasc Med 2022; 9:855682. [PMID: 35360010 PMCID: PMC8964121 DOI: 10.3389/fcvm.2022.855682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveRecreational SCUBA (rSCUBA) diving has become a highly popular and widespread sport. Yet, information on molecular events underlying (patho)physiological events that follow exposure to the specific environmental conditions (hyperbaric conditions, coldness, immersion, and elevated breathing pressure), in which rSCUBA diving is performed, remain largely unknown. Our previous study suggested that repeated rSCUBA diving triggers an adaptive response of cardiovascular and immune system. To elucidate further molecular events underlying cardiac and immune system adaptation and to exclude possible adverse effects we measured blood levels of specific cardiac and inflammation markers.MethodsThis longitudinal intervention study included fourteen recreational divers who performed five dives, one per week, on the depth 20–30 m that lasted 30 min, after the non-dive period of 5 months. Blood samples were taken immediately before and after the first, third, and fifth dives. Copeptin, immunoglobulins A, G and M, complement components C3 and C4, and differential blood count parameters, including neutrophil-to-lymphocyte ratio (NLR) were determined using standard laboratory methods. Cell-free DNA was measured by qPCR analysis and N-glycans released from IgG and total plasma proteins (TPP), were analyzed by hydrophilic interaction ultra-performance liquid chromatography.ResultsCopeptin level increased after the first dive but decreased after the third and fifth dive. Increases in immunoglobulins level after every dive and during whole studied period were observed, but no changes in C3, C4, and cfDNA level were detected. NLR increased only after the first dive. IgG and TPP N-glycosylation alterations toward anti-inflammatory status over whole studied period were manifested as an increase in monogalyctosylated and core-fucosylated IgG N-glycans and decrease in agalactosylated TPP N-glycans.ConclusionrSCUBA diving practiced on a regular basis promotes anti-inflammatory status thus contributing cardioprotection and conferring multiple health benefits.
Collapse
Affiliation(s)
- Jerka Dumić
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Ana Cvetko
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Irena Abramović
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sandra Šupraha Goreta
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Antonija Perović
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | | | - Domagoj Kifer
- Department of Biophysics, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Marko Žarak
- Clinical Department of Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
- *Correspondence: Marko Žarak,
| |
Collapse
|
14
|
Chmielecki A, Bortnik K, Galczynski S, Padula G, Jerczynska H, Stawski R, Nowak D. Exhaustive Exercise Increases Spontaneous but Not fMLP-Induced Production of Reactive Oxygen Species by Circulating Phagocytes in Amateur Sportsmen. BIOLOGY 2022; 11:103. [PMID: 35053101 PMCID: PMC8773189 DOI: 10.3390/biology11010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Strenuous exercise alters the oxidative response of blood phagocytes to various agonists. However, little is known about spontaneous post exercise oxidant production by these cells. In this cross-over trial, we tested whether an exhaustive treadmill run at a speed corresponding to 70% of VO2max affects spontaneous and fMLP-provoked oxidant production by phagocytes in 18 amateur sportsmen. Blood was collected before, just after, and 1, 3, 5 and 24 h post exercise for determination of absolute and normalized per phagocyte count spontaneous (a-rLBCL, rLBCL) and fMLP-induced luminol-enhanced whole blood chemiluminescence (a-fMLP-LBCL, fMLP-LBCL). a-rLBCL and rLBCL increased by 2.5- and 1.5-times just after exercise (p < 0.05) and then returned to baseline or decreased by about 2-times at the remaining time-points, respectively. a-fMLP-LBCL increased 1.7- and 1.6-times just after and at 3 h post-exercise (p < 0.05), respectively, while fMLP-LBCL was suppressed by 1.5- to 2.3-times at 1, 3, 5 and 24 h post-exercise. No correlations were found between elevated post-exercise a-rLBCL, a-fMLP-LBCL and run distance to exhaustion. No changes of oxidants production were observed in the control arm (1 h resting instead of exercise). Exhaustive exercise decreased the blood phagocyte-specific oxidative response to fMLP while increasing transiently spontaneous oxidant generation, which could be a factor inducing secondary rise in antioxidant enzymes activity.
Collapse
Affiliation(s)
- Adam Chmielecki
- Sports Centre, Medical University of Lodz, 6-go Sierpnia 69, 90-645 Lodz, Poland; (A.C.); (K.B.)
| | - Krzysztof Bortnik
- Sports Centre, Medical University of Lodz, 6-go Sierpnia 69, 90-645 Lodz, Poland; (A.C.); (K.B.)
| | - Szymon Galczynski
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (S.G.); (G.P.)
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (S.G.); (G.P.)
| | - Hanna Jerczynska
- Central Scientific Laboratory, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
15
|
Yuwono NL, Warton K, Ford CE. The influence of biological and lifestyle factors on circulating cell-free DNA in blood plasma. eLife 2021; 10:e69679. [PMID: 34752217 PMCID: PMC8577835 DOI: 10.7554/elife.69679] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
Research and clinical use of circulating cell-free DNA (cirDNA) is expanding rapidly; however, there remain large gaps in our understanding of the influence of lifestyle and biological factors on the amount of cirDNA present in blood. Here, we review 66 individual studies of cirDNA levels and lifestyle and biological factors, including exercise (acute and chronic), alcohol consumption, occupational hazard exposure, smoking, body mass index, menstruation, hypertension, circadian rhythm, stress, biological sex and age. Despite technical and methodological inconsistences across studies, we identify acute exercise as a significant influence on cirDNA levels. Given the large increase in cirDNA induced by acute exercise, we recommend that controlling for physical activity prior to blood collection is routinely incorporated into study design when total cirDNA levels are of interest. We also highlight appropriate selection and complete reporting of laboratory protocols as important for improving the reproducibility cirDNA studies and ability to critically evaluate the results.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| |
Collapse
|
16
|
Moeinabadi-Bidgoli K, Babajani A, Yazdanpanah G, Farhadihosseinabadi B, Jamshidi E, Bahrami S, Niknejad H. Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications. Biomed Pharmacother 2021; 142:112026. [PMID: 34411911 DOI: 10.1016/j.biopha.2021.112026] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapy (CBT) is a revolutionary approach for curing a variety of degenerative diseases. Stem cell-based regenerative medicine is a novel strategy for treating tissue damages regarding stem cells unique properties such as differentiation potential, paracrine impacts, and self-renewal ability. However, the current cell-based treatments encounter considerable challenges to be translated into clinical practice, including low cell survival, migration, and differentiation rate of transplanted stem cells. The poor stem cell therapy outcomes mainly originate from the unfavorable condition of damaged tissues for transplanted stem cells. The promising method of preconditioning improves cell resistance against the host environment's stress by imposing certain conditions similar to the harsh microenvironment of the damaged tissues on the transplanted stem cells. Various pharmacological, biological, and physical inducers are able to establish preconditioning. In addition to their known pharmacological effects on tissues and cells, these preconditioning agents improve cell biological aspects such as cell survival, proliferation, differentiation, migration, immunomodulation, paracrine impacts, and angiogenesis. This review focuses on different protocols and inducers of preconditioning along with underlying molecular mechanisms of their effects on stem cell behavior. Moreover, preclinical applications of preconditioned stem cells in various damaged organs such as heart, lung, brain, bone, cartilage, liver, and kidney are discussed with prospects of their translation into the clinic.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Trumpff C, Michelson J, Lagranha CJ, Taleon V, Karan KR, Sturm G, Lindqvist D, Fernström J, Moser D, Kaufman BA, Picard M. Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion 2021; 59:225-245. [PMID: 33839318 PMCID: PMC8418815 DOI: 10.1016/j.mito.2021.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cell-free mitochondrial DNA (cf-mtDNA) is a marker of inflammatory disease and a predictor of mortality, but little is known about cf-mtDNA in relation to psychobiology. A systematic review of the literature reveals that blood cf-mtDNA varies in response to common real-world stressors including psychopathology, acute psychological stress, and exercise. Moreover, cf-mtDNA is inducible within minutes and exhibits high intra-individual day-to-day variation, highlighting the dynamic regulation of cf-mtDNA levels. We discuss current knowledge on the mechanisms of cf-mtDNA release, its forms of transport ("cell-free" does not mean "membrane-free"), potential physiological functions, putative cellular and neuroendocrine triggers, and factors that may contribute to cf-mtDNA removal from the circulation. A review of in vitro, pre-clinical, and clinical studies shows conflicting results around the dogma that physiological forms of cf-mtDNA are pro-inflammatory, opening the possibility of other physiological functions, including the cell-to-cell transfer of whole mitochondria. Finally, to enhance the reproducibility and biological interpretation of human cf-mtDNA research, we propose guidelines for blood collection, cf-mtDNA isolation, quantification, and reporting standards, which can promote concerted advances by the community. Defining the mechanistic basis for cf-mtDNA signaling is an opportunity to elucidate the role of mitochondria in brain-body interactions and psychopathology.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Jeremy Michelson
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Claudia J Lagranha
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Veronica Taleon
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden; Office of Psychiatry and Habilitation, Region Skåne, Sweden
| | - Johan Fernström
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Brett A Kaufman
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, USA; New York State Psychiatric Institute, NY, USA.
| |
Collapse
|
18
|
Yuwono NL, Henry CE, Ford CE, Warton K. Total and endothelial cell-derived cell-free DNA in blood plasma does not change during menstruation. PLoS One 2021; 16:e0250561. [PMID: 33901234 PMCID: PMC8075187 DOI: 10.1371/journal.pone.0250561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Assays measuring cell-free DNA (cfDNA) in blood have widespread potential in modern medicine. However, a comprehensive understanding of cfDNA dynamics in healthy individuals is required to assist in the design of assays that maximise the signal driven by pathological changes, while excluding fluctuations that are part of healthy physiological processes. The menstrual cycle involves major remodelling of endometrial tissue and associated apoptosis, yet there has been little investigation of the impact of the menstrual cycle on cfDNA levels. Paired plasma samples were collected from 40 healthy women on menstruating (M) and non-menstruating (NM) days of their cycle. We measured total cfDNA by targeting ALU repetitive sequences and measured endothelial-derived cfDNA by methylation-specific qPCR targeting an endothelium-unique unmethylated CDH5 DNA region. CfDNA integrity and endothelial cfDNA concentration, but not total cfDNA, are consistent across time between NM and M. No significant changes in total (ALU-115 p = 0.273; ALU-247 p = 0.385) or endothelial cell specific (p = 0.301) cfDNA were observed, leading to the conclusion that menstrual status at the time of diagnostic blood collection should not have a significant impact on the quantitation of total cfDNA and methylation-based cancer assays.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Claire Elizabeth Henry
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
19
|
Changes in plasma hydroxyproline and plasma cell-free DNA concentrations after higher- versus lower-intensity eccentric cycling. Eur J Appl Physiol 2021; 121:1087-1097. [PMID: 33439308 DOI: 10.1007/s00421-020-04593-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We examined changes in plasma creatine kinase (CK) activity, hydroxyproline and cell-free DNA (cfDNA) concentrations in relation to changes in maximum voluntary isometric contraction (MVIC) torque and delayed-onset muscle soreness (DOMS) following a session of volume-matched higher- (HI) versus lower-intensity (LI) eccentric cycling exercise. METHODS Healthy young men performed either 5 × 1-min HI at 20% of peak power output (n = 11) or 5 × 4-min LI eccentric cycling at 5% of peak power output (n = 9). Changes in knee extensor MVIC torque, DOMS, plasma CK activity, and hydroxyproline and cfDNA concentrations before, immediately after, and 24-72 h post-exercise were compared between groups. RESULTS Plasma CK activity increased post-exercise (141 ± 73.5%) and MVIC torque decreased from immediately (13.3 ± 7.8%) to 48 h (6.7 ± 13.5%) post-exercise (P < 0.05), without significant differences between groups. DOMS was greater after HI (peak: 4.5 ± 3.0 on a 10-point scale) than LI (1.2 ± 1.0). Hydroxyproline concentration increased 40-53% at 24-72 h after both LI and HI (P < 0.05). cfDNA concentration increased immediately after HI only (2.3 ± 0.9-fold, P < 0.001), with a significant difference between groups (P = 0.002). Lack of detectable methylated HOXD4 indicated that the cfDNA was not derived from skeletal muscle. No significant correlations were evident between the magnitude of change in the measures, but the cfDNA increase immediately post-exercise was correlated with the maximal change in heart rate during exercise (r = 0.513, P = 0.025). CONCLUSION Changes in plasma hydroxyproline and cfDNA concentrations were not associated with muscle fiber damage, but the increased hydroxyproline in both groups suggests increased collagen turnover. cfDNA may be a useful metabolic-intensity exercise marker.
Collapse
|
20
|
Hagstrom AD, Yuwono N, Warton K, Ford CE. Sex Bias in Cohorts Included in Sports Medicine Research. Sports Med 2021; 51:1799-1804. [PMID: 33400219 DOI: 10.1007/s40279-020-01405-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Amanda D Hagstrom
- Department of Exercise Physiology, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole Yuwono
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, A/Prof Caroline Ford, Sydney, NSW, 2052, Australia
| | - Kristina Warton
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, A/Prof Caroline Ford, Sydney, NSW, 2052, Australia
| | - Caroline E Ford
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, A/Prof Caroline Ford, Sydney, NSW, 2052, Australia.
| |
Collapse
|
21
|
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J 2020; 11:603-627. [PMID: 33144898 PMCID: PMC7594983 DOI: 10.1007/s13167-020-00226-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Interest in the use of cell-free nucleic acids (CFNAs) as clinical non-invasive biomarker panels for prediction and prevention of multiple diseases has greatly increased over the last decade. Indeed, circulating CFNAs are attributable to many physiological and pathological processes such as imbalanced stress conditions, physical activities, extensive apoptosis of different origin, systemic hypoxic-ischemic events and tumour progression, amongst others. This article highlights the involvement of circulating CFNAs in local and systemic processes dealing with the question, whether specific patterns of CFNAs in blood, their detection, quantity and quality (such as their methylation status) might be instrumental to predict a disease development/progression and could be further utilised for accompanying diagnostics, targeted prevention, creation of individualised therapy algorithms, therapy monitoring and prognosis. Presented considerations conform with principles of 3P medicine and serve for improving individual outcomes and cost efficacy of medical services provided to the population.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
22
|
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements. Crit Rev Clin Lab Sci 2020; 57:484-507. [DOI: 10.1080/10408363.2020.1750558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Abel J. Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
23
|
Zannoni A, Pietra M, Gaspardo A, Accorsi PA, Barone M, Turroni S, Laghi L, Zhu C, Brigidi P, Forni M. Non-invasive Assessment of Fecal Stress Biomarkers in Hunting Dogs During Exercise and at Rest. Front Vet Sci 2020; 7:126. [PMID: 32373631 PMCID: PMC7186473 DOI: 10.3389/fvets.2020.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Intense exercise causes to organisms to have oxidative stress and inflammation at the gastrointestinal (GI) level. The reduction in intestinal blood flow and the exercise-linked thermal damage to the intestinal mucosa can cause intestinal barrier disruption, followed by an inflammatory response. Furthermore, the adaptation to exercise may affect the gut microbiota and the metabolome of the biofluids. The aim of the present research was to evaluate the presence of a GI derangement in hunting dogs through a non-invasive sampling as a consequence of a period of intense exercise in comparison with samples collected at rest. The study included nine dogs that underwent the same training regime for hunting wild boar. In order to counterbalance physiological variations, multiple-day replicates were collected and pooled at each experimental point for each dog. The samples were collected immediately at rest before the training (T0), after 60 days of training (T1), after 60 days of hunting wild boar (T2), and finally, at 60 days of rest after hunting (T3). A number of potential stress markers were evaluated: fecal cortisol metabolites (FCMs) as a major indicator of altered physiological states, immunoglobulin A (IgA) as an indicator of intestinal immune protection, and total antioxidant activity [total antioxidant capacity (TAC)]. Since stool samples contain exfoliated cells, we investigated also the presence of some transcripts involved in GI permeability [occludin (OCLN), protease-activated receptor-2 (PAR-2)] and in the inflammatory mechanism [interleukin (IL)-8, IL-6, IL-1b, tumor necrosis factor alpha (TNFα), calprotectin (CALP), heme oxygenase-1 (HO-1)]. Finally, the metabolome and the microbiota profiles were analyzed. No variation in FCM and IgA content and no differences in OCLN and CALP gene expression between rest and training were observed. On the contrary, an increase in PAR-2 and HO-1 transcripts, a reduction in total antioxidant activity, and a different profile of microbiota and metabolomics data were observed. Collectively, the data in the present study indicated that physical exercise in our model could be considered a mild stressor stimulus.
Collapse
Affiliation(s)
- Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alba Gaspardo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Pier Attilio Accorsi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Barone
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy.,Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | - Chenglin Zhu
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Stawski R, Walczak K, Perdas E, Wlodarczyk A, Sarniak A, Kosielski P, Meissner P, Budlewski T, Padula G, Nowak D. Decreased integrity of exercise-induced plasma cell free nuclear DNA - negative association with the increased oxidants production by circulating phagocytes. Sci Rep 2019; 9:15970. [PMID: 31685910 PMCID: PMC6828751 DOI: 10.1038/s41598-019-52409-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/12/2019] [Indexed: 12/21/2022] Open
Abstract
Strenuous exercise increases circulating cell free DNA (cfDNA) and stimulates blood phagocytes to generate reactive oxygen species (ROS) which may induce DNA strand breaks. We tested whether: (A) elevated cfDNA in response to three repeated bouts of exhaustive exercise has decreased integrity; (B) each bout of exercise increases luminol enhanced whole blood chemiluminescence (LBCL) as a measure of ROS production by polymorphonuclear leukocytes. Eleven men performed three treadmill exercise tests to exhaustion separated by 72 hours of resting. Pre- and post-exercise concentrations and integrity of cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) and resting (r) and fMLP (n-formyl-methionyl-leucyl-phenylalanine)-stimulated LBCL were determined. Each bout increased concentrations of cf n-DNA by more than 10-times which was accompanied by about 2-times elevated post-exercise rLBCL and fMLP-LBCL. Post-exercise cf n-DNA integrity (integrity index, I229/97) decreased after the first (0.59 ± 0.19 vs. 0.48 ± 0.18) and second (0.53 ± 0.14 vs. 0.44 ± 0.17) bout of exercise. There were negative correlations between I229/97 and rLBCL (ƍ = –0.37), and I229/97 and fMLP-LBCL (ƍ = –0.40) – analysis of pooled pre- and post-exercise data (n = 66). cf mt- DNA integrity (I218/78) did not alter in response to exercise. This suggests an involvement of phagocyte ROS in cf n-DNA strand breaks in response to exhaustive exercise.
Collapse
Affiliation(s)
- Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Anna Wlodarczyk
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Sarniak
- Department of General Physiology, Medical University of Lodz, Lodz, Poland
| | - Piotr Kosielski
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Pawel Meissner
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, University Hospital name of the Military Medical Academy-Central Hospital Veterans of Lodz Ul. Pieniny 30, 92-115, Łódź, Poland
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
25
|
Circulating, Cell-Free DNA for Monitoring Player Load in Professional Football. Int J Sports Physiol Perform 2019; 14:718-726. [PMID: 30427238 DOI: 10.1123/ijspp.2018-0756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: Player monitoring in elite sport settings is becoming increasingly important. Questionnaire-based methods and biomarkers such as circulating, cell-free DNA (cfDNA) are suggested for load monitoring. cfDNA concentrations were shown to increase depending on total distance covered in football and were associated with overtraining in weight lifters. Thus, the objective of this study was to examine whether cfDNA is feasible as a monitoring tool in elite football players. Methods: Capillary blood samples from 22 male elite football players were collected over 4 mo of a regular season. Sampling was conducted the day before, 1 day after, or several days after regular-season games and/or training. In addition, each player filled in a visual analogue scale (VAS) questionnaire including the items "general perceived exertion," "muscular fatigue," and "mental fatigue." Performance during training and games was tracked by the Catapult system and with the OPTA system, respectively. Results: cfDNA values were significantly elevated in players the day after regular-season games (1.4-fold; P = .0004) in line with the scores of the VAS. Both parameters showed significantly higher values during midweek-game weeks. cfDNA concentrations correlated with training data, and VAS was correlated with the tracking of the season games. However, cfDNA and VAS did not correlate with each other. Conclusions: cfDNA concentrations at rest and VAS scores are influenced by previous load in professional football players. Future studies will reveal whether cfDNA might serve as a practically applicable marker for player load in football players.
Collapse
|
26
|
Grzybkowska A, Anczykowska K, Ratkowski W, Aschenbrenner P, Antosiewicz J, Bonisławska I, Żychowska M. Changes in Serum Iron and Leukocyte mRNA Levels of Genes Involved in Iron Metabolism in Amateur Marathon Runners-Effect of the Running Pace. Genes (Basel) 2019; 10:E460. [PMID: 31208055 PMCID: PMC6627308 DOI: 10.3390/genes10060460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for physical activity due to its role in energy production pathways and oxygen transportation via hemoglobin and myoglobin. Changes in iron-related biochemical parameters after physical exercise in athletes are of substantial research interest, but molecular mechanisms such as gene expression are still rarely tested in sports. In this paper, we evaluated the mRNA levels of genes related to iron metabolism (PCBP1, PCBP2, FTL, FTH, and TFRC) in leukocytes of 24 amateur runners at four time points: before, immediately after, 3 h after, and 24 h after a marathon. We measured blood morphology as well as serum concentrations of iron, ferritin, and C-reactive protein (CRP). Our results showed significant changes in gene expression (except for TFRC), serum iron, CRP, and morphology after the marathon. However, the alterations in mRNA and protein levels occurred at different time points (immediately and 3 h post-run, respectively). The levels of circulating ferritin remained stable, whereas the number of transcripts in leukocytes differed significantly. We also showed that running pace might influence mRNA expression. Our results indicated that changes in the mRNA of genes involved in iron metabolism occurred independently of serum iron and ferritin concentrations.
Collapse
Affiliation(s)
- Agata Grzybkowska
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland.
| | - Katarzyna Anczykowska
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland.
| | - Wojciech Ratkowski
- Department of Management in Tourism and Recreation, Faculty of Tourism and Recreation, University of Physical Education and Sport, 80-336 Gdansk, Poland.
| | - Piotr Aschenbrenner
- Department of Life Sciences, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland.
| | - Jędrzej Antosiewicz
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland.
| | - Iwona Bonisławska
- Department of Anatomy and Anthropology, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland.
| | - Małgorzata Żychowska
- Department of Life Sciences, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland.
| |
Collapse
|
27
|
Shi Y, Shi H, Nieman DC, Hu Q, Yang L, Liu T, Zhu X, Wei H, Wu D, Li F, Cui Y, Chen P. Lactic Acid Accumulation During Exhaustive Exercise Impairs Release of Neutrophil Extracellular Traps in Mice. Front Physiol 2019; 10:709. [PMID: 31263423 PMCID: PMC6585869 DOI: 10.3389/fphys.2019.00709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
Lactic acid (LA) is a sensitive indicator of exercise intensity and duration. A single bout of prolonged and intensive exercise can cause transient immunosuppression through the interaction of cellular, humoral, and hormone factors. Exercise-induced influences on neutrophil extracellular traps (NETs) release have been reported, but the underlying mechanism is unknown. This study investigated NETs release, cell-free DNA (cf-DNA), and LA concentration in mice after 60 and 145 min of intensive, graded treadmill running. The concentration of LA and cf-DNA increased, while the level of myeloperoxidase-DNA (MPO-DNA) (an indicator of NETs release) decreased during 145 min of exhaustive running. LA was positively and negatively correlated with cf-DNA and MPO-DNA (R 2 = 0.57 and 0.53, respectively, both p < 0.001). Subsequent in vitro experiments were conducted with neutrophils activated by phorbol myristate acetate (PMA) in the presence of LA at different concentrations. Increasing LA concentrations were associated with decreases in NETs release and reactive oxygen species (ROS) formation. Taken together, this work furthers our understanding of how NETs and oxidative reaction respond to one bout of prolonged and intensive running. The data support a negative relationship between LA accumulation and NETs release after heavy exertion.
Collapse
Affiliation(s)
- Yue Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Zhu
- Normal College, Jiaxing University, Jiaxing, China
| | - Hongzhan Wei
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fei Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yanqiu Cui
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
28
|
Molnár B, Galamb O, Kalmár A, Barták BK, Nagy ZB, Tóth K, Tulassay Z, Igaz P, Dank M. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn 2019; 19:477-498. [PMID: 31046485 DOI: 10.1080/14737159.2019.1613891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Introduction: Screening methods for one of the most frequently diagnosed malignancy, colorectal cancer (CRC), have limitations. Circulating cell-free nucleic acids (cfNA) hold clinical relevance as screening, prognostic and therapy monitoring markers. Area covered: In this review, we summarize potential CRC-specific cfNA biomarkers, the recently developed sample preparation techniques, their applications, and pitfalls. Expert opinion: Automated extraction of cfDNA is highly reproducible, however, cfDNA yield is less compared to manual isolation. Quantitative and highly sensitive detection techniques (e.g. digital PCR, NGS) can be applied to analyze genetic and epigenetic changes. Detection of DNA mutations or methylation in cfDNA and related altered levels of mRNA, miRNA, and lncRNA may improve early cancer recognition, based on specific, CRC-related patterns. Detection of cfDNA mutations (e.g. TP53, KRAS, APC) has limited diagnostic sensitivity (40-60%), however, methylated DNA including SEPT9, SFRP1, SDC2 can be applied with higher sensitivity (up to 90%) for CRC. Circulating miRNAs (e.g. miR-21, miR-92, miR-141) provide comparably high sensitivity for CRC as the circulating tumor cell mRNA markers (e.g. EGFR, CK19, CK20, CEA). Automation of cfNA isolation coupled with quantitative analysis of CRC-related, highly sensitive biomarkers may enhance CRC screening and early detection in the future.
Collapse
Affiliation(s)
- Béla Molnár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Orsolya Galamb
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Alexandra Kalmár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Barbara Kinga Barták
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsófia Brigitta Nagy
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Kinga Tóth
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsolt Tulassay
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Péter Igaz
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Magdolna Dank
- c Department of Oncology , Semmelweis University , Budapest , Hungary
| |
Collapse
|
29
|
The Development of a Personalised Training Framework: Implementation of Emerging Technologies for Performance. J Funct Morphol Kinesiol 2019; 4:jfmk4020025. [PMID: 33467340 PMCID: PMC7739422 DOI: 10.3390/jfmk4020025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, there has been considerable interest in the individualisation of athlete training, including the use of genetic information, alongside more advanced data capture and analysis techniques. Here, we explore the evidence for, and practical use of, a number of these emerging technologies, including the measurement and quantification of epigenetic changes, microbiome analysis and the use of cell-free DNA, along with data mining and machine learning. In doing so, we develop a theoretical model for the use of these technologies in an elite sport setting, allowing the coach to better answer six key questions: (1) To what training will my athlete best respond? (2) How well is my athlete adapting to training? (3) When should I change the training stimulus (i.e., has the athlete reached their adaptive ceiling for this training modality)? (4) How long will it take for a certain adaptation to occur? (5) How well is my athlete tolerating the current training load? (6) What load can my athlete handle today? Special consideration is given to whether such an individualised training framework will outperform current methods as well as the challenges in implementing this approach.
Collapse
|
30
|
Liquid Biopsies to Monitor Solid Organ Transplant Function: A Review of New Biomarkers. Ther Drug Monit 2019; 40:515-525. [PMID: 29957668 DOI: 10.1097/ftd.0000000000000549] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite modern immunosuppressive therapy, allograft rejection remains a major cause of solid organ transplant dysfunction. For clinical care, organ transplant function is routinely monitored by measuring biomarkers that, depending on the organ transplanted, include serum creatinine, N-terminal pro-hormone of brain natriuretic peptide (NT-proBNP), and aspartate aminotransferase. All can be measured easily in clinical chemistry laboratories. The main problem with these biomarkers is that they have a low sensitivity for the detection of allograft damage and are nonspecific for the detection of allograft rejection. To diagnose rejection, histologic examination of grafted tissue is necessary, which requires an invasive biopsy procedure. There is thus an unmet need in transplantation medicine for biomarkers that are specific for rejection, identify graft injury at an early stage, and may eventually overcome the need for a transplant biopsy. Recently, tremendous progress in the field of biomarkers has been made. In this narrative review, the potential of donor-derived cell-free DNA (ddcfDNA), cell-free nucleosomes, and extracellular vesicles to act as next-generation biomarkers for solid organ transplant is discussed. Based on the fact that cell content is released during rejection, these markers could serve as very specific biomarkers for allograft injury and rejection. These markers have the potential to improve rejection monitoring, evaluate the response to antirejection therapy, and may decrease the need for invasive procedures.
Collapse
|
31
|
Bekos C, Zimmermann M, Unger L, Janik S, Mitterbauer A, Koller M, Fritz R, Gäbler C, Didcock J, Kliman J, Klepetko W, Ankersmit HJ, Moser B. Exercise-induced bronchoconstriction, temperature regulation and the role of heat shock proteins in non-asthmatic recreational marathon and half-marathon runners. Sci Rep 2019; 9:4168. [PMID: 30862844 PMCID: PMC6414620 DOI: 10.1038/s41598-019-39983-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
Exercise is the most common trigger of bronchospasm. Heat shock protein (HSP) expression was linked to asthmatic patients. The prevalence and pathophysiology of exercise-induced bronchoconstriction (EIB) in non-professional non-asthmatic runners is unknown. We sought to investigate the frequency of EIB and cytokine changes in non-professional non-asthmatic marathon and half marathoners with and without EIB. Testing was performed before the marathon (baseline), immediately post-marathon at the finish area (peak), and 2–7 days after the marathon (recovery): immunosorbent assays for measurement of HSP70, blood count analysis, spirometry and temperature measurements. We experienced a decline in FEV1 of ≥10% in 35.29% of marathon and 22.22% of half marathon runners. Runners with EIB had significantly higher HSP70 serum concentrations at baseline than those without EIB (987.4 ± 1486.7 vs. 655.6 ± 1073.9; p = 0.014). Marathoners with EIB had significantly increased WBC before participating in the competition (7.4 ± 1.7 vs. 6.0 ± 1.5; p = 0.021). After recovery we found increased HSP70 serum concentrations in marathoners with EIB compared to those without (2539.2 ± 1692.5 vs. 1237.2 ± 835.2; p = 0.032), WBC (7.6 ± 1.8 vs. 6.4 ± 1.6; p = 0.048) and PLT (273.0 ± 43.0 vs 237.2 ± 48.3; p = 0.040). At all measured skin sites skin temperatures in runners were significantly lower immediately after participating in the competition when compared to temperature before the race (skin temperature baseline vs. peak: abdominal: 33.1 ± 0.2 vs. 30.0 ± 0.4; p < 0.001; upper arm: 31.6 ± 0.2 vs. 29.4 ± 0.3; p < 0.001; upper leg: 30.7 ± 0.3 vs. 29.4 ± 0.2; p = 0.014; lower leg: 30.6 ± 1.0 vs. 30.2 ± 1.5; p = 0.007). We found a higher than expected number of non-professional athletes with EIB. HSP70 serum concentrations and elevated WBC could indicate a predisposition to EIB.
Collapse
Affiliation(s)
- Christine Bekos
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria.,Medical University of Vienna, Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Vienna, Austria
| | - Matthias Zimmermann
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Lukas Unger
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Stefan Janik
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Andreas Mitterbauer
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | | | - Robert Fritz
- Sportordination, Alserstraße 28, Vienna, Austria
| | | | - Jessica Didcock
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Jonathan Kliman
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Walter Klepetko
- Department of Surgery, Division of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria.,Department of Surgery, Division of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - Bernhard Moser
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria. .,Department of Surgery, Division of Thoracic Surgery, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Abstract
The interest about circulating cell-free DNA (cfDNA) concentration increased from several years because of its correlation with various conditions like osteoarthritis, cancers, stroke, and sepsis; recently it has become an important marker for overtraining syndrome or performance diagnostics.Several studies have demonstrated that cfDNA increases in vigorous and exhausting exercise but also endurance exercise. Acute effect of exercise on cfDNA concentration seems to be correlated to stress factor, while chronic effect is associated with necrosis and apoptosis.The intensity and duration seem to have effects on the variation of cfDNA concentration that is strongly correlated with other metabolic markers like acid lactate and creatine kinase, recognized as markers of muscle damage. Variation of cfDNA value could be used to predict overtraining syndrome.
Collapse
Affiliation(s)
- Leydi Natalia Vittori
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | |
Collapse
|
33
|
Characteristics, properties, and potential applications of circulating cell-free dna in clinical diagnostics: a focus on transplantation. J Immunol Methods 2018; 463:27-38. [DOI: 10.1016/j.jim.2018.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
|
34
|
Comparison of 4 commercial kits for the extraction of circulating DNA from plasma. Cancer Genet 2018; 228-229:143-150. [DOI: 10.1016/j.cancergen.2018.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
|
35
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 2018; 93:1649-1683. [PMID: 29654714 DOI: 10.1111/brv.12413] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Since the detection of cell-free DNA (cfDNA) in human plasma in 1948, it has been investigated as a non-invasive screening tool for many diseases, especially solid tumours and foetal genetic abnormalities. However, to date our lack of knowledge regarding the origin and purpose of cfDNA in a physiological environment has limited its use to more obvious diagnostics, neglecting, for example, its potential utility in the identification of predisposition to disease, earlier detection of cancers, and lifestyle-induced epigenetic changes. Moreover, the concept or mechanism of cfDNA could also have potential therapeutic uses such as in immuno- or gene therapy. This review presents an extensive compilation of the putative origins of cfDNA and then contrasts the contributions of cellular breakdown processes with active mechanisms for the release of cfDNA into the extracellular environment. The involvement of cfDNA derived from both cellular breakdown and active release in lateral information transfer is also discussed. We hope to encourage researchers to adopt a more holistic view of cfDNA research, taking into account all the biological pathways in which cfDNA is involved, and to give serious consideration to the integration of in vitro and in vivo research. We also wish to encourage researchers not to limit their focus to the apoptotic or necrotic fraction of cfDNA, but to investigate the intercellular messaging capabilities of the actively released fraction of cfDNA and to study the role of cfDNA in pathogenesis.
Collapse
Affiliation(s)
- Janine Aucamp
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Abel J Bronkhorst
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| |
Collapse
|
36
|
Ferrandi PJ, Fico BG, Whitehurst M, Zourdos MC, Bao F, Dodge KM, Rodriguez AL, Pena G, Huang CJ. Acute high-intensity interval exercise induces comparable levels of circulating cell-free DNA and Interleukin-6 in obese and normal-weight individuals. Life Sci 2018; 202:161-166. [PMID: 29653118 DOI: 10.1016/j.lfs.2018.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 12/31/2022]
Abstract
AIMS Obesity is associated with lipid aggregation in adipocytes and macrophage infiltration, leading to increased oxidative stress and inflammation. Increased cell-free DNA (cfDNA) concentrations have been observed in clinical conditions of systemic inflammation. While the beneficial effects of regular physical activity on the release of circulating cfDNA still remain unknown, acute intense exercise has been shown to increase inflammatory cytokines and cfDNA concentrations in normal-weight individuals. Therefore, the primary purpose of this study was to examine the effect of acute high-intensity interval Exercise (HIIE) on plasma cfDNA and interleukin-6 (IL-6) responses in obese and normal-weight subjects. MAIN METHODS Fourteen male subjects (7 obese and 7 normal-weight) participated in an acute HIIE protocol (30 min, 4x4min @ 80% - 90% of VO2max) on a treadmill. Between HIIE intervals, subjects performed 3 min of active recovery at 50-60% VO2max. Blood samples were collected prior to, immediately following exercise, and one hour into recovery for measurements of plasma cfDNA and IL-6. KEY FINDINGS Our results demonstrated a significant elevation in plasma cfDNA immediately following acute HIIE in both obese and normal-weight subjects. A comparable elevation in the concentration of plasma IL-6 was also found between two groups in response to acute HIIE. Furthermore, the level of plasma cfDNA was not correlated with IL-6 either at baseline or in response to acute HIIE. SIGNIFICANCE These findings may support the utilization of HIIE as a time-efficient exercise protocol to understand the obesity-associated cfDNA and inflammatory responses.
Collapse
Affiliation(s)
- Peter J Ferrandi
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States; Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, United States
| | - Brandon G Fico
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States; Department of Kinesiology and Health Education, University of Texas, Austin, TX 78712, United States
| | - Michael Whitehurst
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Michael C Zourdos
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Fanchen Bao
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Katelyn M Dodge
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Alexandra L Rodriguez
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Gabriel Pena
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
37
|
Ghio AJ, Case MW, Soukup JM. Heme oxygenase activity increases after exercise in healthy volunteers. Free Radic Res 2018; 52:267-272. [PMID: 29343136 DOI: 10.1080/10715762.2018.1428965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heme oxygenase (HO) is an essential, rate-limiting protein which catalyses the breakdown of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge of the heme is eliminated as CO which can be measured as blood carboxyhaemoglobin (COHb). Using blood concentrations of COHb as a measure reflecting HO activity, we tested the postulate that the activity of HO changes with exercise. Ten healthy, nonsmoking volunteers (5 females and 5 males with a mean age ± standard deviation of 25.7 ± 3.2 years), lifetime nonsmokers with no history of respiratory diseases and not taking any medication, were included in the study. Subjects were exposed to filtered air for 2 hrs while alternating exercise for 15 minutes on a cycle ergometer with rest for 15 minutes. Workload was adjusted so that subjects breathed at a ventilatory rate, normalised for body surface area, of 25 L/m2/minute. Immediately before, immediately after, and the day following exercise, blood was drawn by standard venipuncture technique. COHb was determined using the interleukin (IL) 682 Co-Oximeter (Instrumentation Laboratory, Bedford, MA). COHb increased in each participant during the exercise session with the mean value (± standard deviation) almost doubling (1.1 ± 1.6 to 2.1 ± 1.6%) and returned to baseline by the following day (1.3 ± 1.3%). We conclude that exercise increases HO activity.
Collapse
Affiliation(s)
- Andrew J Ghio
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Martin W Case
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Joleen M Soukup
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| |
Collapse
|
38
|
Haller N, Helmig S, Taenny P, Petry J, Schmidt S, Simon P. Circulating, cell-free DNA as a marker for exercise load in intermittent sports. PLoS One 2018; 13:e0191915. [PMID: 29370268 PMCID: PMC5784997 DOI: 10.1371/journal.pone.0191915] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Methods Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either “short” (1 minute) or “long” pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game. Results Lactate and venous cfDNA increased more pronounced during “short” compared to “long” (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; p<0.001). Incremental exercise testing increased cfDNA 7.0-fold (p<0.001). The season game increased cfDNA 22.7-fold (p<0.0001), while lactate showed a 2.0-fold (p = 0.09) increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman’s r = 0.87, p = 0.0012), while no correlation between lactate and the tracking data could be found. Discussion We show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football.
Collapse
Affiliation(s)
- Nils Haller
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Susanne Helmig
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Pascal Taenny
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Julian Petry
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Sebastian Schmidt
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University of Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
39
|
Tug S, Tross AK, Hegen P, Neuberger EWI, Helmig S, Schöllhorn W, Simon P. Acute effects of strength exercises and effects of regular strength training on cell free DNA concentrations in blood plasma. PLoS One 2017; 12:e0184668. [PMID: 28910365 PMCID: PMC5599009 DOI: 10.1371/journal.pone.0184668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/28/2017] [Indexed: 01/05/2023] Open
Abstract
Creatine kinase (CK) is a marker for muscle cell damage with limited potential as marker for training load in strength training. Recent exercise studies identified cell free DNA (cfDNA) as a marker for aseptic inflammation and cell damage. Here we overserved in a pilot study the acute effects during strength exercise and chronic effects of regular strength training on cfDNA concentrations over a period of four weeks in three training groups applying conservation training (CT) at 60% of the 1 repetition maximum, high intensity-low repetition training (HT) at 90% of the 1 repetition maximum and differential training (DT) at 60% of the 1 repetition maximum. EDTA-plasma samples were collected before every training session, and on the first and last training day repeatedly after every set of exercises. CfDNA increased significantly by 1.62-fold (mean (±SD) before first exercise: 8.31 (2.84) ng/ml, after last exercise 13.48 (4.12) ng/ml) across all groups within a single training session (p<0.001). The increase was 1.77-fold higher (mean (±SD) before first exercise: 12.23 (6.29) ng/ml, after last exercise 17.73 (11.24) ng/ml) in HT compared to CT (mean (±SD) before first exercise: 6.79 (1.28) ng/ml, after last exercise 10.05 (2.89) ng/ml) (p = 0.01). DNA size analysis suggested predominant release of short, mononucleosomal DNA-fragments in the acute exercise setting, while we detected an increase of mostly longer, polynucleosomal cfDNA-fragments at rest before the training session only at day two with a subsequent return to baseline (p<0.001). In contrast, training procedures did not cause any alterations in CK. Our results suggest that during strength exercise short-fragmented cfDNA is released, reflecting a fast, aseptic inflammatory response, while elevation of longer fragments at baseline on day two seemed to reflect mild cellular damage due to a novel training regime. We critically discuss the implications of our findings for future evaluations of cfDNA as a marker for training load in strength training.
Collapse
Affiliation(s)
- Suzan Tug
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna-Katharina Tross
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Patrick Hegen
- Institute for Training and Movement Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elmo Wanja Immanuel Neuberger
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Helmig
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wolfgang Schöllhorn
- Institute for Training and Movement Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
40
|
Krüger K, Alack K, Ringseis R, Mink L, Pfeifer E, Schinle M, Gindler K, Kimmelmann L, Walscheid R, Muders K, Frech T, Eder K, Mooren FC. Apoptosis of T-Cell Subsets after Acute High-Intensity Interval Exercise. Med Sci Sports Exerc 2017; 48:2021-9. [PMID: 27183117 DOI: 10.1249/mss.0000000000000979] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION High-intensity interval training (HIT) exercise has gained much interest in both performance and recreational sports. This study aims to compare the effect of HIT versus continuous (CONT) exercise with regard to changes of circulating T cells and progenitor cells. METHODS Subjects (n = 23) completed an HIT test and an isocaloric CONT test. Blood samples were collected before, immediately after, and 3 and 24 h postexercise for the assessment of low differentiated (CD3CD28CD57), highly differentiated T cells (CD3CD28CD57), regulatory T cells (Tregs) (CD4CD25CD127), hematopoietic progenitor cells (CD45CD34), and endothelial progenitor cells (CD45CD34KDR) by flow cytometry. The detection of apoptosis was performed by using labeling with annexin V. To analyze potential mechanisms affecting T cells, several hormones and metabolites were analyzed. RESULTS Both exercise tests induced an increase of catecholamines, cortisol, and thiobarbituric acid-reactive substances (P < 0.05). CONT induced a higher increase of apoptosis in low differentiated T cells compared with the HIT (CONT: 3.66% ± 0.21% to 6.48% ± 0.29%, P < 0.05; HIT: 3.43% ± 0.31% to 4.71% ± 0.33%), whereas HIT was followed by a higher rate of apoptotic highly differentiated T cells (CONT: 21.45% ± 1.23% to 25.32% ± 1.67%; HIT: 22.45% ± 1.37% to 27.12% ± 1.76%, P < 0.05). Regarding Tregs, HIT induced a mobilization, whereas CONT induced apoptosis in these cells (P < 0.05). The mobilization of progenitor cells did not differ between the exercise protocols. CONCLUSION These results suggest that HIT deletes mainly highly differentiated T cells known to affect immunity to control latent infections. By contrast, CONT deletes mainly low differentiated T cells and Tregs, which might affect defense against new infectious agents.
Collapse
Affiliation(s)
- Karsten Krüger
- 1Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, GERMANY; 2Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University, Giessen, GERMANY; and 3MVZ for Laboratory Medicine, Koblenz, GERMANY
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zinkova A, Brynychova I, Svacina A, Jirkovska M, Korabecna M. Cell-free DNA from human plasma and serum differs in content of telomeric sequences and its ability to promote immune response. Sci Rep 2017; 7:2591. [PMID: 28572683 PMCID: PMC5453964 DOI: 10.1038/s41598-017-02905-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) may be involved in immune response regulation. We studied the variations in abundance of telomeric sequences in plasma and serum in young healthy volunteers and the ability of cfDNA contained in these samples to co-activate the TNF-α m RNA expression in monocytes. We performed qPCR to determine relative telomere length (T/S ratios) in plasma, serum and whole blood of 36 volunteers. Using paired samples of plasma and serum and DNase treatment, we analysed the contribution of cfDNA to the co-activation of TNF-α mRNA expression in THP1 monocytic cell line. We found significant differences between paired plasma and serum samples in relative T/S ratios (median 1.38 ± 1.1 vs. 0.86 ± 0.25, respectively) and in total amounts of cfDNA and in estimated total amounts of telomeres which were significantly higher in serum than in plasma. TNF-α mRNA expression in THP1 cells increased significantly after DNase treatment of all samples used for stimulation. The highest TNF-α mRNA expressions were observed after stimulation with DNase treated serum samples. Our results suggest that the different content of telomeric sequences in plasma and serum may contribute to the tuning of immune response. Further studies of this interesting phenomenon are needed.
Collapse
Affiliation(s)
- Alzbeta Zinkova
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Iva Brynychova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Vinicna 7, 128 43, Prague, Czech Republic
| | - Alexander Svacina
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Marie Jirkovska
- Department of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Marie Korabecna
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
42
|
Stawski R, Walczak K, Kosielski P, Meissner P, Budlewski T, Padula G, Nowak D. Repeated bouts of exhaustive exercise increase circulating cell free nuclear and mitochondrial DNA without development of tolerance in healthy men. PLoS One 2017; 12:e0178216. [PMID: 28542490 PMCID: PMC5443547 DOI: 10.1371/journal.pone.0178216] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023] Open
Abstract
Objective Acute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men. Methods Eleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count. Results Each bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL). Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion. Conclusions Repeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body.
Collapse
Affiliation(s)
- Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, Lodz, Poland
| | - Piotr Kosielski
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Pawel Meissner
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Tomasz Budlewski
- Department of Internal Medicine, University Hospital name of the Military Medical Academy—Central Hospital Veterans of Lodz, Lodz, Poland
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
43
|
Gibson OR, Tuttle JA, Watt PW, Maxwell NS, Taylor L. Hsp72 and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation. Cell Stress Chaperones 2016; 21:1021-1035. [PMID: 27511024 PMCID: PMC5083671 DOI: 10.1007/s12192-016-0726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Increased intracellular heat shock protein-72 (Hsp72) and heat shock protein-90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90-min heat acclimation (in 40.2 °C, 41.0 % relative humidity (RH)) or equivalent normothermic training (in 20 °C, 29 % RH). Pearson's product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (Trec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via reverse transcription quantitative polymerase chain reaction (RT-QPCR) (n = 15). Significant (p < 0.05) correlations existed between increased Hsp72 and Hsp90α mRNA (r = 0.879). Increased core temperature was the most important criteria for gene transcription with ΔTrec (r = 0.714), SR (r = 0.709), Trecfinal45 (r = 0.682), area under the curve where Trec ≥ 38.5 °C (AUC38.5 °C; r = 0.678), peak Trec (r = 0.661), duration Trec ≥ 38.5 °C (r = 0.650) and ΔHR (r = 0.511) each demonstrating a significant (p < 0.05) correlation with the increase in Hsp72 mRNA. The Trec AUC38.5 °C (r = 0.729), ΔTrec (r = 0.691), peak Trec (r = 0.680), Trecfinal45 (r = 0.678), SR (r = 0.660), duration Trec ≥ 38.5 °C (r = 0.629), the rate of change in Trec (r = 0.600) and ΔHR (r = 0.531) were the strongest correlate with the increase in Hsp90α mRNA. Multiple regression improved the model for Hsp90α mRNA only, when Trec AUC38.5 °C and SR were combined. Training variables showed insignificant (p > 0.05) weak (r < 0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK.
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK.
| | - James A Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford, UK
| | - Peter W Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
44
|
Villalba-Campos M, Ramírez-Clavijo SR, Sánchez-Corredor MC, Rondón-Lagos M, Ibáñez-Pinilla M, Palma RM, Varona-Uribe ME, Chuaire-Noack L. Quantification of cell-free DNA for evaluating genotoxic damage from occupational exposure to car paints. J Occup Med Toxicol 2016; 11:33. [PMID: 27429640 PMCID: PMC4946235 DOI: 10.1186/s12995-016-0123-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND For several years, cell-free DNA has been emerging as an important biomarker for non-invasive diagnostic in a wide range of clinical conditions and diseases. The limited information available on the genotoxic effects associated with occupational exposure to car paints, as well as the fact that up-to-date there are not reports about cell-free DNA measurements for assessing this condition, led us to evaluate the DNA damage caused by the occupational exposure to organic solvents contained in car paints, through the quantification of the cell-free DNA and the comet assay, in a sample of 33 individuals taken from 10 automobile paint shops located in Bogota DC, Colombia. RESULTS By applying the two methods, cell-free DNA and comet assay, we found a significant increase in the extent of DNA damage in the exposed individuals compared with the non-exposed ones within the control group. CONCLUSIONS Our findings provide useful information about the cell-free DNA levels in this type of exposure and can be considered as a support tool that contributes to the diagnosis of genotoxic damage in individuals occupationally exposed to car paints.
Collapse
Affiliation(s)
- Mónica Villalba-Campos
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 26 63B-48, Bogotá, DC Colombia
| | | | | | - Milena Rondón-Lagos
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 26 63B-48, Bogotá, DC Colombia
| | | | | | | | - Lilian Chuaire-Noack
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 26 63B-48, Bogotá, DC Colombia
| |
Collapse
|
45
|
Kilian Y, Wehmeier UF, Wahl P, Mester J, Hilberg T, Sperlich B. Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children. Front Physiol 2016; 7:92. [PMID: 27014090 PMCID: PMC4789462 DOI: 10.3389/fphys.2016.00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/26/2016] [Indexed: 01/10/2023] Open
Abstract
Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods:Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min−1·kg−1 peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90–95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30′, 60′, 180′) and HVT (d3, 0′, 60′). Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.
Collapse
Affiliation(s)
- Yvonne Kilian
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Udo F Wehmeier
- Department of Sports Medicine, University Wuppertal Wuppertal, Germany
| | - Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany; Departement of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University CologneCologne, Germany
| | - Joachim Mester
- Institute of Training Science and Sport Informatics, German Sport University CologneCologne, Germany; The German Research Centre of Elite Sport, German Sport University CologneCologne, Germany
| | - Thomas Hilberg
- Department of Sports Medicine, University Wuppertal Wuppertal, Germany
| | - Billy Sperlich
- Department of Sports Medicine, University Wuppertal Wuppertal, Germany
| |
Collapse
|
46
|
Beiter T, Fragasso A, Hartl D, Nieß AM. Neutrophil extracellular traps: a walk on the wild side of exercise immunology. Sports Med 2016; 45:625-40. [PMID: 25504501 DOI: 10.1007/s40279-014-0296-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intense exercise evokes a rapid and transient increase in circulating cell-free DNA (cf-DNA), a phenomenon that is commonly observed in a variety of acute and chronic inflammatory conditions. While the potential value of cf-DNA for the prediction of disease outcome and therapeutic response is well documented, the release mechanisms and biological relevance of cf-DNA have long remained enigmatic. The discovery of neutrophil extracellular traps (NETs) provided a novel mechanistic explanation for increased cf-DNA levels. Now there is increasing evidence that NETs may contribute to cf-DNA in diverse infectious, non-infectious and autoinflammatory conditions, as well as in response to acute exercise. NETs have now been firmly established as a fundamental immune mechanism used by neutrophils to respond to infection and tissue injury. On the other side, aberrant formation of NETs appears to be a driving force in the pathogenesis of autoimmunity and cardiovascular disease. Thus, the emergence of NETs in the 'exercising vasculature' raises important questions considering beneficial effects, as well as occasional adverse effects, of exercise on immune homeostasis. This review gives an overview of the current state of research into the mechanisms of how NETs are released, contribute to host defence and participate in inflammatory disorders. We discuss the impact of exercise-induced NETs, considering a potentially beneficial role in the prevention of lifestyle-related diseases, as well as putative detrimental effects that may arise in elite sports. Finally, we propose that exercise-induced cf-DNA responses could be exploited for diagnostic/prognostic purposes to identify individuals who are at increased risk of cardiovascular events or autoimmunity.
Collapse
Affiliation(s)
- Thomas Beiter
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany,
| | | | | | | |
Collapse
|
47
|
Mooren FC, Krüger K. Exercise, Autophagy, and Apoptosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:407-22. [PMID: 26477924 DOI: 10.1016/bs.pmbts.2015.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exercise is a form of physiological stress which is known to induce an adaptational response. It is proposed that both apoptosis and autophagy are processes which are necessary for adaptation to exercise. Apoptosis and autophagy are induced during exercise to limit tissue damage, restore tissue integrity, terminate inflammatory responses, or induce direct signals for adaptation. Apoptosis is induced by specific mediators like reactive oxygen species, cytokines, and hormones. Autophagic pathways are activated by altered proteins/organelles with the aim to conserve and recycle the cellular resources. In this case, the cell is flooded with damaged molecules, the repairing mechanisms are overtaxed, and apoptosis is induced. In conclusion, autophagy seems to be necessary for adaptation by providing locally the conditions for muscle plasticity and apoptosis systemically by mobilizing progenitor cells.
Collapse
Affiliation(s)
- Frank C Mooren
- Department of Sports Medicine, University of Giessen, Giessen, Germany.
| | - Karsten Krüger
- Department of Sports Medicine, University of Giessen, Giessen, Germany
| |
Collapse
|
48
|
Release of bulk cell free DNA during physical exercise occurs independent of extracellular vesicles. Eur J Appl Physiol 2015; 115:2271-80. [DOI: 10.1007/s00421-015-3207-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
|
49
|
Vasilyeva IN, Voznjouk IA, Bespalov VG. Low-molecular-weight DNA in blood plasma and cerebrospinal fluid of patients with acute stroke. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:51-54. [DOI: 10.17116/jnevro20151159251-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Fleischhacker M, Schmidt B. Extracellular Nucleic Acids and Cancer. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-94-017-9168-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|