1
|
Röhrs G, Keller S, Wahl P. Durability in Youth Squad Triathletes-Influence of Strenuous Cycling on Subsequent Running Performance, Economy, and Substrate Utilization. Int J Sports Physiol Perform 2025:1-11. [PMID: 40368324 DOI: 10.1123/ijspp.2025-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE This study aimed to investigate oxygen/energy cost (OC/EC) of running and substrate utilization before and after strenuous cycling in well-trained junior triathletes and the relevance of changes in these variables for fatigued running performance. METHODS Nineteen junior squad triathletes (4 female, 15 male; 17.2 [1.8] y; maximal oxygen uptake (V˙O2peak) 61.4 [5.1] mL·kg-1·min-1) completed 3 submaximal running steps (2.8 m·s-1, +0.4 m·s-1, and 5 min) under fresh conditions, followed by an incremental cycling test (∼2 W·kg-1, +20 W, and 3 min) to exhaustion. Afterward, they performed another incremental running test to exhaustion under fatigued conditions for V˙O2peak, OC, and time-to-exhaustion assessment. During both runs, OC, EC, and carbohydrate/fat oxidation (CHO/FO) were assessed. RESULTS Contrary to trivial/small average changes in OC (210 [15] to 209 [14] mL·kg-1·km-1, P = .71) and EC (4.75 [0.33] to 4.59 [0.29] kJ·kg-1·km-1, P = .02), CHO decreased (2.96 [0.68] to 2.08 [0.68] g·min-1) while FO increased (0.15 [0.13] to 0.48 [0.22] g·min-1) significantly from fresh to fatigued running (P < .001). Besides V˙O2peak (r = .68, P = .002), the changes in CHO (r = -.60, P = .01) and FO (r = .67, P = .003) were significantly correlated with fatigued time to exhaustion (1715 [172] s). Multiple regression and commonality analysis identified V˙O2peak, OC, and the change in FO as the best model for time to exhaustion (R2 = 88%). CONCLUSION Despite trivial/small changes in OC/EC from fresh to fatigued running, a pronounced shift in substrate utilization from CHO to FO was evident in junior triathletes, which was also associated with fatigued running performance.
Collapse
Affiliation(s)
- Greta Röhrs
- Section Exercise Physiology, German Sport University, Cologne, Germany
- German Research Center of Elite Sport, German Sport University, Cologne, Germany
| | - Sebastian Keller
- Section Exercise Physiology, German Sport University, Cologne, Germany
- German Research Center of Elite Sport, German Sport University, Cologne, Germany
| | - Patrick Wahl
- Section Exercise Physiology, German Sport University, Cologne, Germany
- German Research Center of Elite Sport, German Sport University, Cologne, Germany
| |
Collapse
|
2
|
Dudley-Rode H, Zinn C, Plews DJ, Charoensap T, Maunder E. Carbohydrate ingestion during prolonged exercise blunts the reduction in power output at the moderate-to-heavy intensity transition. Eur J Appl Physiol 2025; 125:1349-1359. [PMID: 39709586 DOI: 10.1007/s00421-024-05687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE To determine the effect of carbohydrate ingestion during prolonged exercise on durability of the moderate-to-heavy-intensity transition and severe-intensity performance. METHODS Twelve trained cyclists and triathletes (10 males, 2 females;V ˙ O 2 peak, 59 ± 5 mL kg-1 min-1; training volume, 14 ± 5 h week-1) performed an incremental test and 5-min time trial (TT) without prior exercise (PRE), and after 150 min of moderate-intensity cycling, with (POSTCHO) and without (POSTCON) carbohydrate ingestion. RESULTS Power output at the first ventilatory threshold (VT1) was lower in POSTCHO (225 ± 36 W, ∆ -3 ± 2%, P = 0.027, n = 11) and POSTCON (216 ± 35 W, ∆ -6 ± 4%, P = 0.001, n = 12) than PRE (229 ± 37 W, n = 12), and lower in POSTCON than POSTCHO (∆ -7 ± 9 W, ∆ -3 ± 4%, P = 0.019). Mean power output in the 5-min TT was lower in POSTCHO (351 ± 53 W, ∆ -4 ± 3%, P = 0.025) and POSTCON (328 ± 63 W, ∆ -10 ± 10%, P = 0.027) than PRE (363 ± 55 W), but POSTCHO and POSTCON were not significantly different (∆ 25 ± 37 W, ∆ 9 ± 13%, P = 0.186). Blood glucose concentration was maintained in POSTCHO, and was significantly lower at the 120 and 150-min timepoint in POSTCON (P < 0.05). CONCLUSION These data suggest that durability of the moderate-to-heavy-intensity transition is improved with carbohydrate ingestion. This has implications for training programming and load monitoring.
Collapse
Affiliation(s)
- Harrison Dudley-Rode
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Caryn Zinn
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Human Potential Centre, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Thanchanok Charoensap
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
3
|
Jones AM, Kirby BS. Physiological Resilience: What Is It and How Might It Be Trained? Scand J Med Sci Sports 2025; 35:e70032. [PMID: 40024804 PMCID: PMC11872681 DOI: 10.1111/sms.70032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Physiological resilience has recently been recognized as an additional factor that influences endurance exercise performance. It has thus been incorporated into a modified, contemporary version of "the Joyner model" which acknowledges that start-line values of V̇O2max, efficiency or economy, and metabolic thresholds are prone to deterioration, often with appreciable interindividual variability, during prolonged endurance exercise. The physiological underpinnings of resilience are elusive and sports physiologists are presently concerned with developing practical testing protocols which reflect an athlete's resilience characteristics. It is also important to consider why some athletes are more resilient than others and whether resilience can be enhanced-and, if so, which training programs or specific training sessions might stimulate its development. While data are scant, the available evidence suggests that training consistency and the accumulation of relatively large volumes of training over the longer-term (i.e., several years) might promote resilience. The inclusion of regular prolonged exercise sessions within a training program, especially when these include bouts of high-intensity exercise at race pace or above or a progressive increase in intensity in the face of developing fatigue, might also represent an effective means of enhancing resilience. Finally, resistance training, especially heavy strength and plyometric training, appears to have positive effects on resilience. Considerations of training for resilience, alongside other more established physiological determinants of performance, will likely be important in the long-term development of successful endurance athletes.
Collapse
Affiliation(s)
- Andrew M. Jones
- Public Health and Sport SciencesUniversity of Exeter Medical School, Faculty of Health and Life SciencesExeterUK
| | - Brett S. Kirby
- Public Health and Sport SciencesUniversity of Exeter Medical School, Faculty of Health and Life SciencesExeterUK
- Nike Sport Research Lab, Nike IncBeavertonOregonUSA
| |
Collapse
|
4
|
Ghazzagh A, Naderi A, Agha-Alinejad H, Livani A, Sarlak M, Aghamohammadi S, Saunders B. Acute Effects of Taurine Supplementation on Maximal Fat Oxidation and FATmax in Recreational Endurance Runners: A Randomized, Placebo-Controlled, Crossover, and Triple-Blinded Study. Int J Sport Nutr Exerc Metab 2025; 35:3-11. [PMID: 39419489 DOI: 10.1123/ijsnem.2024-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 08/18/2024] [Indexed: 10/19/2024]
Abstract
Taurine (TAU) has been shown to improve time to exhaustion (TTE) and fat oxidation during exercise; however, no studies have examined the effect of acute TAU supplementation on maximal fat oxidation (MFO) and related intensity to MFO (FATmax). Our study aimed to investigate the effect of acute TAU supplementation on MFO, FATmax, VO2peak, and TTE. Eleven recreationally trained male endurance runners performed three incremental running tests. The first visit included a familiarization to the test, followed by two subsequent visits in which exercise was performed 90 min after ingestion of either 6-g TAU or placebo (PLA) using a triple-blind randomized crossover design. There was no effect of TAU on MFO (p = .89, d = -0.07, TAU: 0.48 ± 0.22 g/min; PLA: 0.49 ± 0.15 g/min or FATmax (p = .26, d = -0.66; TAU: 49.17 ± 15.86 %V˙O2peak; PLA: 56.00 ± 13.27 %V˙O2peak). TTE was not significantly altered (TAU: 1,444.8 ± 88.6 s; PLA: 1,447.6 ± 87.34 s; p = .65, d = -0.04). TAU did not show any effect on V˙O2peak in comparison with PLA (TAU: 58.9 ± 8.4 ml·kg-1·min-1; PLA: 56.5 ± 5.7 ml·kg-1·min-1, p = .47, d = 0.48). However, V˙O2 was increased with TAU at most stages of exercise with large effect sizes. The acute ingestion of 6 g of TAU before exercise did not enhance MFO, FATmax, or TTE. However, it did increase the oxygen cost of running fixed intensities in recreationally trained endurance runners.
Collapse
Affiliation(s)
- Abdolrahman Ghazzagh
- Department of Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Alireza Naderi
- Department of Sport Physiology, Faculty of Human Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Hamid Agha-Alinejad
- Department of Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Ali Livani
- Department of Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sarlak
- Department of Sport Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Aghamohammadi
- Department of Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
- Nutrology Academy, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Rubio-Valles M, Amaro-Gahete FJ, Creasy SA, Ramos-Jiménez A, Pérez-León JA, Chávez-Guevara IA. Circadian Regulation of Fatty Acid Metabolism in Humans: Is There Evidence of an Optimal Time Window for Maximizing Fat Oxidation During Exercise? Sports Med 2025; 55:49-65. [PMID: 39681771 DOI: 10.1007/s40279-024-02154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Exercise training performed at the intensity that elicits maximal fat oxidation improves cardiovascular function and metabolic health while simultaneously reducing visceral adipose tissue in patients with obesity and type 2 diabetes. Indeed, it is currently considered an efficient non-pharmacological approach for the prevention and treatment of cardiometabolic disorders. Over the last 5 years, several studies have reported a diurnal variation in both resting fat oxidation as well as maximal fat oxidation recorded during submaximal intensity exercise. Higher fat oxidation has been recorded during the evening in comparison with the early morning, although this has not been universally observed. If evening exercise increases fat oxidation, then this timing of exercise may be preferable for the reversal of cardiometabolic diseases. However, the physiological and molecular mechanisms behind the circadian regulation of fatty acid metabolism have not yet been fully elucidated. The present review thus aims to describe the circadian rhythmicity of several hormones, metabolites, and enzymes involved in fatty acid mobilization and oxidation. Furthermore, we discuss the relevance of circadian mitochondrial dynamics and oxidative phosphorylation to fatty acid metabolism. To conclude our discussion, we highlight those biological (e.g., age and sex) and lifestyle factors (e.g., sleep quality/disturbances or physical activity) that potentially influence the circadian regulation of fatty metabolism and which therefore should be considered for a tailored exercise prescription.
Collapse
Affiliation(s)
- Mariazel Rubio-Valles
- Department of Chemical Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Ciudad Juarez, Mexico
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
| | - Seth A Creasy
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, USA
| | - Arnulfo Ramos-Jiménez
- Department of Health Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Chihuahua, Mexico
| | - Jorge A Pérez-León
- Department of Chemical Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Ciudad Juarez, Mexico.
| | - Isaac A Chávez-Guevara
- Faculty of Sports Ensenada, Autonomous University of Baja California, Ensenada, Mexico.
- Laboratorio Nacional Conahcyt de Composición Corporal y Metabolismo Energético (LaNCoCoME), Tijuana, Mexico.
| |
Collapse
|
6
|
Hamilton K, Kilding AE, Plews DJ, Mildenhall MJ, Waldron M, Charoensap T, Cox TH, Brick MJ, Leigh WB, Maunder E. Durability of the moderate-to-heavy-intensity transition is related to the effects of prolonged exercise on severe-intensity performance. Eur J Appl Physiol 2024; 124:2427-2438. [PMID: 38546844 PMCID: PMC11322397 DOI: 10.1007/s00421-024-05459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Power output at the moderate-to-heavy-intensity transition decreases during prolonged exercise, and resilience to this has been termed 'durability'. The purpose of this study was to assess the relationship between durability and the effect of prolonged exercise on severe-intensity performance, and explore intramuscular correlates of durability. METHODS On separate days, 13 well-trained cyclists and triathletes (V̇O2peak, 57.3 ± 4.8 mL kg-1 min-1; training volume, 12 ± 2.1 h week-1) undertook an incremental test and 5-min time trial (TT) to determine power output at the first ventilatory threshold (VT1) and severe-intensity performance, with and without 150-min of prior moderate-intensity cycling. A single resting vastus lateralis microbiopsy was obtained. RESULTS Prolonged exercise reduced power output at VT1 (211 ± 40 vs. 198 ± 39 W, ∆ -13 ± 16 W, ∆ -6 ± 7%, P = 0.013) and 5-min TT performance (333 ± 75 vs. 302 ± 63 W, ∆ -31 ± 41 W, ∆ -9 ± 10%, P = 0.017). The reduction in 5-min TT performance was significantly associated with durability of VT1 (rs = 0.719, P = 0.007). Durability of VT1 was not related to vastus lateralis carnosine content, citrate synthase activity, or complex I activity (P > 0.05). CONCLUSION These data provide the first direct support that durability of the moderate-to-heavy-intensity transition is an important performance parameter, as more durable athletes exhibited smaller reductions in 5-min TT performance following prolonged exercise. We did not find relationships between durability and vastus lateralis carnosine content, citrate synthase activity, or complex I activity.
Collapse
Affiliation(s)
- Kate Hamilton
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Thanchanok Charoensap
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Tobias H Cox
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Matthew J Brick
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
7
|
Gallo G, Faelli EL, Ruggeri P, Filipas L, Codella R, Plews DJ, Maunder E. Power output at the moderate-to-heavy intensity transition decreases in a non-linear fashion during prolonged exercise. Eur J Appl Physiol 2024; 124:2353-2364. [PMID: 38483635 PMCID: PMC11322563 DOI: 10.1007/s00421-024-05440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE The aims of this study were to: (i) describe the time course of the decrease in power output at the moderate-to-heavy intensity transition during prolonged exercise; (ii) investigate the association between durability of the moderate-to-heavy intensity transition and exercise capacity; and (iii) explore physiological correlates of durability of the moderate-to-heavy intensity transition. METHODS Twelve trained cyclists (age: 40 ± 8 y, V ˙ O2peak: 52.3 ± 5.2 mL·min-1·kg-1) performed an exhaustive cycling protocol involving alternating incremental exercise tests to determine power output at the moderate-to-heavy intensity transition via the first ventilatory threshold (VT1), and 30-min bouts at 90% of the power output at the previously estimated VT1 in the rested state. The individual time course of VT1 was modelled using linear and second-order polynomial functions, and time to a 5% decrease in VT1 (Δ5%VT1) was estimated using the best-fitting model. RESULTS Power output at VT1 decreased according to a second-order polynomial function in 11 of 12 participants. Time-to-task failure (234 ± 66 min) was correlated with Δ5%VT1 (139 ± 78 min, rs = 0.676, p = 0.016), and these were strongly correlated with absolute and relative rates of fat oxidation at specific exercise intensities measured during the incremental test performed in the rested state. CONCLUSIONS These data: (i) identify a non-linear time course of decreases in the moderate-to-heavy intensity transition during prolonged exercise; (ii) support the importance of durability of the moderate-to-heavy intensity transition in prolonged exercise capacity; and (iii) suggest durability of the moderate-to-heavy intensity transition is related to fat oxidation rates.
Collapse
Affiliation(s)
- Gabriele Gallo
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Department of Neuroscience, RehabilitationGenoa, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Viale Benedetto XV, 16100, Genoa, Italy
| | | | - Piero Ruggeri
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
8
|
Matomäki P, Heinonen OJ, Nummela A, Kyröläinen H. Endurance training volume cannot entirely substitute for the lack of intensity. PLoS One 2024; 19:e0307275. [PMID: 39038041 PMCID: PMC11262642 DOI: 10.1371/journal.pone.0307275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
PURPOSE Very low intensity endurance training (LIT) does not seem to improve maximal oxygen uptake. The purpose of the present study was to investigate if very high volume of LIT could compensate the lack of intensity and is LIT affecting differently low and high intensity performances. METHODS Recreationally active untrained participants (n = 35; 21 females) cycled either LIT (mean training time 6.7 ± 0.7 h / week at 63% of maximal heart rate, n = 16) or high intensity training (HIT) (1.6 ± 0.2 h /week, n = 19) for 10 weeks. Two categories of variables were measured: Low (first lactate threshold, fat oxidation at low intensity exercise, post-exercise recovery) and high (aerobic capacity, second lactate threshold, sprinting power, maximal stroke volume) intensity performance. RESULTS Only LIT enhanced pooled low intensity performance (LIT: p = 0.01, ES = 0.49, HIT: p = 0.20, ES = 0.20) and HIT pooled high intensity performance (LIT: p = 0.34, ES = 0.05, HIT: p = 0.007, ES = 0.48). CONCLUSIONS Overall, very low endurance training intensity cannot fully be compensated by high training volume in adaptations to high intensity performance, but it nevertheless improved low intensity performance. Therefore, the intensity threshold for improving low intensity performance is lower than that for improving high intensity performance. Consequently, evaluating the effectiveness of LIT on endurance performance cannot be solely determined by high intensity performance tests.
Collapse
Affiliation(s)
- Pekka Matomäki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Olli J. Heinonen
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
9
|
Maunder E, King A, Rothschild JA, Brick MJ, Leigh WB, Hedges CP, Merry TL, Kilding AE. Locally applied heat stress during exercise training may promote adaptations to mitochondrial enzyme activities in skeletal muscle. Pflugers Arch 2024; 476:939-948. [PMID: 38446167 PMCID: PMC11139708 DOI: 10.1007/s00424-024-02939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
There is some evidence for temperature-dependent stimulation of mitochondrial biogenesis; however, the role of elevated muscle temperature during exercise in mitochondrial adaptation to training has not been studied in humans in vivo. The purpose of this study was to determine the role of elevating muscle temperature during exercise in temperate conditions through the application of mild, local heat stress on mitochondrial adaptations to endurance training. Eight endurance-trained males undertook 3 weeks of supervised cycling training, during which mild (~ 40 °C) heat stress was applied locally to the upper-leg musculature of one leg during all training sessions (HEAT), with the contralateral leg serving as the non-heated, exercising control (CON). Vastus lateralis microbiopsies were obtained from both legs before and after the training period. Training-induced increases in complex I (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P = 0.029) and II (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P = 0.029) activities were significantly larger in HEAT than CON. No significant effects of training, or interactions between local heat stress application and training, were observed for complex I-V or HSP70 protein expressions. Our data provides partial evidence to support the hypothesis that elevating local muscle temperature during exercise augments training-induced adaptations to mitochondrial enzyme activity.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| | - Andrew King
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Matthew J Brick
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
10
|
El Ouali EM, Kartibou J, Del Coso J, El Makhzen B, Bouguenouch L, El Harane S, Taib B, Weiss K, Knechtle B, Mesfioui A, Zouhal H. Genotypic and Allelic Distribution of the CD36 rs1761667 Polymorphism in High-Level Moroccan Athletes: A Pilot Study. Genes (Basel) 2024; 15:419. [PMID: 38674354 PMCID: PMC11049038 DOI: 10.3390/genes15040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Previous studies have shown that variations in the CD36 gene may affect phenotypes associated with fat metabolism as the CD36 protein facilitates the transport of fatty acids to the mitochondria for oxidation. However, no previous study has tested whether variations in the CD36 gene are associated with sports performance. We investigated the genotypic and allelic distribution of the single-nucleotide polymorphism (SNP) rs1761667 in the CD36 gene in elite Moroccan athletes (cyclists and hockey players) in comparison with healthy non-athletes of the same ethnic origin. Forty-three Moroccan elite male athletes (nineteen cyclists and twenty-four field hockey players) belonging to the national teams of their respective sports (athlete group) were compared to twenty-eight healthy, active, male university students (control group). Genotyping of the CD36 rs1761667 (G>A) SNP was performed via polymerase chain reaction (PCR) and Sanger sequencing. A chi-square (χ2) test was used to assess the Hardy-Weinberg equilibrium (HWE) and to compare allele and genotype frequencies in the "athlete" and "control" groups. The genotypic distribution of the CD36 rs1761667 polymorphism was similar in elite athletes (AA: 23.81, AG: 59.52, and GG: 16.67%) and controls (AA: 19.23, AG: 69.23, and GG: 11.54%; χ2 = 0.67, p = 0.71). However, the genotypic distribution of the CD36 rs1761667 polymorphism was different between cyclists (AA: 0.00, AG: 72.22, and GG: 27.78%) and hockey players (AA: 41.67, AG: 50.00, and GG: 8.33%; χ2 = 10.69, p = 0.004). Specifically, the frequency of the AA genotype was significantly lower in cyclists than in hockey players (p = 0.02). In terms of allele frequency, a significant difference was found between cyclists versus field hockey players (χ2 = 7.72, p = 0.005). Additionally, there was a predominance of the recessive model in cyclists over field hockey players (OR: 0.00, 95% CI: 0.00-0.35, p = 0.002). Our study shows a significant difference between cyclists and field hockey players in terms of the genotypic and allelic frequency of the SNP rs1761667 of the CD36 gene. This divergence suggests a probable association between genetic variations in the CD36 gene and the type of sport in elite Moroccan athletes.
Collapse
Affiliation(s)
- El Mokhtar El Ouali
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University, Kenitra 14000, Morocco; (E.M.E.O.); (J.K.); (A.M.)
| | - Jihan Kartibou
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University, Kenitra 14000, Morocco; (E.M.E.O.); (J.K.); (A.M.)
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| | - Badreddine El Makhzen
- Medical Genetics Unit, Central Laboratory, CHU Hassan II, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez 30040, Morocco; (B.E.M.); (L.B.)
| | - Laila Bouguenouch
- Medical Genetics Unit, Central Laboratory, CHU Hassan II, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez 30040, Morocco; (B.E.M.); (L.B.)
| | - Sanae El Harane
- Institute of Sports Professions, Ibn Tofail University, Kenitra 14000, Morocco;
| | - Bouchra Taib
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, 8032 Zurich, Switzerland; (K.W.); (B.K.)
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8032 Zurich, Switzerland; (K.W.); (B.K.)
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University, Kenitra 14000, Morocco; (E.M.E.O.); (J.K.); (A.M.)
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport et Santé)—EA 1274, University of Rennes, 35000 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouër, France
| |
Collapse
|
11
|
El Ouali EM, Bosquet L, Elgharbaoui B, Laziri F, Laher I, Hackney AC, Ibrahimi A, Taib B, El Harane S, Weiss K, Knechtle B, Mesfioui A, Zouhal H. Association between "cluster of differentiation 36 (CD36)" and adipose tissue lipolysis during exercise training: a systematic review. Front Physiol 2023; 14:1256440. [PMID: 38074329 PMCID: PMC10703436 DOI: 10.3389/fphys.2023.1256440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 06/10/2025] Open
Abstract
Fatty acid translocase (FAT/CD36) is a transmembrane glycoprotein belonging to the scavenger class B receptor family and is encoded by the cluster of differentiation 36 (CD36) gene. This receptor has a high affinity for fatty acids and is involved in lipid metabolism. An abundance of FAT/CD36 during exercise occurs in mitochondria and solitary muscles. As such, we aimed to systematically review the evidence for the relationship FAT/CD36 and adipose tissue lipolysis during exercise training. Five electronic databases were selected for literature searches until June 2022: PubMed, Web of Science, Scopus, science direct, and Google Scholar. We combined the different synonyms and used the operators ("AND", "OR", "NOT"): (CD36 gene) OR (CD36 polymorphism) OR (cluster of differentiation 36) OR (FAT/CD36) OR (fatty acid translocase) OR (platelet glycoprotein IV) OR (platelet glycoprotein IIIb) AND (adipose tissue lipolysis) OR (fatty acids) OR (metabolism lipid) OR (adipocytes) AND (physical effort) OR (endurance exercise) OR (high-intensity training). All published cross-sectional, cohort, case-control, and randomized clinical trials investigating CD36 polymorphisms and adipose tissue lipolysis during exercise in subjects (elite and sub-elite athletes, non-athletes, sedentary individuals and diabetics), and using valid methods to measure FAT/CD36 expression and other biomarkers, were considered for inclusion in this review. We initially identified 476 publications according to the inclusion and exclusion criteria, and included 21 studies investigating FAT/CD36 and adipose tissue lipolysis during exercise in our systematic review after examination of titles, abstracts, full texts, and quality assessments using the PEDro scale. There were nine studies with male-only participants, three with female-only participants, and nine studies included both female and male participants. There were 859 participants in the 21 selected studies. Studies were classified as either low quality (n = 3), medium quality (n = 13), and high quality (n = 5). In general, the data suggests an association between FAT/CD36 and adipose tissue lipolysis during exercise training. Improvements in FAT/CD36 were reported during or after exercise in 6 studies, while there were no changes reported in FAT/CD36 in 4 studies. An association between fat oxidation and FAT/CD36 expression during exercise was reported in 7 studies. No agreement was reached in 5 studies on FAT/CD36 content after dietary changes and physical interventions. One study reported that FAT/CD36 protein expression in muscle was higher in women than in men, another reported that training decreased FAT/CD36 protein in insulin-resistant participants, while another study reported no differences in FAT/CD36 in young, trained individuals with type 2 diabetes. Our analysis shows an association between FAT/CD36 expression and exercise. Furthermore, an association between whole-body peak fat oxidation and FAT/CD36 expression during exercise training was demonstrated. Systematic Review Registration: [PROSPERO], identifier [CRD42022342455].
Collapse
Affiliation(s)
- El Mokhtar El Ouali
- Department of Biology, Laboratory of Biology and Health, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | | | - Boutaina Elgharbaoui
- Biotechnology Lab (MedBiotech), Rabat Medical and Pharmacy School, Centre Mohammed VI for Research and Innovation (CM6), University Mohammed V, Rabat, Morocco
| | - Fatiha Laziri
- Laboratoire Ecologie, Environnement et Santé Equipe Santé Humaine et Environnement Faculté des Sciences de Université Moulay Ismail, Meknès, Morocco
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Anthony C. Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, United States
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Rabat Medical and Pharmacy School, Centre Mohammed VI for Research and Innovation (CM6), University Mohammed V, Rabat, Morocco
| | - Bouchra Taib
- Institute of Sports Professions, Ibn Tofail University, Kenitra, Morocco
| | - Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Abdelhalem Mesfioui
- Department of Biology, Laboratory of Biology and Health, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | - Hassane Zouhal
- Movement, Sport, Health, and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Rennes, France
- Institut International des Sciences du Sport (2IS), Irodouer, France
| |
Collapse
|
12
|
Maunder E, Rothschild JA, Fritzen AM, Jordy AB, Kiens B, Brick MJ, Leigh WB, Chang WL, Kilding AE. Skeletal muscle proteins involved in fatty acid transport influence fatty acid oxidation rates observed during exercise. Pflugers Arch 2023; 475:1061-1072. [PMID: 37464190 PMCID: PMC10409849 DOI: 10.1007/s00424-023-02843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Several proteins are implicated in transmembrane fatty acid transport. The purpose of this study was to quantify the variation in fatty acid oxidation rates during exercise explained by skeletal muscle proteins involved in fatty acid transport. Seventeen endurance-trained males underwent a (i) fasted, incremental cycling test to estimate peak whole-body fatty acid oxidation rate (PFO), (ii) resting vastus lateralis microbiopsy, and (iii) 2 h of fed-state, moderate-intensity cycling to estimate whole-body fatty acid oxidation during fed-state exercise (FO). Bivariate correlations and stepwise linear regression models of PFO and FO during 0-30 min (early FO) and 90-120 min (late FO) of continuous cycling were constructed using muscle data. To assess the causal role of transmembrane fatty acid transport in fatty acid oxidation rates during exercise, we measured fatty acid oxidation during in vivo exercise and ex vivo contractions in wild-type and CD36 knock-out mice. We observed a novel, positive association between vastus lateralis FATP1 and PFO and replicated work reporting a positive association between FABPpm and PFO. The stepwise linear regression model of PFO retained CD36, FATP1, FATP4, and FABPpm, explaining ~87% of the variation. Models of early and late FO explained ~61 and ~65% of the variation, respectively. FATP1 and FATP4 emerged as contributors to models of PFO and FO. Mice lacking CD36 had impaired whole-body and muscle fatty acid oxidation during exercise and muscle contractions, respectively. These data suggest that substantial variation in fatty acid oxidation rates during exercise can be explained by skeletal muscle proteins involved in fatty acid transport.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| | - Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andreas M Fritzen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas B Jordy
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Brick
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Wee-Leong Chang
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
13
|
Ramos-Jiménez A, Zavala-Lira RA, Moreno-Brito V, González-Rodríguez E. FAT/CD36 Participation in Human Skeletal Muscle Lipid Metabolism: A Systematic Review. J Clin Med 2022; 12:318. [PMID: 36615118 PMCID: PMC9821548 DOI: 10.3390/jcm12010318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Fatty acid translocase/cluster of differentiation 36 (FAT/CD36) is a multifunctional membrane protein activated by a high-fat diet, physical exercise, fatty acids (FAs), leptin, and insulin. The principal function of FAT/CD36 is to facilitate the transport of long-chain fatty acids through cell membranes such as myocytes, adipocytes, heart, and liver. Under high-energy expenditure, the different isoforms of FAT/CD36 in the plasma membrane and mitochondria bind to the mobilization and oxidation of FAs. Furthermore, FAT/CD36 is released in its soluble form and becomes a marker of metabolic dysfunction. Studies with healthy animals and humans show that physical exercise and a high-lipid diet increase FAT/CD36 expression and caloric expenditure. However, several aspects such as obesity, diabetes, Single Nucleotide polymorphisms (SNPs), and oxidative stress affect the normal FAs metabolism and function of FAT/CD36, inducing metabolic disease. Through a comprehensive systematic review of primary studies, this work aimed to document molecular mechanisms related to FAT/CD36 in FAs oxidation and trafficking in skeletal muscle under basal conditions, physical exercise, and diet in healthy individuals.
Collapse
Affiliation(s)
- Arnulfo Ramos-Jiménez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo S/N, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Ruth A. Zavala-Lira
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo S/N, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Verónica Moreno-Brito
- Facultad de Medicina, Circuito Universitario Campus II, Universidad Autónoma de Chihuahua, Chihuahua 31124, Chihuahua, Mexico
| | - Everardo González-Rodríguez
- Facultad de Medicina, Circuito Universitario Campus II, Universidad Autónoma de Chihuahua, Chihuahua 31124, Chihuahua, Mexico
| |
Collapse
|
14
|
Stevenson JD, Kilding AE, Plews DJ, Maunder E. Prolonged cycling reduces power output at the moderate-to-heavy intensity transition. Eur J Appl Physiol 2022; 122:2673-2682. [PMID: 36127418 PMCID: PMC9488873 DOI: 10.1007/s00421-022-05036-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine the effect of prolonged exercise on moderate-to-heavy intensity transition power output and heart rate. METHODS Fourteen endurance-trained cyclists and triathletes took part in the present investigation (13 males, 1 female, V·O2peak 59.9 ± 6.8 mL.kg-1.min-1). Following a characterisation trial, participants undertook a five-stage incremental step test to determine the power output and heart rate at the moderate-to-heavy intensity transition before and after two hours of cycling at 90% of the estimated power output at first ventilatory threshold (VT1). RESULTS Power output at the moderate-to-heavy intensity transition significantly decreased following acute prolonged exercise when determined using expired gases (VT1, 217 ± 42 W vs. 196 ± 42 W, P < 0.0001) and blood lactate concentrations (LoglogLT, 212 ± 47 W vs. 190 ± 47 W, P = 0.004). This was attributable to loss of efficiency (VT1, -8 ± 10 W; LoglogLT, - 7 ± 9 W) and rates of metabolic energy expenditure at the transition (VT1, - 14 ± 11 W; LoglogLT, - 15 ± 22 W). The heart rate associated with the moderate-to-heavy intensity transition increased following acute prolonged exercise (VT1, 142 ± 9 beats.min-1 vs. 151 ± 12 beats.min-1, P < 0.001; LoglogLT, 140 ± 13 beats.min-1 vs. 150 ± 15 beats.min-1, P = 0.006). CONCLUSION These results demonstrate the external work output at the moderate-to-heavy intensity transition decreases during prolonged exercise due to decreased efficiency and rates of metabolic energy expenditure, but the associated heart rate increases. Therefore, individual assessments of athlete 'durability' are warranted.
Collapse
Affiliation(s)
- Julian D Stevenson
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
15
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|
16
|
Blasco-Lafarga C, Monferrer-Marín J, Roldán A, Monteagudo P, Chulvi-Medrano I. Metabolic Flexibility and Mechanical Efficiency in Women Over-60. Front Physiol 2022; 13:869534. [PMID: 35464093 PMCID: PMC9019701 DOI: 10.3389/fphys.2022.869534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose: Aging deteriorates metabolic flexibility (MF). Moreover, recent studies show that glycolysis is barely increased despite impoverished lipid metabolism, in addition to increased relevance of muscle power in older adults. This study aims to analyze MF, i.e., fat and carbohydrates oxidation rates (FATox and CHOox), and the point of maximal fat oxidation (MFO), in a group of active women over-60. It also aims to delve into the role of power production and mechanical efficiency regarding MF. This will help to decipher their metabolic behavior in response to increasing intensity. Methods: Twenty-nine women (66.13 ± 5.62 years) performed a submaximal graded cycling test, increasing 10 W each 3-min15-s, from 30 W to the second ventilatory threshold (VT2). Muscle power was adjusted with a Saris-H3 roller, together with a continuous gas analysis by indirect calorimetry (Cosmed K4b2). Pre and post-test blood lactate (BLa) samples were included. Frayn's equations, MFO and CHOoxpeak (mg/min/kg FFM) were considered for MF analysis (accounting for average VO2 and VCO2 in each last 60-s), whilst delta and gross efficiencies (DE%, GE%), and exercise economy (EC), were added for Mechanical Efficiency. Mean comparisons regarding intensities 60, 80 and 100% at VT2, completed the study together with correlation analysis among the main variables. Results: MFO and CHOoxpeak were small (6.35 ± 3.59 and 72.79 ± 34.76 g/min/kgFFM respectively) for a reduced muscle power (78.21 ± 15.84 W). Notwithstanding, GE% and EC increased significantly (p < 0.01) with exercise intensity. Importantly, coefficients of variation were very large confirming heterogeneity. Whilst muscle power outcomes correlated significantly (p < 0.01) with MFO (r = 0.66) and age (r = -0.62), these latter failed to be associated. Only GE% correlated to CHOoxpeak (r = -0.61, p < 0.01) regarding mechanical efficiency. Conclusions: Despite being active, women over-60 confirmed impaired substrates switching in response to exercise, from both FAT and CHO pathways. This limits their power production affecting exercise capacity. Our data suggest that decreased power with age has a key role above age per se in this metabolic inflexibility. Vice versa, increasing power seems to protect from mitochondrial dysfunction with aging. New studies will confirm if this higher efficiency when coming close to VT2, where GE is the more informative variable, might be a protective compensatory mechanism.
Collapse
Affiliation(s)
- Cristina Blasco-Lafarga
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Jordi Monferrer-Marín
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Ainoa Roldán
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Pablo Monteagudo
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
- Department of Education and Specific Didactics, Jaume I University, Castellon, Spain
| | - Ivan Chulvi-Medrano
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Biomarkers and genetic polymorphisms associated with maximal fat oxidation during physical exercise: implications for metabolic health and sports performance. Eur J Appl Physiol 2022; 122:1773-1795. [PMID: 35362801 DOI: 10.1007/s00421-022-04936-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
The maximal fat oxidation rate (MFO) assessed during a graded exercise test is a remarkable physiological indicator associated with metabolic flexibility, body weight loss and endurance performance. The present review considers existing biomarkers related to MFO, highlighting the validity of maximal oxygen uptake and free fatty acid availability for predicting MFO in athletes and healthy individuals. Moreover, we emphasize the role of different key enzymes and structural proteins that regulate adipose tissue lipolysis (i.e., triacylglycerol lipase, hormone sensitive lipase, perilipin 1), fatty acid trafficking (i.e., fatty acid translocase cluster of differentiation 36) and skeletal muscle oxidative capacity (i.e., citrate synthase and mitochondrial respiratory chain complexes II-V) on MFO variation. Likewise, we discuss the association of MFO with different polymorphism on the ACE, ADRB3, AR and CD36 genes, identifying prospective studies that will help to elucidate the mechanisms behind such associations. In addition, we highlight existing evidence that contradict the paradigm of a higher MFO in women due to ovarian hormones activity and highlight current gaps regarding endocrine function and MFO relationship.
Collapse
|
18
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|