1
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Caruso L, Fields M, Rimondi E, Zauli G, Longo G, Marcuzzi A, Previati M, Gonelli A, Zauli E, Milani D. Classical and Innovative Evidence for Therapeutic Strategies in Retinal Dysfunctions. Int J Mol Sci 2024; 25:2124. [PMID: 38396799 PMCID: PMC10889839 DOI: 10.3390/ijms25042124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The human retina is a complex anatomical structure that has no regenerative capacity. The pathogenesis of most retinopathies can be attributed to inflammation, with the activation of the inflammasome protein platform, and to the impact of oxidative stress on the regulation of apoptosis and autophagy/mitophagy in retinal cells. In recent years, new therapeutic approaches to treat retinopathies have been investigated. Experimental data suggest that the secretome of mesenchymal cells could reduce oxidative stress, autophagy, and the apoptosis of retinal cells, and in turn, the secretome of the latter could induce changes in mesenchymal cells. Other studies have evidenced that noncoding (nc)RNAs might be new targets for retinopathy treatment and novel disease biomarkers since a correlation has been found between ncRNA levels and retinopathies. A new field to explore is the interaction observed between the ocular and intestinal microbiota; indeed, recent findings have shown that the alteration of gut microbiota seems to be linked to ocular diseases, suggesting a gut-eye axis. To explore new therapeutical strategies for retinopathies, it is important to use proper models that can mimic the complexity of the retina. In this context, retinal organoids represent a good model for the study of the pathophysiology of the retina.
Collapse
Affiliation(s)
- Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.C.); (A.G.)
| | - Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Maurizio Previati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.C.); (A.G.)
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Daniela Milani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| |
Collapse
|
3
|
Pan D, Wang Z, Chen Y, Cao J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun Biol 2023; 6:1054. [PMID: 37853054 PMCID: PMC10584931 DOI: 10.1038/s42003-023-05432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China.
| |
Collapse
|
4
|
Khanh TQ, Bodrogi P, Zandi B, Vinh TQ. Brightness perception under photopic conditions: experiments and modeling with contributions of S-cone and ipRGC. Sci Rep 2023; 13:14542. [PMID: 37666893 PMCID: PMC10477289 DOI: 10.1038/s41598-023-41084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
In 1924, the CIE published and standardized the photopic luminous efficiency function. Based on the standardized curve, luminous flux in lumens, luminance in cd/m[Formula: see text], and illuminance in lux are determined by an integral of the curve and the incident light spectra in photometers and are considered physical brightness. However, human brightness perception is not only weighted by this simple determination, but is a more complicated combination of all L-cones, M-cones, S-cones, rods and later ipRGCs, which was partly described by the equivalent brightness of Fotios et al. with the correction factor [Formula: see text]. Recently, new research has demonstrated the role of ipRGCs in human light perception. However, it is still unclear how these signal components of the human visual system are involved in the overall human brightness perception. In this work, human brightness perception under photopic conditions was investigated by visual experiments with 28 subjects under 25 different light spectra. In this way, the contributions of the signal components can be investigated. An optimization process was then performed on the resulting database. The results show that not only the [Formula: see text] component, but also the S-cones and ipRGC play a role, although it is smaller. Thus, the visually scaled brightness model based on the database optimization was constructed using not only illuminance but also S-cones and ipRGC with [Formula: see text] of 0.9554 and RMSE of 4.7802. These results are much better than the brightness model after Fotios et al. using only S-cones ([Formula: see text] = 0.8161, RMSE = 9.7123) and the traditional model without S-cones and ipRGC ([Formula: see text] = 0.8121, RMSE = 9.8171).
Collapse
Affiliation(s)
- Tran Quoc Khanh
- Laboratory of Adaptive Lighting Systems and Visual Processing, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| | | | - Babak Zandi
- Laboratory of Adaptive Lighting Systems and Visual Processing, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| | - Trinh Quang Vinh
- Laboratory of Adaptive Lighting Systems and Visual Processing, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| |
Collapse
|
5
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 2022; 81:101735. [PMID: 36113764 DOI: 10.1016/j.arr.2022.101735] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland; Department of Orthopaedics and Traumatology, Polish Mothers' Memorial Hospital - Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, FI-70029 Finland
| |
Collapse
|
7
|
Liset R, Grønli J, Henriksen RE, Henriksen TEG, Nilsen RM, Pallesen S. A randomized controlled trial on the effect of blue-blocking glasses compared to partial blue-blockers on melatonin profile among nulliparous women in third trimester of the pregnancy. Neurobiol Sleep Circadian Rhythms 2022; 12:100074. [PMID: 35024497 PMCID: PMC8728098 DOI: 10.1016/j.nbscr.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In pregnancy melatonin regulates circadian rhythms, induce sleep, and has a neuroprotective positive effect on fetal development. Artificial blue light in the evening delays and suppresses melatonin production. Thus, we investigated the effect of blocking blue light on the melatonin profile. METHODS A randomized controlled trial (n=30 blue-blocking glasses vs. n=30 control glasses with partial blue-blocking effect) including healthy nulliparous pregnant women in the beginning of the third trimester. Salivary melatonin and subjective sleep were measured before and after two weeks of intervention/control condition. Saliva was sampled at 30-min intervals from 3 h before normal bedtime. Melatonin onset was set at 4.0 pg/ml. RESULTS Due to missing data melatonin onset was estimated for 47 participants. At posttreatment, melatonin onset advanced by 28 min in the blue-blocking group compared with the control condition (p=.019). Melatonin levels were significantly higher, favoring the blue-blocking glass condition, at clock time 20:00, 21:00 and 22:00 h, and for sample number 3 and 4. The phase angle (time interval) between melatonin onset and sleep bedtime and sleep onset time increased within the blue blocking group (+45 min and +41 min, respectively), but did not reach statistical significance compared to control condition (+13 min and +26 min, respectively). CONCLUSION Blocking blue light in the evening had a positive effect on the circadian system with an earlier onset and rise of melatonin levels in healthy nulliparous pregnant women. This demonstrated the effectiveness and feasibility of a simple non-pharmacological chronobiological intervention during pregnancy.
Collapse
Affiliation(s)
- Randi Liset
- Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Janne Grønli
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Roger Ekeberg Henriksen
- Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Roy Miodini Nilsen
- Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
- Optentia, The Vaal Triangle Campus of the North-West University, Vanderbijlpark, South Africa
| |
Collapse
|
8
|
Liset R, Grønli J, Henriksen RE, Henriksen TEG, Nilsen RM, Pallesen S. A randomized controlled trial on the effects of blue-blocking glasses compared to partial blue-blockers on sleep outcomes in the third trimester of pregnancy. PLoS One 2022; 17:e0262799. [PMID: 35089982 PMCID: PMC8797219 DOI: 10.1371/journal.pone.0262799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Sleep disturbances are common in pregnancy. Blocking blue light has been shown to improve sleep and may be a suitable intervention for sleep problems during pregnancy. The present study investigated the effects of blue light blocking in the evening and during nocturnal awakenings among pregnant women on primary sleep outcomes in terms of total sleep time, sleep efficiency and mid-point of sleep. METHODS In a double-blind randomized controlled trial, 60 healthy nulliparous pregnant women in the beginning of the third trimester were included. They were randomized, using a random number generator, either to a blue-blocking glass intervention (n = 30) or to a control glass condition constituting partial blue-blocking effect (n = 30). Baseline data were recorded for one week and outcomes were recorded in the last of two intervention/control weeks. Sleep was measured by actigraphy, sleep diaries, the Bergen Insomnia Scale, the Karolinska Sleepiness Scale and the Pre-Sleep Arousal Scale. RESULTS The results on the primary outcomes showed no significant mean difference between the groups at posttreatment, neither when assessed with sleep diary; total sleep time (difference = .78[min], 95%CI = -19.7, 21.3), midpoint of sleep (difference = -8.9[min], 95%CI = -23.7, 5.9), sleep efficiency (difference = -.06[%], 95%CI = -1.9, 1.8) and daytime functioning (difference = -.05[score points], 95%CI = -.33, .22), nor by actigraphy; total sleep time (difference = 13.0[min], 95%CI = -9.5, 35.5), midpoint of sleep (difference = 2.1[min], 95%CI = -11.6, 15.8) and sleep efficiency (difference = 1.7[%], 95%CI = -.4, 3.7). On the secondary outcomes, the Bergen Insomnia Scale, the Karolinska Sleepiness Scale and the Pre-Sleep Arousal Scale the blue-blocking glasses no statistically significant difference between the groups were found. Transient side-effects were reported in both groups (n = 3). CONCLUSIONS The use of blue-blocking glasses compared to partially blue-blocking glasses in a group of healthy pregnant participants did not show statistically significant effects on sleep outcomes. Research on the effects of blue-blocking glasses for pregnant women with sleep-problems or circadian disturbances is warranted. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov (NCT03114072).
Collapse
Affiliation(s)
- Randi Liset
- Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Janne Grønli
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Roger E. Henriksen
- Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Tone E. G. Henriksen
- Division of Mental Health Care, Fonna Local Health Authority, Valen Hospital, Valen, Norway
| | - Roy M. Nilsen
- Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
- Optentia, The Vaal Triangle Campus of The North-West University, Vanderbijlpark, South-Africa
| |
Collapse
|
9
|
Law R, Clow A. Stress, the cortisol awakening response and cognitive function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 150:187-217. [PMID: 32204832 DOI: 10.1016/bs.irn.2020.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is evidence that stress-induced disruption of the circadian rhythm of cortisol secretion, has negative consequences for brain health. The cortisol awakening response (CAR) is the most prominent and dynamic aspect of this rhythm. It has complex regulatory mechanisms making it distinct from the rest of the cortisol circadian rhythm, and is frequently investigated as a biomarker of stress and potential intermediary between stress and impaired brain function. Despite this, the precise function of the CAR within the healthy cortisol circadian rhythm remains poorly understood. Cortisol is a powerful hormone known to influence cognition in multiple and complex ways. Studies of the CAR and cognitive function have used varied methodological approaches which have produced similarly varied findings. The present review considers the accumulating evidence linking stress, attenuation of the CAR and reduced cognitive function, and seeks to contextualize the many findings to study populations, cognitive measures, and CAR methodologies employed. Associations between the CAR and both memory and executive functions are discussed in relation to its potential role as a neuroendocrine time of day signal that synchronizes peripheral clocks throughout the brain to enable optimum function, and recommendations for future research are provided.
Collapse
Affiliation(s)
- Robin Law
- Psychology, School of Social Sciences, University of Westminster, London, England.
| | - Angela Clow
- Psychology, School of Social Sciences, University of Westminster, London, England
| |
Collapse
|
10
|
Olinski LE, Lin EM, Oancea E. Illuminating insights into opsin 3 function in the skin. Adv Biol Regul 2020; 75:100668. [PMID: 31653550 PMCID: PMC7059126 DOI: 10.1016/j.jbior.2019.100668] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Because sunlight is essential for human survival, we have developed complex mechanisms for detecting and responding to light stimuli. The eyes and skin are major organs for sensing light and express several light-sensitive opsin receptors. These opsins mediate cellular responses to spectrally-distinct wavelengths of visible and ultraviolet light. How the eyes mediate visual phototransduction is well understood, but less is known about how the skin detects light. Both human and murine skin express a wide array of opsins, with one of the most highly expressed being the functionally elusive opsin 3 (OPN3). In this review we explore light reception, opsin expression and signaling in skin cells; we compile data elucidating potential functions for human OPN3 in skin, with emphasis on recent studies investigating OPN3 regulation of melanin within epidermal melanocytes.
Collapse
Affiliation(s)
- Lauren E Olinski
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, 02912, USA.
| | - Erica M Lin
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA.
| |
Collapse
|
11
|
Abstract
OBJECTIVE To review clinical and pre-clinical evidence supporting the role of visual pathways, from the eye to the cortex, in the development of photophobia in headache disorders. BACKGROUND Photophobia is a poorly understood light-induced phenomenon that emerges in a variety of neurological and ophthalmological conditions. Over the years, multiple mechanisms have been proposed to explain its causes; however, scarce research and lack of systematic assessment of photophobia in patients has made the search for answers quite challenging. In the field of headaches, significant progress has been made recently on how specific visual networks contribute to photophobia features such as light-induced intensification of headache, increased perception of brightness and visual discomfort, which are frequently experienced by migraineurs. Such progress improved our understanding of the phenomenon and points to abnormal processing of light by both cone/rod-mediated image-forming and melanopsin-mediated non-image-forming visual pathways, and the consequential transfer of photic signals to multiple brain regions involved in sensory, autonomic and emotional regulation. CONCLUSION Photophobia phenotype is diverse, and the relative contribution of visual, trigeminal and autonomic systems may depend on the disease it emerges from. In migraine, photophobia could result from photic activation of retina-driven pathways involved in the regulation of homeostasis, making its association with headache more complex than previously thought.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Copenhagen
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Tao JX, Zhou WC, Zhu XG. Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6435364. [PMID: 31531186 PMCID: PMC6721470 DOI: 10.1155/2019/6435364] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Commercially available white light-emitting diodes (LEDs) have an intense emission in the range of blue light, which has raised a range of public concerns about their potential risks as retinal hazards. Distinct from other visible light components, blue light is characterized by short wavelength, high energy, and strong penetration that can reach the retina with relatively little loss in damage potential. Mitochondria are abundant in retinal tissues, giving them relatively high access to blue light, and chromophores, which are enriched in the retina, have many mitochondria able to absorb blue light and induce photochemical effects. Therefore, excessive exposure of the retina to blue light tends to cause ROS accumulation and oxidative stress, which affect the structure and function of the retinal mitochondria and trigger mitochondria-involved death signaling pathways. In this review, we highlight the essential roles of mitochondria in blue light-induced photochemical damage and programmed cell death in the retina, indicate directions for future research and preventive targets in terms of the blue light hazard to the retina, and suggest applying LED devices in a rational way to prevent the blue light hazard.
Collapse
Affiliation(s)
- Jin-Xin Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wen-Chuan Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xin-Gen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Baden T, Schaeffel F, Berens P. Visual Neuroscience: A Retinal Ganglion Cell to Report Image Focus? Curr Biol 2019; 27:R139-R141. [PMID: 28222289 DOI: 10.1016/j.cub.2016.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A recent study describes a mouse neuron projecting from the retina to the brain that exhibits exquisitely high sensitivity to high spatial frequency patterns presented over an unusually large receptive field: could this cell be a (de)focus detector?
Collapse
Affiliation(s)
- Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK; Institute for Ophthalmic Research, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany.
| | - Frank Schaeffel
- Institute for Ophthalmic Research, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany
| |
Collapse
|
14
|
Nikkola V, Miettinen ME, Karisola P, Grönroos M, Ylianttila L, Alenius H, Snellman E, Partonen T. Ultraviolet B radiation modifies circadian time in epidermal skin and in subcutaneous adipose tissue. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:157-163. [PMID: 30472764 DOI: 10.1111/phpp.12440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent findings suggest that circadian time regulates cellular functions in the skin and may affect protection against ultraviolet radiation (UVR). It is not known, however, whether UVR through skin directly affects the expression of circadian genes. We investigated the effect of ultraviolet B (UVB) exposure on cryptochrome circadian clock 1 (CRY1), cryptochrome circadian clock 2 (CRY2), and circadian associated repressor of transcription (CIART) genes. METHODS Healthy volunteers (n = 12) were exposed to narrow-band UVB radiation of four standard erythemal dose (SED). Epidermal/dermal and subcutaneous adipose tissue samples were obtained by punch biopsies from irradiated and non-irradiated skin 10 cm away from the irradiated site 24 hours after UVB exposure. Gene expression of CRY1, CRY2, and CIART was measured using RT-PCR (TaqMan). RESULTS Ultraviolet B radiation affected mRNA expression in the epidermal/dermal skin and in the subcutaneous adipose tissue. It down-regulated expression of CRY2 gene in the epidermal/dermal skin, whereas it up-regulated expression of CRY1 and CIART genes in the subcutaneous adipose tissue. CONCLUSION We showed for the first time that UVB radiation affects expression of circadian genes in the subcutaneous adipose tissue. Further studies are warranted to understand the mechanisms in detail.
Collapse
Affiliation(s)
- Veera Nikkola
- Department of Dermatology and Venereology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Maija E Miettinen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Piia Karisola
- Department of Bacteriology and Immunology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Mari Grönroos
- Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Lasse Ylianttila
- STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Harri Alenius
- Department of Bacteriology and Immunology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erna Snellman
- Department of Dermatology and Venereology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland
| | - Timo Partonen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
15
|
Sonoda T, Lee SK, Birnbaumer L, Schmidt TM. Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron 2018; 99:754-767.e4. [PMID: 30017393 PMCID: PMC6107377 DOI: 10.1016/j.neuron.2018.06.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/07/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Melanopsin is expressed in distinct types of intrinsically photosensitive retinal ganglion cells (ipRGCs), which drive behaviors from circadian photoentrainment to contrast detection. A major unanswered question is how the same photopigment, melanopsin, influences such vastly different functions. Here we show that melanopsin's role in contrast detection begins in the retina, via direct effects on M4 ipRGC (ON alpha RGC) signaling. This influence persists across an unexpectedly wide range of environmental light levels ranging from starlight to sunlight, which considerably expands the functional reach of melanopsin on visual processing. Moreover, melanopsin increases the excitability of M4 ipRGCs via closure of potassium leak channels, a previously unidentified target of the melanopsin phototransduction cascade. Strikingly, this mechanism is selective for image-forming circuits, as M1 ipRGCs (involved in non-image forming behaviors), exhibit a melanopsin-mediated decrease in excitability. Thus, melanopsin signaling is repurposed by ipRGC subtypes to shape distinct visual behaviors.
Collapse
Affiliation(s)
- Takuma Sonoda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Seul Ki Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA; Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Mathis T, Hofverberg P, Caujolle JP, Hérault J, Leal C, Maschi C, Delaunay B, Baillif S, Kodjikian L, Thariat J. Occurrence of Phosphenes in Patients Undergoing Proton Beam Therapy for Ocular Tumor. Am J Ophthalmol 2018; 192:31-38. [PMID: 29753854 DOI: 10.1016/j.ajo.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE Phosphenes are frequently reported by patients irradiated in the head and neck area. The aim of the present study was to characterize and investigate potential mechanisms of proton beam therapy (PBT)-induced phosphenes in a large population of patients undergoing PBT for ocular tumors. DESIGN Prospective cohort study. METHODS Consecutive patients who underwent PBT in a single center were included. Immediately after the first session, all patients completed a questionnaire collecting information about the presence of phosphenes as well as their color, shape, and duration. Patient, tumor and treatment characteristics (dose volume histograms) were also collected. RESULTS Among the 474 patients included, 62.8% reported phosphenes during the first session of PBT. Reported colors were mainly blue-violet (70.5%) and white (14.1%). The prevalence of phosphenes was higher in younger patients (P = .003); other patient or ocular characteristics were not associated with the occurrence of phosphenes. Irradiation of the macula (P < .001) and/or optic disc (P < .001) were significantly associated with the presence of phosphenes, whereas blue-violet color was only associated with young age and irradiation of macular area (P = .04). Pupillary constriction was reported for 57.1% of patients with phosphenes vs 18.5% of patients without (P < .001). Blue-violet phosphenes (P < .001) and irradiation of macula (P = .001) were statistically associated with pupillary constriction. CONCLUSIONS The present study reported a high rate of phosphenes in patients irradiated by PBT for ocular tumor. Their blue-violet color and their association with a pupillary constriction probably indicates the stimulation of S-cones and retinal ganglion cells that reflects the activation of the afferent visual pathway.
Collapse
Affiliation(s)
- Thibaud Mathis
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France; UMR-CNRS 5510 Matéis, Villeurbane, France.
| | - Petter Hofverberg
- Department of Radiation Therapy, Proton Therapy Center, Centre Antoine Lacassagne, Nice, France
| | | | - Joël Hérault
- Department of Radiation Therapy, Proton Therapy Center, Centre Antoine Lacassagne, Nice, France
| | - Cécilia Leal
- Department of Ophthalmology, Pasteur II Hospital, Nice, France
| | - Celia Maschi
- Department of Ophthalmology, Pasteur II Hospital, Nice, France
| | - Benoit Delaunay
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Laurent Kodjikian
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France; UMR-CNRS 5510 Matéis, Villeurbane, France
| | - Juliette Thariat
- Department of Radiation Therapy, Centre François Baclesse - ARCHADE, Unicaen - Normandie University, Caen, France
| |
Collapse
|
17
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
18
|
Ba-Ali S, Lund-Andersen H. Pupillometric evaluation of the melanopsin containing retinal ganglion cells in mitochondrial and non-mitochondrial optic neuropathies. Mitochondrion 2017; 36:124-129. [PMID: 28716667 DOI: 10.1016/j.mito.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/29/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
In recent years, chromatic pupillometry is used in humans to evaluate the activity of melanopsin expressing intrinsic photosensitive retinal ganglion cells (ipRGCs). Blue light is used to stimulate the ipRGCs and red light activates the rod/cone photoreceptors. The late re-dilation phase of pupillary light reflex is primarily driven by the ipRGCs. Optic neuropathies i.e. Leber hereditary optic neuropathy (LHON), autosomal dominant optic atrophy (ADOA), nonarteritic anterior ischemic optic neuropathy (NAION), glaucoma, optic neuritis and idiopathic intracranial hypertension (IIH) are among the diseases, which have been subject to pupillometric studies. The ipRGCs are differentially affected in these various optic neuropathies. In mitochondrial optic neuropathies, the ipRGCs are protected against degeneration, whereas in glaucoma, NAION, optic neuritis and IIH the ipRGCs are damaged. Here, we will review the results of pupillometric, histopathological and animal studies evaluating the ipRGCs in mitochondrial and non-mitochondrial optic neuropathies.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Mathis T, Vignot S, Leal C, Caujolle JP, Maschi C, Mauget-Faÿsse M, Kodjikian L, Baillif S, Herault J, Thariat J. Mechanisms of phosphenes in irradiated patients. Oncotarget 2017; 8:64579-64590. [PMID: 28969095 PMCID: PMC5610027 DOI: 10.18632/oncotarget.18719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Anomalous visual perceptions have been reported in various diseases of the retina and visual pathways or can be experienced under specific conditions in healthy individuals. Phosphenes are perceptions of light in the absence of ambient light, occurring independently of the physiological and classical photonic stimulation of the retina. They are a frequent symptom in patients irradiated in the region of the central nervous system (CNS), head and neck and the eyes. Phosphenes have historically been attributed to complex physical phenomena such as Cherenkov radiation. While phosphenes are related to Cherenkov radiation under high energy photon/electron irradiation conditions, physical phenomena are unlikely to be responsible for light flashes at energies used for ocular proton therapy. Phosphenes may involve a direct role for ocular photoreceptors and possible interactions between cones and rods. Other mechanisms involving the retinal ganglion cells or ultraweak biophoton emission and rhodopsin bleaching after exposure to free radicals are also likely to be involved. Despite their frequency as shown in our preliminary observations, phosphenes have been underreported probably because their mechanism and impact are poorly understood. Recently, phosphenes have been used to restore the vision and whether they might predict vision loss after therapeutic irradiation is a current field of investigation. We have reviewed and also investigated here the mechanisms related to the occurrence of phosphenes in irradiated patients and especially in patients irradiated by proton therapy for ocular tumors.
Collapse
Affiliation(s)
- Thibaud Mathis
- Department of Ophthalmology, Croix-Rousse University Hospital, 69004 Lyon, France
| | - Stephane Vignot
- Department of Medical Oncology, Jean Godinot Institute, 51100 Reims, France
| | - Cecila Leal
- Department of Ophthalmology, Pasteur II Hospital, 06000 Nice, France
| | | | - Celia Maschi
- Department of Ophthalmology, Pasteur II Hospital, 06000 Nice, France
| | | | - Laurent Kodjikian
- Department of Ophthalmology, Croix-Rousse University Hospital, 69004 Lyon, France
| | - Stéphanie Baillif
- Department of Ophthalmology, Pasteur II Hospital, 06000 Nice, France
| | - Joel Herault
- Proton Therapy Center, Université Nice Sophia Antipolis, 06200 Nice, France
| | - Juliette Thariat
- Proton Therapy Center, Université Nice Sophia Antipolis, 06200 Nice, France.,Department of Radiation Therapy, Centre Francois Baclesse, ARCHADE, 14000 Caen, France
| |
Collapse
|
20
|
Mori A, Yabuta C, Kishimoto Y, Kozai S, Ohtori A, Shearer TR, Azuma M. In Silico Ocular Pharmacokinetic Modeling: Delivery of Topical FK962 to Retina. J Ocul Pharmacol Ther 2017; 33:556-566. [PMID: 28598703 DOI: 10.1089/jop.2016.0136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSES To establish the in silico ocular pharmacokinetic modeling for eye drops, and to simulate the dose regimen for FK962 in human choroid/retinal diseases. METHODS Pharmacokinetics for FK962 in vivo was performed by a single instillation of drops containing 0.1% 14C-FK962 in rabbit eyes. Permeation of FK962 across the cornea, sclera, and choroid/retina was measured in vitro. Neurite elongation by FK962 was measured in cultured rat retinal ganglion cells. Parameters from the experimental data were used in an improved in silico model of ocular pharmacokinetics of FK962 in man. RESULTS The mean concentration of FK962 in ocular tissues predicted by in silico modeling was consistent with in vivo results, validating the in silico model. FK962 rapidly penetrated into the anterior and posterior segments of the eye and then diffused into the vitreous body. The in silico pharmacokinetic modeling also predicted that a dose regimen of 0.0054% FK962 twice per day would produce biologically effective concentrations of FK962 in the choroid/retina, where FK962 facilitates rat neurite elongation. CONCLUSIONS Our in silico model for ocular pharmacokinetics is useful (1) for predicting drug concentrations in specific ocular tissues after topical instillation, and (2) for suggesting the optimal dose regimens for eye drops. The pharmacodynamics for FK962 produced by this model may be useful for clinical trials against retinal neuropathy.
Collapse
Affiliation(s)
- Ayumi Mori
- 1 Senju Laboratory, Senju Pharmaceutical Co., Ltd. , Kobe, Japan
| | - Chiho Yabuta
- 1 Senju Laboratory, Senju Pharmaceutical Co., Ltd. , Kobe, Japan
| | - Yayoi Kishimoto
- 1 Senju Laboratory, Senju Pharmaceutical Co., Ltd. , Kobe, Japan
| | - Seiko Kozai
- 1 Senju Laboratory, Senju Pharmaceutical Co., Ltd. , Kobe, Japan
| | - Akira Ohtori
- 1 Senju Laboratory, Senju Pharmaceutical Co., Ltd. , Kobe, Japan
| | - Thomas R Shearer
- 2 Department of Integrative Biosciences, Oregon Health & Science University , Portland, Oregon
| | - Mitsuyoshi Azuma
- 1 Senju Laboratory, Senju Pharmaceutical Co., Ltd. , Kobe, Japan .,2 Department of Integrative Biosciences, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
21
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
22
|
Shirzad-Wasei N, DeGrip WJ. Heterologous expression of melanopsin: Present, problems and prospects. Prog Retin Eye Res 2016; 52:1-21. [DOI: 10.1016/j.preteyeres.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
|
23
|
Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor Devices Inspired by the Five Senses: A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201600047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - B. Jelle Toebes
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Jan Lauko
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Nicoleta Anton
- Universitatea de Medicina si Farmacie Grigore T.; Popa, Str. Universitatii nr. 16 700115 Iasi Romania
| | | |
Collapse
|
24
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|
25
|
Light pollution: the possible consequences of excessive illumination on retina. Eye (Lond) 2015; 30:255-63. [PMID: 26541085 DOI: 10.1038/eye.2015.221] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023] Open
Abstract
Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.
Collapse
|
26
|
Walker MT, Rupp A, Elsaesser R, Güler AD, Sheng W, Weng S, Berson DM, Hattar S, Montell C. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells. Mol Biol Cell 2015; 26:3671-8. [PMID: 26269578 PMCID: PMC4603936 DOI: 10.1091/mbc.e15-05-0288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022] Open
Abstract
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light.
Collapse
Affiliation(s)
- Marquis T Walker
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Alan Rupp
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Rebecca Elsaesser
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ali D Güler
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218 Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Wenlong Sheng
- Institute of Neurobiology, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Shijun Weng
- Institute of Neurobiology, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China Department of Neuroscience, Brown University, Providence, RI 02912
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Craig Montell
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara CA 93106
| |
Collapse
|
27
|
Green PG, Alvarez P, Levine JD. Topical Tetrodotoxin Attenuates Photophobia Induced by Corneal Injury in the Rat. THE JOURNAL OF PAIN 2015; 16:881-6. [PMID: 26086898 DOI: 10.1016/j.jpain.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 11/24/2022]
Abstract
Corneal injury can produce photophobia, an aversive sensitivity to light. Using topical application of lidocaine, a local anesthetic, and tetrodotoxin (TTX), a selective voltage-sensitive sodium channel blocker, we assessed whether enhanced aversiveness to light induced by corneal injury in rats was caused by enhanced activity in corneal afferents. Eye closure induced by 30 seconds of exposure to bright light (460-485 nm) was increased 24 hours after corneal injury induced by de-epithelialization. Although the topical application of lidocaine did not affect the baseline eye closure response to bright light in control rats, it eliminated the enhancement of the response to the light stimulus after corneal injury (photophobia). Similarly, topical application of TTX had no effect on the eye closure response to bright light in rats with intact corneas, but it markedly attenuated photophobia in rats with corneal injury. Given the well-established corneal toxicity of local anesthetics, we suggest TTX as a therapeutic option to treat photophobia and possibly other symptoms that occur in clinical diseases that involve corneal nociceptor sensitization. Perspective: We show that lidocaine and TTX attenuate photophobia induced by corneal injury. Although corneal toxicity limits use of local anesthetics, TTX may be a safer therapeutic option to reduce the symptom of photophobia associated with corneal injury.
Collapse
Affiliation(s)
- Paul G Green
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, California; Department of Preventative & Restorative Dental Sciences, University of California at San Francisco, San Francisco, California; Division of Neuroscience, University of California at San Francisco, San Francisco, California
| | - Pedro Alvarez
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, California; Division of Neuroscience, University of California at San Francisco, San Francisco, California
| | - Jon D Levine
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, California; Division of Neuroscience, University of California at San Francisco, San Francisco, California; Department of Dental Science and Medicine, University of California at San Francisco, San Francisco, California.
| |
Collapse
|
28
|
Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson SN. Photic regulation of clock systems. Methods Enzymol 2014; 552:125-43. [PMID: 25707275 DOI: 10.1016/bs.mie.2014.10.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Circadian rhythms in physiology and behavior provide a selective advantage by enabling organisms to anticipate rhythmic changes in their environment. These rhythms are based upon a molecular clock generated via an intracellular transcriptional-translational feedback loop involving a number of key clock genes. However, to be of practical use, circadian rhythms need to be entrained to the external environment. In mammals, the primary signal for entrainment is light detected by the photoreceptors of the eye. Research on the mechanisms of photic entrainment has identified a novel photoreceptor system in the retina, consisting of photosensitive retinal ganglion cells expressing the photopigment melanopsin. Light input from these retinal photoreceptors reaches the master circadian pacemaker in the suprachiasmatic nuclei (SCN) via the retinohypothalamic tract, where it then interacts with the molecular clock to bring about entrainment. This chapter focuses on the retinal photoreceptors mediating entrainment, and how light information from the retina is transmitted to the SCN, before detailing recent advances in our understanding of how the molecular clock within the SCN is regulated by light input. Finally, the primary assays that have been used to measure photic entrainment are described.
Collapse
Affiliation(s)
- Steven Hughes
- Sleep and Circadian Institute (SCNi), Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Institute (SCNi), Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Oxford, United Kingdom
| | - Mark W Hankins
- Sleep and Circadian Institute (SCNi), Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
29
|
Henriksen TEG, Skrede S, Fasmer OB, Hamre B, Grønli J, Lund A. Blocking blue light during mania - markedly increased regularity of sleep and rapid improvement of symptoms: a case report. Bipolar Disord 2014; 16:894-8. [PMID: 25264124 DOI: 10.1111/bdi.12265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/04/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Available pharmacological treatment of mania is insufficient. Virtual darkness therapy (blue light-blocking treatment by means of orange-tinted glasses) is a promising new treatment option for mania. The basis for this might be the recently identified blue light-sensitive retinal photoreceptor, which is solely responsible for light stimulus to the circadian master clock. This is the first case report describing the clinical course of a closely monitored, hospitalized patient in a manic episode first receiving clear-lensed, and then blue light-blocking glasses. METHODS A 58-year-old Caucasian man, with bipolar I disorder and three previous manic episodes, was hospitalized during a manic episode. In addition to pharmacological treatment, he was treated with clear-lensed glasses for seven days, then one day without glasses, followed by six days of blue light-blocking glasses. During the entire observational period, he wore an actigraph with internal light sensors. RESULTS Manic symptoms were unaltered during the first seven days. The transition to the blue-blocking regime was followed by a rapid and sustained decline in manic symptoms accompanied by a reduction in total sleep, a reduction in motor activity during sleep intervals, and markedly increased regularity of sleep intervals. The patient's total length of hospital stay was 20 days shorter than the average time during his previous manic episodes. CONCLUSIONS The unusually rapid decline in symptoms, accompanied by uniform sleep parameter changes toward markedly increased regularity, suggest that blue-blockers might be targeting a central mechanism in the pathophysiology of mania that needs to be explored both in clinical research and in basic science.
Collapse
Affiliation(s)
- Tone E G Henriksen
- Department of Clinical Medicine, Section for Psychiatry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Division of Mental Health Care, Valen Hospital, Fonna Local Health Authority, Norway and MoodNet Research Group, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Hughes S, Jagannath A, Hickey D, Gatti S, Wood M, Peirson SN, Foster RG, Hankins MW. Using siRNA to define functional interactions between melanopsin and multiple G Protein partners. Cell Mol Life Sci 2014; 72:165-79. [PMID: 24958088 PMCID: PMC4282707 DOI: 10.1007/s00018-014-1664-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/10/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
Melanopsin expressing photosensitive retinal ganglion cells (pRGCs) represent a third class of ocular photoreceptors and mediate a range of non-image forming responses to light. Melanopsin is a G protein coupled receptor (GPCR) and existing data suggest that it employs a membrane bound signalling cascade involving Gnaq/11 type G proteins. However, to date the precise identity of the Gα subunits involved in melanopsin phototransduction remains poorly defined. Here we show that Gnaq, Gna11 and Gna14 are highly co-expressed in pRGCs of the mouse retina. Furthermore, using RNAi based gene silencing we show that melanopsin can signal via Gnaq, Gna11 or Gna14 in vitro, and demonstrate that multiple members of the Gnaq/11 subfamily, including Gna14 and at least Gnaq or Gna11, can participate in melanopsin phototransduction in vivo and contribute to the pupillary light responses of mice lacking rod and cone photoreceptors. This diversity of G protein interactions suggests additional complexity in the melanopsin phototransduction cascade and may provide a basis for generating the diversity of light responses observed from pRGC subtypes.
Collapse
Affiliation(s)
- Steven Hughes
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Aarti Jagannath
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Doron Hickey
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Silvia Gatti
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Matthew Wood
- Department of Anatomy, Physiology and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| |
Collapse
|
31
|
Chew KS, Schmidt TM, Rupp AC, Kofuji P, Trimarchi JM. Loss of gq/11 genes does not abolish melanopsin phototransduction. PLoS One 2014; 9:e98356. [PMID: 24870805 PMCID: PMC4037210 DOI: 10.1371/journal.pone.0098356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/01/2014] [Indexed: 11/29/2022] Open
Abstract
In mammals, a subset of retinal ganglion cells (RGCs) expresses the photopigment melanopsin, which renders them intrinsically photosensitive (ipRGCs). These ipRGCs mediate various non-image-forming visual functions such as circadian photoentrainment and the pupillary light reflex (PLR). Melanopsin phototransduction begins with activation of a heterotrimeric G protein of unknown identity. Several studies of melanopsin phototransduction have implicated a G-protein of the Gq/11 family, which consists of Gna11, Gna14, Gnaq and Gna15, in melanopsin-evoked depolarization. However, the exact identity of the Gq/11 gene involved in this process has remained elusive. Additionally, whether Gq/11 G-proteins are necessary for melanopsin phototransduction in vivo has not yet been examined. We show here that the majority of ipRGCs express both Gna11 and Gna14, but neither Gnaq nor Gna15. Animals lacking the melanopsin protein have well-characterized deficits in the PLR and circadian behaviors, and we therefore examined these non-imaging forming visual functions in a variety of single and double mutants for Gq/11 family members. All Gq/11 mutant animals exhibited PLR and circadian behaviors indistinguishable from WT. In addition, we show persistence of ipRGC light-evoked responses in Gna11−/−; Gna14−/− retinas using multielectrode array recordings. These results demonstrate that Gq, G11, G14, or G15 alone or in combination are not necessary for melanopsin-based phototransduction, and suggest that ipRGCs may be able to utilize a Gq/11-independent phototransduction cascade in vivo.
Collapse
Affiliation(s)
- Kylie S. Chew
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Tiffany M. Schmidt
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alan C. Rupp
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jeffrey M. Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
32
|
Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Proc Natl Acad Sci U S A 2014; 111:1714-9. [PMID: 24449866 DOI: 10.1073/pnas.1309508111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Comparative modeling and ab initio multiconfigurational quantum chemistry are combined to investigate the reactivity of the human nonvisual photoreceptor melanopsin. It is found that both the thermal and photochemical isomerization of the melanopsin 11-cis retinal chromophore occur via a space-saving mechanism involving the unidirectional, counterclockwise twisting of the =C11H-C12H= moiety with respect to its Lys340-linked frame as proposed by Warshel for visual pigments [Warshel A (1976) Nature 260(5553):679-683]. A comparison with the mechanisms documented for vertebrate (bovine) and invertebrate (squid) visual photoreceptors shows that such a mechanism is not affected by the diversity of the three chromophore cavities. Despite such invariance, trajectory computations indicate that although all receptors display less than 100 fs excited state dynamics, human melanopsin decays from the excited state ∼40 fs earlier than bovine rhodopsin. Some diversity is also found in the energy barriers controlling thermal isomerization. Human melanopsin features the highest computed barrier which appears to be ∼2.5 kcal mol(-1) higher than that of bovine rhodopsin. When assuming the validity of both the reaction speed/quantum yield correlation discussed by Warshel, Mathies and coworkers [Weiss RM, Warshel A (1979) J Am Chem Soc 101:6131-6133; Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) Science 254(5030):412-415] and of a relationship between thermal isomerization rate and thermal activation of the photocycle, melanopsin turns out to be a highly sensitive pigment consistent with the low number of melanopsin-containing cells found in the retina and with the extraretina location of melanopsin in nonmammalian vertebrates.
Collapse
|
33
|
Matynia A. Blurring the boundaries of vision: novel functions of intrinsically photosensitive retinal ganglion cells. J Exp Neurosci 2013; 7:43-50. [PMID: 25157207 PMCID: PMC4089729 DOI: 10.4137/jen.s11267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian vision consists of the classic image-forming pathway involving rod and cone photoreceptors interacting through a neural network within the retina before sending signals to the brain, and a non image-forming pathway that uses a photosensitive cell employing an alternative and evolutionary ancient phototransduction system and a direct connection to various centers in the brain. Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, which is independently capable of photon detection while also receiving synaptic input from rod and cone photoreceptors via bipolar cells. These cells are the retinal sentry for subconscious visual processing that controls circadian photoentrainment and the pupillary light reflex. Classified as irradiance detectors, recent investigations have led to expanding roles for this specific cell type and its own neural pathways, some of which are blurring the boundaries between image-forming and non image-forming visual processes.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA. ; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
34
|
Kosonsiriluk S, Mauro LJ, Chaiworakul V, Chaiseha Y, El Halawani ME. Photoreceptive oscillators within neurons of the premammillary nucleus (PMM) and seasonal reproduction in temperate zone birds. Gen Comp Endocrinol 2013; 190:149-55. [PMID: 23453962 DOI: 10.1016/j.ygcen.2013.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/31/2013] [Accepted: 02/09/2013] [Indexed: 11/21/2022]
Abstract
The pathway for light transmission regulating the reproductive neuroendocrine system in temperate zone birds remains elusive. Based on the evidence provided from our studies with female turkeys, it is suggested that the circadian clock regulating reproductive seasonality is located in putatively photosensitive dopamine-melatonin (DA-MEL) neurons residing in the premammillary nucleus (PMM) of the caudal hypothalamus. Melanopsin is expressed by these neurons; a known photopigment which mediates light information pertaining to the entrainment of the clock. Exposure to a gonad stimulatory photoperiod enhances the activity of the DAergic system within DA-MEL neurons. DAergic activity encoding the light information is transmitted to the pars tuberalis, where thyroid-stimulating hormone, beta (TSHβ) cells reside, and induces the release of TSH. TSH stimulates tanycytes lining the base of the third ventricle and activates type 2 deiodinase in the ependymal which enhances triiodothyronine (T3) synthesis. T3 facilitates the release of gonadotropin-releasing hormone-I which stimulates luteinizing hormone/follicle stimulating hormone release and gonad recrudescence. These data taken together with the findings that clock genes are rhythmically expressed in the PMM where DA-MEL neurons are localized imply that endogenous oscillators containing photoreceptors within DA-MEL neurons are important in regulating the DA and MEL rhythms that drive the circadian cycle controlling seasonal reproduction.
Collapse
|
35
|
Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol 2013; 9:630-5. [PMID: 23974117 PMCID: PMC3839535 DOI: 10.1038/nchembio.1333] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/02/2013] [Indexed: 12/13/2022]
Abstract
Melanopsin, expressed in a subset of retinal ganglion cells, mediates behavioral adaptation to ambient light and other non-image forming photic responses. This has raised the possibility that pharmacological manipulation of melanopsin can modulate several CNS responses including photophobia, sleep, circadian rhythms and neuroendocrine function. Here we describe the identification of a potent synthetic melanopsin antagonist with in vivo activity. Novel sulfonamide compounds inhibiting melanopsin (opsinamides) compete with retinal binding to melanopsin and inhibit its function without affecting rod/cone mediated responses. In vivo administration of opsinamides to mice specifically and reversibly modified melanopsin-dependent light responses including the pupillary light reflex and light aversion. The discovery of opsinamides raises the prospect of therapeutic control of the melanopsin phototransduction system to regulate light-dependent behavior and remediate pathological conditions.
Collapse
|
36
|
Abstract
CNS neurons change their connectivity to accommodate a changing environment, form memories, or respond to injury. Plasticity in the adult mammalian retina after injury or disease was thought to be limited to restructuring resulting in abnormal retinal anatomy and function. Here we report that neurons in the mammalian retina change their connectivity and restore normal retinal anatomy and function after injury. Patches of photoreceptors in the rabbit retina were destroyed by selective laser photocoagulation, leaving retinal inner neurons (bipolar, amacrine, horizontal, ganglion cells) intact. Photoreceptors located outside of the damaged zone migrated to make new functional connections with deafferented bipolar cells located inside the lesion. The new connections restored ON and OFF responses in deafferented ganglion cells. This finding extends the previously perceived limits of restorative plasticity in the adult retina and allows for new approaches to retinal laser therapy free of current detrimental side effects such as scotomata and scarring.
Collapse
|
37
|
Ashkenazi L, Haim A. Effect of Light at Night on oxidative stress markers in Golden spiny mice (Acomys russatus) liver. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:353-7. [PMID: 23608365 DOI: 10.1016/j.cbpa.2013.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Abstract
Light at Night (LAN) suppresses melatonin (MLT) production, and effects metabolism, hormone secretion, gene expression and enzyme activity. Changes in antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD), can be used as an indication for oxidative stress level. We assayed activity and expression of these enzymes in the liver of Acomys russatus exposed to LAN and treated with MLT. Short day (SD)-acclimated A. russatus, was exposed to 30min of LAN for two, seven or 21 nights. MLT impact was assessed simultaneously with two and seven nights of LAN exposure. GPx and SOD activities were measured. Gpx1 expression was evaluated by RT-PCR. There was a significant increase in GPx activity following LAN exposure for all acclimation durations, GPx activity was elevated after two nights of LAN and MLT treatment, Gpx1 expression was elevated by MLT after seven nights of LAN. SOD activity increased after two nights of LAN in MLT-treated A. russatus, GPx activity increased with the duration of LAN acclimation, indicating changes in liver redox status. Our results suggest that LAN is a stressor that influences oxidative stress. As in the other studies, MLT increases antioxidant activities, presumably attenuating stress response, in order to restore homeostasis.
Collapse
Affiliation(s)
- Lilach Ashkenazi
- The Israeli Center for Interdisciplinary Research in Chronobiology, Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | |
Collapse
|
38
|
Asadulina A, Panzera A, Verasztó C, Liebig C, Jékely G. Whole-body gene expression pattern registration in Platynereis larvae. EvoDevo 2012. [PMID: 23199348 PMCID: PMC3586958 DOI: 10.1186/2041-9139-3-27] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere) of the Platynereis trochophore larva and used for the detailed study of neuronal development. Results Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2’-thiodiethanol (TDE), which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4’6-diamidino-2-phenylindole (DAPI). Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental stage. We then registered to these templates the expression patterns of cell-type specific genes. In order to evaluate the gene expression pattern registration, we analyzed the absolute deviation of cell-center positions. Both the acetylated-tubulin- and the nuclear-stain-based templates allowed near-cellular-resolution gene expression registration. Nuclear-stain-based templates often performed significantly better than acetylated-tubulin-based templates. We provide detailed guidelines and scripts for the use and further expansion of the Platynereis gene expression atlas. Conclusions We established whole-body reference templates for the generation of gene expression atlases for Platynereis trochophore and nectochaete larvae. We anticipate that nuclear-staining-based image registration will be applicable for whole-body alignment of the embryonic and larval stages of other organisms in a similar size range.
Collapse
Affiliation(s)
- Albina Asadulina
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076, Germany.
| | | | | | | | | |
Collapse
|
39
|
Liu X, Zhang Z, Ribelayga CP. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. PLoS One 2012. [PMID: 23189207 PMCID: PMC3506613 DOI: 10.1371/journal.pone.0050602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | - Zhijing Zhang
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | - Christophe P. Ribelayga
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
- The University of Texas Health Science Center at Houston, Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Srinivasan V, Lauterbach EC, Ho KY, Acuña-Castroviejo D, Zakaria R, Brzezinski A. Melatonin in antinociception: its therapeutic applications. Curr Neuropharmacol 2012; 10:167-78. [PMID: 23204986 PMCID: PMC3386506 DOI: 10.2174/157015912800604489] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
The intensity of pain sensation exhibits marked day and night variations. Since the intensity of pain perception is low during dark hours of the night when melatonin levels are high, this hormone has been implicated as one of the prime antinociceptive substances. A number of studies have examined the antinociceptive role of melatonin in acute, inflammatory and neuropathic pain animal models. It has been demonstrated that melatonin exerts antinociceptive actions by acting at both spinal cord and supraspinal levels. The mechanism of antinociceptive actions of melatonin involves opioid, benzodiazepine, α(1)- and α(2)-adrenergic, serotonergic and cholinergic receptors. Most importantly however, the involvement of MT(1)/MT(2) melatonergic receptors in the spinal cord has been well documented as an antinociceptive mechanism in a number of animal models of pain perception. Exogenous melatonin has been used effectively in the management of pain in medical conditions such as fibromyalgia, irritable bowel syndrome and migraine and cluster headache. Melatonin has been tried during surgical operating conditions and has been shown to enhance both preoperative and post-operative analgesia. The present review discusses the available evidence indicating that melatonin, acting through MT(1)/MT(2) melatonin receptors, plays an important role in the pathophysiological mechanism of pain.
Collapse
Affiliation(s)
- Venkatramanujam Srinivasan
- Sri Sathya Sai Medical Educational and Research Foundation, Medical Sciences Research Study Center, Prasanthi Nilayam, 40 Kovai Thirunagar, Coimbatore-641014, Tamilnadu, India
| | - Edward C Lauterbach
- Department of Psychiatry and Internal Medicine (Neurology Section), Mercer University School of Medicine, Macon GA31201, USA
| | - Khek Yu Ho
- Department of Medicine, National University Hospital, National University of Singapore Lowerkent Bridge Road, Singapore
| | - Dario Acuña-Castroviejo
- Instituto def Biotecnología, Centro de Investigaicón Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avda del Conocimiento, 18100-Armilla, Granada, Spain
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Amnon Brzezinski
- Department of Obstetrics and Gynecology, Hadassah Medical Center, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
41
|
Shortridge RD. Impact of Studies of the Drosophila norpAMutation on Understanding Phototransduction. J Neurogenet 2012; 26:123-31. [DOI: 10.3109/01677063.2011.647142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Abstract
In mammalian rods and cones, light activation of the visual pigments leads to release of the chromophore, which is then recycled through a multistep enzymatic pathway, referred to as the visual or retinoid cycle. In invertebrates such as Drosophila, a visual cycle was thought not to exist since the rhodopsins are bistable photopigments, which consist of a chromophore that normally stays bound to the opsin following light activation. Nevertheless, we recently described a visual cycle in Drosophila that serves to recycle the free chromophore that is released following light-induced internalization of rhodopsin, and a retinol dehydrogenase (RDH) that catalyzes the first step of the pathway. Here, we describe the identification of a putative RDH, referred to as RDHB (retinol dehydrogenase B), which functions in the visual cycle and in de novo synthesis of the chromophore. RDHB was expressed in the retinal pigment cells (RPCs), where it promoted the final enzymatic reaction necessary for the production of the chromophore. Mutation of rdhB caused moderate light-dependent degeneration of the phototransducing compartment of the photoreceptor cells-the rhabdomeres, reminiscent of the effects of mutations in some human RDH genes. Since the first and last steps in the visual cycle take place in the RPCs, it appears that these cells are the sites of action for this entire enzymatic pathway in Drosophila.
Collapse
|
43
|
Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun 2012; 26:407-13. [PMID: 22019350 PMCID: PMC3336152 DOI: 10.1016/j.bbi.2011.10.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 12/22/2022] Open
Abstract
In mammals, circadian and daily rhythms influence nearly all aspects of physiology, ranging from behavior to gene expression. Functional molecular clocks have been described in the murine spleen and splenic NK cells. The aim of our study was to investigate the existence of molecular clock mechanisms in other immune cells. Therefore, we measured the circadian changes in gene expression of clock genes (Per1, Per2, Bmal1, and Clock) and clock-controlled transcription factors (Rev-erbα and Dbp) in splenic enriched macrophages, dendritic cells, and B cells in both mice entrained to a light-dark cycle and under constant environmental conditions. Our study reveals the existence of functional molecular clock mechanisms in splenic macrophages, dendritic cells, and B cells.
Collapse
Affiliation(s)
- Adam C Silver
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA.
| | | | | | | | | |
Collapse
|
44
|
Sato S, Hozumi Y, Saino-Saito S, Yamashita H, Goto K. Enzymatic activity and gene expression of diacylglycerol kinase isozymes in developing retina of rats. ACTA ACUST UNITED AC 2012; 32:329-36. [PMID: 22033302 DOI: 10.2220/biomedres.32.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Photoreceptors contain highly specialized structures for phototransduction, which is mediated by rhodopsins and heterotrimeric G-proteins. The signal is transmitted through the cGMP cascade, which controls cGMP-gated cation channels in mammals, while in flies it is operated by phosphoinositide (PI) cascade through a second messenger diacylglycerol (DG), which engenders the opening of Ca2+ channels. Recent studies suggest that PI-related signaling cascade is also involved in the phototransduction in mammalian retina. This study examined whether one PI-related enzyme, diacylglycerol kinase (DGK), which is regarded as a regulator of the DG signal through its metabolism, is expressed in mammalian retina. Enzymatic assay, Northern blot and RT-PCR analyses, and in situ hybridization histochemistry were performed to assess the expression profile of DGK isozymes and their cellular localization. In rat retina DGKε, DGKζ, and DGKι are the dominant species with distinct patterns of expression. At the cellular level, DGKε is the only one detected intensely in the photoreceptor layer, although DGKι and DGKζ are observed in bipolar and ganglion cell layers. These results suggest that each DGK isozyme plays a different role in the signal transduction in distinct cell types and that DGKε is a candidate involved in the photoreceptor PI signaling machinery.
Collapse
Affiliation(s)
- Sakura Sato
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | |
Collapse
|
45
|
Phototransduction in Drosophila. SCIENCE CHINA-LIFE SCIENCES 2012; 55:27-34. [PMID: 22314488 DOI: 10.1007/s11427-012-4272-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/12/2011] [Indexed: 10/14/2022]
Abstract
The Drosophila visual transduction is the fastest known G protein-coupled signaling cascade and has been served as a model for understanding the molecular mechanisms of other G protein-coupled signaling cascades. Numbers of components in visual transduction machinery have been identified. Based on the functional characterization of these genes, a model for Drosophila phototransduction has been outlined, including rhodopsin activation, phosphoinoside signaling, and the opening of TRP and TRPL channels. Recently, the characterization of mutants, showing slow termination, revealed the physiological significance and the mechanism of rapid termination of light response.
Collapse
|
46
|
|
47
|
Schmidt TM, Do MTH, Dacey D, Lucas R, Hattar S, Matynia A. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 2011; 31:16094-101. [PMID: 22072661 PMCID: PMC3267581 DOI: 10.1523/jneurosci.4132-11.2011] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022] Open
Abstract
Melanopsin imparts an intrinsic photosensitivity to a subclass of retinal ganglion cells (ipRGCs). Generally thought of as irradiance detectors, ipRGCs target numerous brain regions involved in non-image-forming vision. ipRGCs integrate their intrinsic, melanopsin-mediated light information with rod/cone signals relayed via synaptic connections to influence light-dependent behaviors. Early observations indicated diversity among these cells and recently several specific subtypes have been identified. These subtypes differ in morphological and physiological form, controlling separate functions that range from biological rhythm via circadian photoentrainment, to protective behavioral responses including pupil constriction and light avoidance, and even image-forming vision. In this Mini-Symposium review, we will discuss some recent findings that highlight the diversity in both form and function of these recently discovered atypical photoreceptors.
Collapse
Affiliation(s)
- Tiffany M. Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Tri H. Do
- F. M. Kirby Neurobiology Center Department of Neurology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Dennis Dacey
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Robert Lucas
- Department of Neurobiology, The University of Manchester, Manchester, United Kingdom M13 9PT
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, and
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
48
|
UVA phototransduction drives early melanin synthesis in human melanocytes. Curr Biol 2011; 21:1906-11. [PMID: 22055294 DOI: 10.1016/j.cub.2011.09.047] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/02/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
Abstract
Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% ultraviolet A (UVA) and ~5% ultraviolet B (UVB) at the Earth's surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or phospholipase C (PLC) inhibitors or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to 5-fold after 24 hr. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis and may underlie the mechanism of IPD in human skin.
Collapse
|
49
|
Expression of novel opsins and intrinsic light responses in the mammalian retinal ganglion cell line RGC-5. Presence of OPN5 in the rat retina. PLoS One 2011; 6:e26417. [PMID: 22022612 PMCID: PMC3195719 DOI: 10.1371/journal.pone.0026417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/26/2011] [Indexed: 02/01/2023] Open
Abstract
The vertebrate retina is known to contain three classes of photoreceptor cells: cones and rods responsible for vision, and intrinsically photoresponsive retinal ganglion cells (RGCs) involved in diverse non-visual functions such as photic entrainment of daily rhythms and pupillary light responses. In this paper we investigated the potential intrinsic photoresponsiveness of the rat RGC line, RGC-5, by testing for the presence of visual and non-visual opsins and assessing expression of the immediate-early gene protein c-Fos and changes in intracellular Ca2+mobilization in response to brief light pulses. Cultured RGC-5 cells express a number of photopigment mRNAs such as retinal G protein coupled receptor (RGR), encephalopsin/panopsin (Opn3), neuropsin (Opn5) and cone opsin (Opn1mw) but not melanopsin (Opn4) or rhodopsin. Opn5 immunoreactivity was observed in RGC-5 cells and in the inner retina of rat, mainly localized in the ganglion cell layer (GCL). Furthermore, white light pulses of different intensities and durations elicited changes both in intracellular Ca2+ levels and in the induction of c-Fos protein in RGC-5 cell cultures. The results demonstrate that RGC-5 cells expressing diverse putative functional photopigments display intrinsic photosensitivity which accounts for the photic induction of c-Fos protein and changes in intracellular Ca2+ mobilization. The presence of Opn5 in the GCL of the rat retina suggests the existence of a novel type of photoreceptor cell.
Collapse
|
50
|
Quantitative calculation of human melatonin suppression induced by inappropriate light at night. Med Biol Eng Comput 2011; 49:1083-8. [PMID: 21717231 DOI: 10.1007/s11517-011-0788-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|