1
|
Martínez-Gayo A, Félix-Soriano E, Sáinz N, González-Muniesa P, Moreno-Aliaga MJ. Changes Induced by Aging and Long-Term Exercise and/or DHA Supplementation in Muscle of Obese Female Mice. Nutrients 2022; 14:nu14204240. [PMID: 36296923 PMCID: PMC9610919 DOI: 10.3390/nu14204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.
Collapse
Affiliation(s)
- Alejandro Martínez-Gayo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| |
Collapse
|
2
|
Boldarine VT, Joyce E, Pedroso AP, Telles MM, Oyama LM, Bueno AA, Ribeiro EB. Oestrogen replacement fails to fully revert ovariectomy-induced changes in adipose tissue monoglycerides, diglycerides and cholesteryl esters of rats fed a lard-enriched diet. Sci Rep 2021; 11:3841. [PMID: 33589704 PMCID: PMC7884784 DOI: 10.1038/s41598-021-82837-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 01/09/2023] Open
Abstract
Menopause may be accompanied by abdominal obesity and inflammation, conditions accentuated by high-fat intake, especially of saturated fat (SFA)-rich diets. We investigated the consequences of high-SFA intake on the fatty acid (FA) profile of monoglycerides, diglycerides and cholesteryl esters from retroperitoneal white adipose tissue (RET) of rats with ovariectomy-induced menopause, and the effect of oestradiol replacement. Wistar rats were either ovariectomized (Ovx) or sham operated (Sham) and fed either standard chow (C) or lard-enriched diet (L) for 12 weeks. Half of the Ovx rats received 17β-oestradiol replacement (Ovx + E2). Body weight and food intake were measured weekly. RET neutral lipids were chromatographically separated and FAs analysed by gas chromatography. Ovariectomy alone increased body weight, feed efficiency, RET mass, leptin and insulin levels, leptin/adiponectin ratio, HOMA-IR and HOMA-β indexes. OvxC + E2 showed attenuation in nearly all blood markers. HOMA-β index was restored in OvxL + E2. OvxC showed significantly disturbed SFA and polyunsaturated FA (PUFA) profile in RET cholesteryl esters (CE). OvxC also showed increased monounsaturated FA (MUFA) in the monoglyceride diglyceride (Mono-Di) fraction. Similar changes were not observed in OvxL, although increased SFA and decreased PUFA was observed in Mono-Di. Overall, HRT was only partially able to revert changes induced by ovariectomy. There appears to be increased mobilization of essential FA in Ovx via CE, which is a dynamic lipid species. The same results were not found in Mono-Di, which are more inert. HRT may be helpful to preserve FA profile in visceral fat, but possibly not wholly sufficient in reverting the metabolic effects induced by menopause.
Collapse
Affiliation(s)
- Valter Tadeu Boldarine
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 2º andar, Vila Clementino, São Paulo, SP, 04023-062, Brasil.
| | - Ellen Joyce
- Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, UK
| | - Amanda Paula Pedroso
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 2º andar, Vila Clementino, São Paulo, SP, 04023-062, Brasil
| | - Mônica Marques Telles
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 2º andar, Vila Clementino, São Paulo, SP, 04023-062, Brasil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 2º andar, Vila Clementino, São Paulo, SP, 04023-062, Brasil
| | - Allain Amador Bueno
- Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, UK
| | - Eliane Beraldi Ribeiro
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 2º andar, Vila Clementino, São Paulo, SP, 04023-062, Brasil
| |
Collapse
|
3
|
Ding Z, Liu Y, Han J, Liu X, Zheng Y, Li W, Xu Y. Dietary Lipid Supplementation Could Significantly Affect the Growth, Fatty Acid Profiles, and Expression of PPARα, Leptin, and Adiponectin Genes in Juvenile Genetically Improved Farmed Tilapia. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaokun Ding
- Institute for Fishery Sciences Guangxi University 100 University Road Nanning 530004 China
| | - Yongqiang Liu
- Faculty of Life Science and Technology Guangxi University Nanning 530004 China
| | - Jinhua Han
- Institute for Fishery Sciences Guangxi University 100 University Road Nanning 530004 China
| | - Xiaoli Liu
- Institute for Fishery Sciences Guangxi University 100 University Road Nanning 530004 China
| | - Yimin Zheng
- Institute for Fishery Sciences Guangxi University 100 University Road Nanning 530004 China
| | - Weifeng Li
- Institute for Fishery Sciences Guangxi University 100 University Road Nanning 530004 China
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation Beibuwan University Qinzhou 535011 China
| | - Youqing Xu
- Institute for Fishery Sciences Guangxi University 100 University Road Nanning 530004 China
| |
Collapse
|
4
|
Wang Q, Mu H, Shen H, Gu Z, Liu D, Yang M, Zhang Y, Xu W, Zhang W, Mai K. Comparative analysis of glucose metabolism responses of large yellow croaker Larimichthys crocea fed diet with fish oil and palm oil. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1603-1614. [PMID: 31054044 DOI: 10.1007/s10695-019-00646-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
In order to study the effects of dietary fatty acid compositions on glucose metabolism, large yellow croaker juveniles Larimichthys crocea (initial weight, 36.80 ± 0.39 g) were fed with two experiment diets for 12 weeks. The two diets contained 6.5% of fish oil (FO) and palm oil (PO), respectively. Results showed that the contents of saturated fatty acids in liver and muscle, levels of glucose, triglyceride (TG), non-esterified fatty acid (NEFA), and leptin in blood were significantly higher in PO group, while the hepatic glycogen and muscle glycogen significantly decreased (P < 0.05). There were no significant differences in blood insulin and adiponectin levels between the two groups (P > 0.05). Compared with the FO group, the expressions of glucokinase (GK), glucose-6-phosphate dehydrogenase, glycogen synthase (GYS), glucose transporter 2 (GLUT2), insulin receptor 1 (IR1), insulin receptor substrate 1 (IRS1), insulin receptor substrate (IRS2), and protein kinase B (AKT2) were significantly decreased, and the expressions of phosphoenolpyruvate carboxykinase (PEPCK) in liver were significantly increased in the PO group. Meanwhile, the expressions of GK, phosphofructokinase, GYS, GLUT4, and insulin receptor 2 (IR2) were significantly reduced, and the expressions PEPCK, fructose-1 and 6-diphosphatase in muscle were significantly increased in the PO group. In conclusion, palm oil in diet could inhibit the utilization of glucose and promote the endogenous glucose production in large yellow croaker by reducing the sensitivity of insulin, so as to increase the blood glucose level.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Hua Mu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Haohao Shen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhixiang Gu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Dong Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yue Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Weiqi Xu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
5
|
Pinyo J, Hira T, Hara H. Continuous feeding of a combined high-fat and high-sucrose diet, rather than an individual high-fat or high-sucrose diet, rapidly enhances the glucagon-like peptide-1 secretory response to meal ingestion in diet-induced obese rats. Nutrition 2019; 62:122-130. [PMID: 30878816 DOI: 10.1016/j.nut.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Glucagon-like peptide-1 (GLP-1) is secreted by enteroendocrine L-cells in response to nutrient ingestion. To date, GLP-1 secretion in diet-induced obesity is not well characterized. We aimed to examine GLP-1 secretion in response to meal ingestion during the progression of diet-induced obesity and determinewhether a combined high-fat and high-sucrose (HFS) diet, an individual high-fat (HiFat), or a high-sucrose (HiSuc) diet affect adaptive changes in the postprandial GLP-1 response. METHODS Rats were fed a control, HiFat diet (30% weight), HiSuc diet (40% weight), or HFS (30% fat and 40% sucrose) diet for 5 wk. Meal tolerance tests were conducted to determine postprandial glucose, insulin, and GLP-1 responses to standard (control) diet ingestion every 2 wk. RESULTS After 5 wk, body weight gain of the HiFat (232.3 ± 7.8 g; P = 0.021) and HFS groups (228.0 ± 7.8; P = 0.039), but not the HiSuc group (220.3 ± 7.9; P = 0.244), were significantly higher than that of the control group (200.7 ± 5.4 g). In meal tolerance tests after 2 wk, GLP-1 concentration was significantly elevated in the HFS group only (17.2 ± 2.6 pM; P < 0.001) in response to meal ingestions, but the HiFat group (16.6 ± 3.7 pM; P = 0.156) had a similar response as the HFS group. After 4 wk, GLP-1 concentrations were similarly elevated at 15min in the HFS (14.1 ± 4.4; P = 0.010), HiFat (13.2 ± 2.0; P < 0.001), and HiSuc (13.0 ± 3.3; P = 0.016) groups, but the HFS (9.8 ± 1.0; P = 0.019) and HiFat (8.3 ± 1.5; P = 0.010) groups also had significant elevation at 30min. CONCLUSIONS These results demonstrate that the continuous ingestion of excessive fat and sucrose rapidly enhances the GLP-1 secretory response to luminal nutrients, and the HiFat diet may have a potent effect compared with the HiSuc diet on GLP-1 secretory responses. The increment of postprandial GLP-1 and insulinsecretion may have a role in normalizing postprandial glycaemia and slowing the establishment of glucose intolerance.
Collapse
Affiliation(s)
- Jukkrapong Pinyo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tohru Hira
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Hiroshi Hara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Differential effects of coconut versus soy oil on gut microbiota composition and predicted metabolic function in adult mice. BMC Genomics 2018; 19:808. [PMID: 30404613 PMCID: PMC6223047 DOI: 10.1186/s12864-018-5202-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Animal studies show that high fat (HF) diet-induced gut microbiota contributes to the development of obesity. Oil composition of high-fat diet affects metabolic inflammation differently with deleterious effects by saturated fat. The aim of the present study was to examine the diversity and metabolic capacity of the cecal bacterial community in C57BL/6 N mice administered two different diets, enriched respectively with coconut oil (HFC, high in saturated fat) or soy oil (HFS, high in polyunsaturated fat). The relative impact of each hypercaloric diet was evaluated after 2 and 8 weeks of feeding, and compared with that of a low-fat, control diet (LF). Results The HFC diet induced the same body weight gain and fat storage as the HFS diet, but produced higher plasma cholesterol levels after 8 weeks of treatment. At the same time point, the cecal microbiota of HFC diet-fed mice was characterized by an increased relative abundance of Allobaculum, Anaerofustis, F16, Lactobacillus reuteri and Deltaproteobacteria, and a decreased relative abundance of Akkermansia muciniphila compared to HFS mice. Comparison of cecal microbiota of high-fat fed mice versus control mice indicated major changes that were shared between the HFC and the HFS diet, including the increase in Lactobacillus plantarum, Lutispora, and Syntrophomonas, while some other shifts were specifically associated to either coconut or soy oil. Prediction of bacterial gene functions showed that the cecal microbiota of HFC mice was depleted of pathways involved in fatty acid metabolism, amino acid metabolism, xenobiotic degradation and metabolism of terpenoids and polyketides compared to mice on HFS diet. Correlation analysis revealed remarkable relationships between compositional changes in the cecal microbiota and alterations in the metabolic and transcriptomic phenotypes of high-fat fed mice. Conclusions The study highlights significant differences in cecal microbiota composition and predictive functions of mice consuming a diet enriched in coconut vs soy oil. The correlations established between specific bacterial taxa and various traits linked to host lipid metabolism and energy storage give insights into the role and functioning of the gut microbiota that may contribute to diet-induced metabolic disorders. Electronic supplementary material The online version of this article (10.1186/s12864-018-5202-z) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Zhao L, Yamaguchi Y, Shen WJ, Morser J, Leung LLK. Dynamic and tissue-specific proteolytic processing of chemerin in obese mice. PLoS One 2018; 13:e0202780. [PMID: 30161155 PMCID: PMC6116994 DOI: 10.1371/journal.pone.0202780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Chemerin is a chemoattractant involved in immunity as well as an adipokine, whose activity is regulated by successive proteolytic cleavages at its C-terminus. Chemerin’s C-terminal sequence and its proteolytic cleavage sites are highly conserved between human and mouse, as well as in other species. We produced, purified and characterized different mouse chemerin forms. Ca2+ mobilization assay showed that the EC50 values for mchem161T and mchem157R were 135.8 ± 158 nM and 71.2 ± 55.4 nM, respectively, whereas mchem156S and mchem155F had a 20-fold higher potency with an EC50 of 4.6 ± 1.8 nM and 3.6 ± 3.0 nM, respectively, likely representing the two physiologically active forms of chemerin. No agonist activity was found for mchem154A. Similar results were obtained in a chemotaxis assay. To identify and quantify the in vivo mouse chemerin forms in biological samples, we developed specific ELISAs for mchem162K, mchem157R, mchem156S, mchem155F and mchem154A, using antibodies raised against peptides from the C-terminus of the different mouse chemerin forms. The prochemerin form, mchem162K, was the major chemerin form in plasma with its increase matching the increase of total plasma chemerin in obese mice. During the onset of obesity in high-fat diet fed mice, mchem156S was elevated in plasma. In contrast, mchem155F was the dominant form in epididymal fat extracts. Our study provides the first direct evidence that mouse chemerin undergoes extensive, dynamic and tissue-specific proteolytic processing in vivo, similar to human chemerin, underlining the importance of measuring individual chemerin forms in studies of chemerin biology in mouse models.
Collapse
Affiliation(s)
- Lei Zhao
- Stanford University School of Medicine, Department of Medicine, Division of Hematology, Stanford, CA, United States of America.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Yasuto Yamaguchi
- Stanford University School of Medicine, Department of Medicine, Division of Hematology, Stanford, CA, United States of America.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Wen-Jun Shen
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America.,Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - John Morser
- Stanford University School of Medicine, Department of Medicine, Division of Hematology, Stanford, CA, United States of America.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Lawrence L K Leung
- Stanford University School of Medicine, Department of Medicine, Division of Hematology, Stanford, CA, United States of America.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States of America
| |
Collapse
|
8
|
Mazaki-Tovi M, Bolin SR, Schenck PA. Dietary Fatty Acids Differentially Regulate Secretion of Adiponectin and Interleukin-6 in Primary Canine Adipose Tissue Culture. Lipids 2018; 53:205-216. [PMID: 29573267 DOI: 10.1002/lipd.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/26/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
The aim of this study was to determine the effect of n3 polyunsaturated fatty acids (PUFA) on canine adipose tissue secretion of adiponectin, interleukin-6 (IL6), and tumor necrosis factor-α (TNFα). Subcutaneous and omental visceral adipose tissue samples were collected from 16 healthy intact female dogs. Concentrations of adiponectin were measured in mature adipocyte cultures, and concentrations of IL6 and TNFα were measured in undifferentiated stromovascular cell (SVC) cultures following treatment with eicosapentaenic acid (EPA, 20:5n-3), arachidonic acid (ARA, 20:4n-6), or palmitic acid (PAM, 16:0) at 25, 50, or 100 μM. Secretion of adiponectin from mature adipocytes was higher (p < 0.001) following EPA treatment at 50 μM compared to control in subcutaneous tissue, and higher following EPA treatment compared to PAM treatment at 25 μM in both subcutaneous (p < 0.001) and visceral tissues (p = 0.010). Secretion of IL6 from SVC derived from subcutaneous tissue was lower following EPA treatment and higher following PAM treatment compared to control both at 50 μM (p = 0.001 and p = 0.041, respectively) and 100 μM (p = 0.013 and p < 0.001, respectively). These findings of stimulation of adiponectin secretion and inhibition of IL6 secretion by EPA, and stimulation of IL6 secretion by PAM, are consistent with findings of increased circulating concentrations of adiponectin and decreased circulating concentration of IL6 in dogs supplemented with dietary fish oil, and show that the effect of fish oil on circulating concentrations of adiponectin and IL6 is, at least partially, the result of local effects of EPA and PAM on adipose tissue.
Collapse
Affiliation(s)
- Michal Mazaki-Tovi
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Steven R Bolin
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Patricia A Schenck
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
High Fat Diet with a High Monounsaturated Fatty Acid and Polyunsaturated/Saturated Fatty Acid Ratio Suppresses Body Fat Accumulation and Weight Gain in Obese Hamsters. Nutrients 2017; 9:nu9101148. [PMID: 29048361 PMCID: PMC5691764 DOI: 10.3390/nu9101148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the effect of a high fat diet with experimental oil consisting of 60% MUFAs (monounsaturated fatty acids) with a P/S ratio of 5 on fat deposition and lipid metabolism in obese hamsters. Hamsters were randomly assigned to a control group and a diet-induced obesity group for nine weeks. Then an additional eight-week experimental period began, during which obese hamsters were randomly divided into three groups and fed different amounts of the experimental oil mixture in their diets as follows: 5%, 15%, and 20% w/w (OB-M5, OB-M15, and OB-M20 groups, respectively). The results showed that the OB-M15 and OB-M20 groups had significantly lower blood cholesterol and higher insulin levels. Compared to the control group, the three obese groups exhibited higher hepatic fatty acid synthase activity; however, the acyl-CoA oxidase activities were also enhanced. Although dietary fat content differed, there were no differences in energy intake, final body weights, and epididymal fat weights among the four groups. These results suggest that regardless of whether the specimens had a high fat intake or not, dietary fat containing high MUFAs with a high P/S ratio had beneficial effects on maintaining blood lipid profiles and may not result in body fat accumulation in obese hamsters, possibly by promoting lipolytic enzyme activities.
Collapse
|
10
|
Dietary Fatty Acid Composition Modulates Obesity and Interacts with Obesity-Related Genes. Lipids 2017; 52:803-822. [DOI: 10.1007/s11745-017-4291-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
|
11
|
Barbosa MMDAL, Damasceno NRT. The benefits of ω-3 supplementation depend on adiponectin basal level and adiponectin increase after the supplementation: A randomized clinical trial. Nutrition 2017; 34:7-13. [DOI: 10.1016/j.nut.2016.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
|
12
|
Prostek A, Gajewska M, Bałasińska B. The influence of eicosapentaenoic acid and docosahexaenoic acid on expression of genes connected with metabolism and secretory functions of ageing 3T3-L1 adipocytes. Prostaglandins Other Lipid Mediat 2016; 125:48-56. [DOI: 10.1016/j.prostaglandins.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/29/2022]
|
13
|
The pro-/anti-inflammatory effects of different fatty acids on visceral adipocytes are partially mediated by GPR120. Eur J Nutr 2016; 56:1743-1752. [DOI: 10.1007/s00394-016-1222-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022]
|
14
|
Ferreira PS, Spolidorio LC, Manthey JA, Cesar TB. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet. Food Funct 2016; 7:2675-81. [PMID: 27182608 DOI: 10.1039/c5fo01541c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The flavanones hesperidin, eriocitrin and eriodictyol were investigated for their prevention of the oxidative stress and systemic inflammation caused by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high-fat diet supplemented with hesperidin, eriocitrin or eriodictyol for a period of four weeks. Hesperidin, eriocitrin and eriodictyol increased the serum total antioxidant capacity, and restrained the elevation of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and C-reactive protein (hs-CRP). In addition, the liver TBARS levels and spleen mass (g per kg body weight) were lower for the flavanone-treated mice than in the unsupplemented mice. Eriocitrin and eriodictyol reduced TBARS levels in the blood serum, and hesperidin and eriodictyol also reduced fat accumulation and liver damage. The results showed that hesperidin, eriocitrin and eriodictyol had protective effects against inflammation and oxidative stress caused by high-fat diet in mice, and may therefore prevent metabolic alterations associated with the development of cardiovascular diseases in other animals.
Collapse
Affiliation(s)
- Paula S Ferreira
- Faculdade de Ciências Farmacêuticas, UNESP Univ Estadual Paulista, Campus Araraquara, Departamento de Alimentos e Nutrição, Rodovia Araraquara - Jau, km 1, Araraquara, SP 14802-901, Brazil.
| | | | | | | |
Collapse
|
15
|
Dornellas APS, Watanabe RLH, Pimentel GD, Boldarine VT, Nascimento CMO, Oyama LM, Ghebremeskel K, Wang Y, Bueno AA, Ribeiro EB. Deleterious effects of lard-enriched diet on tissues fatty acids composition and hypothalamic insulin actions. Prostaglandins Leukot Essent Fatty Acids 2015; 102-103:21-9. [PMID: 26525379 DOI: 10.1016/j.plefa.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023]
Abstract
Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.
Collapse
Affiliation(s)
- A P S Dornellas
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - R L H Watanabe
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - G D Pimentel
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - V T Boldarine
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - C M O Nascimento
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - L M Oyama
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - K Ghebremeskel
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | - Y Wang
- Department of Medicine, Division of Infectious Diseases, Section of Paediatrics, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - A A Bueno
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - E B Ribeiro
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil.
| |
Collapse
|
16
|
Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats. Nutr Diabetes 2015; 5:e184. [PMID: 26619368 PMCID: PMC4672355 DOI: 10.1038/nutd.2015.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 02/01/2023] Open
Abstract
Background/Objective: Dietary fat sources modulate fasting serum concentration of adipokines, particularly adiponectin. However, previous studies utilized obese animals in which adipose tissue function is severely altered. Thus, the present study aimed to assess the postprandial regulation of adipokine secretion in nonobese rats that consumed high-fat diet (HFD) composed of different types of fat for a short time. Methods: The rats were fed a control diet or a HFD containing coconut, safflower or soybean oil (rich in saturated fatty acid, monounsaturated fatty acid or polyunsaturated fatty acid, respectively) for 21 days. The serum concentrations of adiponectin, leptin, retinol, retinol-binding protein-4 (RBP-4), visfatin and resistin were determined at fasting and after refeeding. Adiponectin multimerization and intracellular localization, as well as the expression of endoplasmic reticulum (ER) chaperones and transcriptional regulators, were evaluated in epididymal white adipose tissue. Results: In HFD-fed rats, serum adiponectin was significantly decreased 30 min after refeeding. With coconut oil, all three multimeric forms were reduced; with safflower oil, only the high-molecular-weight (HMW) and medium-molecular-weight (MMW) forms were decreased; and with soybean oil, only the HMW form was diminished. These reductions were due not to modifications in mRNA abundance or adiponectin multimerization but rather to an increment in intracellular localization at the ER and plasma membrane. Thus, when rats consumed a HFD, the type of dietary fat differentially affected the abundance of endoplasmic reticulum resident protein 44 kDa (ERp44), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ (PPARγ) mRNAs, all of which are involved in the post-translational processing of adiponectin required for its secretion. Leptin, RBP-4, resistin and visfatin serum concentrations did not change during fasting, whereas modest alterations were observed after refeeding. Conclusions: The short-term consumption of a HFD affected adiponectin localization in adipose tissue, thereby decreasing its secretion to a different magnitude depending on the dietary fat source. Evaluating the fasting serum concentration of adipokines was not sufficient to identify alterations in their secretion, whereas postprandial values provided additional information as dynamic indicators.
Collapse
|
17
|
Turner PA, Tang Y, Weiss SJ, Janorkar AV. Three-dimensional spheroid cell model of in vitro adipocyte inflammation. Tissue Eng Part A 2015; 21:1837-47. [PMID: 25781458 DOI: 10.1089/ten.tea.2014.0531] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To improve treatment of obesity, a contributing factor to multiple systemic and metabolic diseases, a better understanding of metabolic state and environmental stress at the cellular level is essential. This work presents development of a three-dimensional (3D) in vitro model of adipose tissue displaying induced lipid accumulation as a function of fatty acid supplementation that, subsequently, investigates cellular responses to a pro-inflammatory stimulus, thereby recapitulating key stages of obesity progression. Three-dimensional spheroid organization of adipose cells was induced by culturing 3T3-L1 mouse preadipocytes on an elastin-like polypeptide-polyethyleneimine (ELP-PEI)-coated surface. Results indicate a more differentiated phenotype in 3D spheroid cultures relative to two-dimensional (2D) monolayer analogues based on triglyceride accumulation, CD36 and CD40 protein expression, and peroxisome proliferator-activated receptor-γ (PPAR-γ) and adiponectin mRNA expression. The 3T3-L1 adipocyte spheroid model was then used to test the effects of a pro-inflammatory microenvironment, namely maturation in the presence of elevated fatty acid levels followed by acute exposure to tumor necrosis factor alpha (TNF-α). Under these conditions, we demonstrate that metabolic function was reduced across all cultures exposed to TNF-α, especially so when pre-exposed to linoleic acid. Further, in response to TNF-α, enhanced lipolysis, monitored as increased extracellular glycerol and fatty acids levels, was observed in adipocytes cultured in the presence of exogenous fatty acids. Taken together, our 3D spheroid model showed enhanced adipogenic differentiation and presents a platform for elucidating the key phenotypic responses that occur in pro-inflammatory microenvironments that characterize obesogenic states.
Collapse
Affiliation(s)
- Paul A Turner
- 1Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yi Tang
- 2Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Stephen J Weiss
- 2Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Amol V Janorkar
- 1Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
18
|
Wójcik C, Lohe K, Kuang C, Xiao Y, Jouni Z, Poels E. Modulation of adipocyte differentiation by omega-3 polyunsaturated fatty acids involves the ubiquitin-proteasome system. J Cell Mol Med 2015; 18:590-9. [PMID: 24834523 PMCID: PMC4000111 DOI: 10.1111/jcmm.12194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have evaluated the effects of three different omega-3 polyunsaturated fatty acids (ω-3 PUFAs) – docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) on fat accumulation and expression of adipogenic and inflammatory markers using both 3T3-L1 pre-adipocytes and differentiated 3T3-L1 adipocytes. Our results indicate that ω-3 PUFAs induce the degradation of fatty acid synthase through the ubiquitin-proteasome system, which is likely to have beneficial metabolic effect on adipose cells. Omega-3 PUFAs also increase overall levels of polyubiquitinated proteins, at least in part through decreasing the expression of proteasome subunits. Moreover, adipocytes are resistant to proteasome inhibition, which induces adipophilin while decreasing perilipin expression. On the other hand, ω-3 PUFAs decrease expression of SREBP1 while inducing expression of adipophilin and GLUT4. Moreover, all three ω-3 PUFAs appear to induce tumour necrosis factor-α without affecting NFκB levels. All three ω-3 PUFAs appear to have overall similar effects. Further research is needed to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Cezary Wójcik
- Department of Family Medicine, Oregon Health and Science UniversityPortland, OR, USA
- IU School of MedicineEvansville, IN, USA
- *Correspondence to: Cezary WÓJCIK, Department of Family Medicine, Oregon Health and Science University – Gabriel Park Clinic, MailCode: FM-GP, 4411 SW Vermont Street, Portland, OR 97291, USA., Tel.: +1-503-494-1997, Fax: +1-503-494-1967, E-mail:
| | - Kimberly Lohe
- IU School of MedicineEvansville, IN, USA
- Mead Johnson NutritionEvansville, IN, USA
| | - Chenzhong Kuang
- IU School of MedicineEvansville, IN, USA
- Mead Johnson NutritionEvansville, IN, USA
| | - Yan Xiao
- IU School of MedicineEvansville, IN, USA
- Mead Johnson NutritionEvansville, IN, USA
| | | | - Eduard Poels
- Mead Johnson NutritionEvansville, IN, USA
- DSM Nutritional ProductsColumbia, MD, USA
| |
Collapse
|
19
|
Jashni HK, Mohebbi H, Delpasand A, Jahromy HK. Caloric restriction and exercise training, combined, not solely improve total plasma adiponectin and glucose homeostasis in streptozocin-induced diabetic rats. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-014-0212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Da Silva MS, Rudkowska I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res 2015; 59:1249-63. [DOI: 10.1002/mnfr.201400569] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Marine S. Da Silva
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| | - Iwona Rudkowska
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| |
Collapse
|
21
|
Oh PC, Koh KK, Sakuma I, Lim S, Lee Y, Lee S, Lee K, Han SH, Shin EK. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int J Cardiol 2014; 176:696-702. [DOI: 10.1016/j.ijcard.2014.07.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/16/2014] [Accepted: 07/24/2014] [Indexed: 01/29/2023]
|
22
|
How Fatty Acids and Common Genetic Variants Together Affect the Inflammation of Adipose Tissue. CURRENT CARDIOVASCULAR RISK REPORTS 2014. [DOI: 10.1007/s12170-014-0411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
LC-MS/MS analysis of visceral and subcutaneous adipose tissue proteomes in young goats with focus on innate immunity and inflammation related proteins. J Proteomics 2014; 108:295-305. [PMID: 24911890 DOI: 10.1016/j.jprot.2014.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
UNLABELLED The endocrine role of adipose tissue and its involvement in several physiological and pathological processes are well recognized. Studies on human, mouse and rat adipose tissues have made clear that subcutaneous and visceral deposits play different roles, which is also reflected by different protein and gene expression patterns. In ruminants, fat tissues play important biological roles not only for animal health, but also for quality and gain in meat and milk production. Yet very few studies have explored the ruminant adipose tissue proteomes. The aim of our study was to compare subcutaneous and visceral adipose tissues of goat, focusing on proteins involved in immune and inflammatory response. A 2-D LC-MS/MS approach followed by cluster analysis shows a clear distinction between subcutaneous and visceral fat tissue proteomes, and qualitative RT-PCR based analysis of 30 potential adipokines further confirmed the individual expression patterns of 26 of these, including 7 whose mRNA expression was observed for the first time in adipose tissues. This study provides a first description of adipose tissue proteomes in goat, and presents observations on novel proteins related to metabolic and inflammatory pathways. The mass spectrometry data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000564. BIOLOGICAL SIGNIFICANCE The proteomic analysis of different subcutaneous and visceral adipose tissue deposits showed tissue specific differences in protein expressions of well known as well as novel adipokines. This highlights the importance of sampling site when studying adipose tissue's metabolic roles. The protein expression characteristics of adipose tissues was evaluated by quantitative RT-PCR, and confirmed that adipose tissues play a central role in controlling inflammation, detoxification and coagulation pathways, as well as regulation of body fat mobilization in dairy animals. These findings are of particular interest in farm animals where health and production traits are important for animal welfare and for economic gains.
Collapse
|
24
|
Singh SP, Häussler S, Heinz JFL, Akter SH, Saremi B, Müller U, Rehage J, Dänicke S, Mielenz M, Sauerwein H. Lactation driven dynamics of adiponectin supply from different fat depots to circulation in cows. Domest Anim Endocrinol 2014; 47:35-46. [PMID: 24462180 DOI: 10.1016/j.domaniend.2013.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022]
Abstract
Adipose tissue (AT) depots are heterogeneous in terms of morphology and adipocyte metabolism. Adiponectin, one of the most abundant adipokines, is known for its insulin sensitizing effects and its role in glucose and lipid metabolism. Little is known about the presence of adiponectin protein in visceral (vc) and subcutaneous (sc) AT depots. We assessed serum adiponectin and adiponectin protein concentrations and the molecular weight forms in vc (mesenterial, omental, and retroperitoneal) and sc (sternum, tail-head, and withers) AT of primiparous dairy cows during early lactation. Primiparous German Holstein cows (n = 25) were divided into a control (CON) and a conjugated linoleic acid (CLA) group. From day 1 of lactation until slaughter, CLA cows were fed 100 g of a CLA supplement/d (approximately 6% of cis-9, trans-11 and trans-10, cis-12 isomers each), whereas the CON cows received 100 g of a fatty acid mixture/d instead of CLA. Blood samples from all animals were collected from 3 wk before calving until slaughter on day 1 (n = 5, CON cows), 42 (n = 5 each of CON and CLA cows), and 105 (n = 5 each of CON and CLA cows) of lactation when samples from different AT depots were obtained. Adiponectin was measured in serum and tissue by ELISA. In all AT depots adiponectin concentrations were lowest on day 1 than on day 42 and day 105, and circulating adiponectin reached a nadir around parturition. Retroperitoneal AT had the lowest adiponectin concentrations; however, when taking total depot mass into consideration, the portion of circulating adiponectin was higher in vc than sc AT. Serum adiponectin was positively correlated with adiponectin protein concentrations but not with the mRNA abundance in all fat depots. The CLA supplementation did not affect adiponectin concentrations in AT depots. Furthermore, inverse associations between circulating adiponectin and measures of body condition (empty body weight, back fat thickness, and vc AT mass) were observed. In all AT depots at each time, adiponectin was present as high (approximately 300 kDa) and medium (approximately 150 kDa) molecular weight complexes similar to that of the blood serum. These data suggest differential contribution of AT depots to circulating adiponectin.
Collapse
Affiliation(s)
- S P Singh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - S Häussler
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| | - J F L Heinz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - S H Akter
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - B Saremi
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - U Müller
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - J Rehage
- Clinic for Cattle, University of Veterinary Medicine, D-30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - M Mielenz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
25
|
Mohamed S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2013.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Prostek A, Gajewska M, Kamola D, Bałasińska B. The influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation. Lipids Health Dis 2014; 13:3. [PMID: 24387137 PMCID: PMC3903018 DOI: 10.1186/1476-511x-13-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND EPA and DHA have been reported to have anti-obesity and anti-inflammatory properties. Recent studies revealed that these positive actions of n-3 PUFA at least partially are connected with their influence on metabolism and secretory functions of the adipose tissue. However, their impact on old adipocytes is still poorly understood. Therefore the aim of the present study was to evaluate the influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation. METHODS Young, mature and old differentiated 3T3-L1 adipocytes were cultured for 48 h in the presence of 100 μM EPA, or 50 μM DHA complexed to albumin, whereas in control conditions only albumin was added to the medium. The Oil Red O staining was used to confirm adipocytes differentiation, and measure triglycerides content in cells. The concentration of adipokines (interleukin 6, adiponectin and leptin) in conditioned media was measured using mouse-specific ELISA kits. RESULTS The fat accumulation in 3T3-L1 adipocytes was positively correlated with their age; however, EPA and DHA did not affect lipid accumulation on any stage of maturation. EPA and DHA increased the concentration of secreted adiponectin when compared with control, but only in the case of young adipocytes (58% and 35%, respectively). Moreover, EPA supplementation increased interleukin 6 concentration in conditioned medium, while DHA exerted an opposite effect on all stages of cellular maturation. Furthermore, EPA treatment increased leptin release from young cells, while DHA did not affect the secretion of this adipokine. In mature 3T3-L1 adipocytes both experimental factors decreased synthesis of leptin; however, in old cells no impact of these PUFA was noted. CONCLUSIONS In summary, age is an important determinant of fat accumulation in adipocytes and affects adipokines secretion by these cells. Moreover, the impact of investigated fatty acids: EPA and DHA on fat cells varies depending on the stage of maturation, and seems to be stronger in young cells than in mature and old ones. Docosahexaenoic acid exerts an anti-inflammatory action; however, on the basis of the obtained data it was not possible to determine whether eicosapentaenoic acid shows anti- or pro-inflammatory properties.
Collapse
Affiliation(s)
- Adam Prostek
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | | | | | | |
Collapse
|
27
|
|
28
|
Neville MM, Geppert J, Min Y, Grimble G, Crawford MA, Ghebremeskel K. Dietary fat intake, body composition and blood lipids of university men and women. Nutr Health 2013; 21:173-85. [PMID: 23533205 DOI: 10.1177/0260106012467242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cardiovascular disease rates are high in the U.K., particular in men, and are related to dietary fat intake. We conducted a pilot study to investigate relationships between saturated and unsaturated dietary fat intakes, body composition and blood lipid parameters in Caucasian men and women at university. METHODS Volunteers (52 men and 52 women; age range 20-50 years) were recruited from staff and students of London Metropolitan University. Dietary intake, body composition, blood pressure and fasting blood glucose and lipids were assessed. Gender differences between the measured variables and their relationships were assessed by Mann-Whitney U-test, and by multi-linear (stepwise) regression, respectively. RESULTS Men consumed more saturated fat (29.5 vs. 20.5 g/day, p < 0.001), and had elevated levels of glucose (5.34 + 0.74 vs. 4.85 + 0.49 mmol/l, p < 0.001), low-density lipoprotein (LDL) cholesterol (2.99 + 1.5 vs. 2.62+ 0.74 mmol/l, p < 0.05), systolic blood pressure (126.4 + 11.0 vs. 112.6 + 17.2 mm/Hg, p < 0.001), and lower high-density lipoprotein (HDL) cholesterol (1.41 ± 0.34 vs. 1.83 ± 0.43, p < 0.001). Saturated fat was positively associated with total body fat ( p < 0.05), trunk fat ( p < 0.001), HDL cholesterol ( p < 0.05) and systolic blood pressure ( p < 0.001) in women, while in men docosahexaenoic acid and total cholesterol ( p < 0.05), total omega-3 fatty acids and LDL cholesterol ( p < 0.001), total omega-3 fatty acids and triglycerides ( p < 0.01) were positively related. Similar n-3 fatty acid intakes were reported in nutritionally aware students and other university subjects. CONCLUSIONS The data of this study indicate gender-related differences in response to dietary fat, and widespread low compliance with n-3 fatty acid recommendations. Although the men are highly health conscious and physically active, their blood lipid levels are indicative of a risk of cardiovascular disease. In addition to enhanced nutritional education to increase seafood intakes in this age group of men and women, customised dietary and lifestyle advice may be required in the men.
Collapse
Affiliation(s)
- Marita M Neville
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, London, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Comparative cardiometabolic effects of fibrates and omega-3 fatty acids. Int J Cardiol 2013; 167:2404-11. [DOI: 10.1016/j.ijcard.2013.01.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/18/2013] [Indexed: 12/20/2022]
|
30
|
Effects of a diet enriched with polyunsaturated, saturated, or trans fatty acids on cytokine content in the liver, white adipose tissue, and skeletal muscle of adult mice. Mediators Inflamm 2013; 2013:594958. [PMID: 24027356 PMCID: PMC3762081 DOI: 10.1155/2013/594958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/18/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023] Open
Abstract
This study analyzed the effect of diet enriched with 30% lipids on cytokines content in different tissues. Swiss male mice were distributed into four groups treated for 8 weeks with control (C, normolipidic diet); soybean oil (S); lard (L); and hydrogenated vegetable fat (H). We observed an increase in carcass fat in groups S and L, and the total amount of fatty deposits was only higher in group L compared with C group. The serum levels of free fatty acids were lower in the L group, and insulin, adiponectin, lipid profile, and glucose levels were similar among the groups. IL-10 was lower in group L in mesenteric and retroperitoneal adipose tissues. H reduced IL-10 only in retroperitoneal adipose tissue. There was an increase in IL-6 in the gastrocnemius muscle of the L group, and a positive correlation between TNF-α and IL-10 was observed in the livers of groups C, L, and H and in the muscles of all groups studied. The results suggested relationships between the quantity and quality of lipids ingested with adiposity, the concentration of free fatty acids, and cytokine production in white adipose tissue, gastrocnemius muscle, and liver.
Collapse
|
31
|
Tishinsky JM, De Boer AA, Dyck DJ, Robinson LE. Modulation of visceral fat adipokine secretion by dietary fatty acids and ensuing changes in skeletal muscle inflammation. Appl Physiol Nutr Metab 2013; 39:28-37. [PMID: 24383504 DOI: 10.1139/apnm-2013-0135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the link between obesity and insulin resistance, the role of adipose-derived factors in communicating with skeletal muscle to affect its function is important. We sought to determine if high fat diets modulate visceral adipose tissue (VAT) adipokines with subsequent effects on skeletal muscle inflammation and insulin sensitivity. Rats were fed (i) low fat (LF), (ii) high saturated fatty acid (SFA), or (iii) high SFA with n-3 polyunsaturated fatty acid (SFA/n-3 PUFA) diets for 4 weeks. VAT-derived adipokines were measured in adipose conditioned medium (ACM) after 72 h. Next, skeletal muscles from LF-fed rats were incubated for 8 h in (i) control buffer (CON), (ii) CON with 2 mmol·L(-1) palmitate (PALM, positive control), (iii) ACM from LF, (iv) ACM from SFA, or (v) ACM from SFA/n-3 PUFA. ACM from rats fed SFA and SFA/n-3 PUFA had increased (P ≤ 0.05) interleukin-6 (IL-6) (+31%) and monocyte chemoattractant protein-1 (MCP-1) (+30%). Adiponectin was decreased (-29%, P ≤ 0.05) in ACM from SFA, and this was prevented in SFA/n-3 PUFA ACM. Toll-like receptor 4 (TLR4) gene expression was increased (P ≤ 0.05) in PALM soleus muscle (+356%) and all ACM groups (+175%-191%). MCP-1 gene expression was elevated (P ≤ 0.05) in PALM soleus muscle (+163%) and soleus muscle incubated in ACM from animals fed SFA (+159%) and SFA/n-3 PUFA (+151%). Glucose transport was impaired (P ≤ 0.05) in PALM muscles but preserved in ACM groups. Acute exposure of muscle to fatty acid modulated adipokines affects skeletal muscle inflammatory gene expression but not insulin sensitivity.
Collapse
Affiliation(s)
- Justine M Tishinsky
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
32
|
The eicosapentaenoic acid metabolite 15-deoxy-δ(12,14)-prostaglandin J3 increases adiponectin secretion by adipocytes partly via a PPARγ-dependent mechanism. PLoS One 2013; 8:e63997. [PMID: 23734181 PMCID: PMC3666990 DOI: 10.1371/journal.pone.0063997] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/08/2013] [Indexed: 01/29/2023] Open
Abstract
The intake of ω-3 polyunsaturated fatty acids (PUFAs), which are abundant in marine fish meat and oil, has been shown to exert many beneficial effects. The mechanisms behind those effects are numerous, including interference with the arachidonic acid cascade that produces pro-inflammatory eicosanoids, formation of novel bioactive lipid mediators, and change in the pattern of secreted adipocytokines. In our study, we show that eicosapentaenoic acid (EPA) increases secreted adiponectin from 3T3-L1 adipocytes and in plasma of mice as early as 4 days after initiation of an EPA-rich diet. Using 3T3-L1 adipocytes, we report for the first time that 15-deoxy-δ12,14-PGJ3 (15d-PGJ3), a product of EPA, also increases the secretion of adiponectin. We demonstrate that the increased adiponectin secretion induced by 15d-PGJ3 is partially peroxisome proliferator-activated receptor-gamma (PPAR-γ)-mediated. Finally, we show that 3T3-L1 adipocytes can synthesize 15d-PGJ3 from EPA. 15d-PGJ3 was also detected in adipose tissue from EPA-fed mice. Thus, these studies provide a novel mechanism(s) for the therapeutic benefits of ω-3 polyunsaturated fatty acids dietary supplementation.
Collapse
|
33
|
Dietary fat quality in regular fat diets has minor effects on biomarkers of inflammation in obese Zucker rats. Eur J Nutr 2013; 53:211-9. [DOI: 10.1007/s00394-013-0518-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/18/2013] [Indexed: 01/17/2023]
|
34
|
Abstract
PURPOSE OF REVIEW Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) may be related to a number of chronic metabolic abnormalities, including metabolic syndrome. This review presents an update on the effects of n-3 PUFAs on risk factors of metabolic syndrome, especially adipose tissue inflammation, oxidative stress and underlying mechanisms of these effects. RECENT FINDINGS Anti-inflammatory actions of n-3 PUFAs are thought to be mediated by the formation of their active metabolites (eicosanoids and other lipid mediators) as well as their regulation of the production of inflammatory mediators (e.g., adipocytokines, cytokines) and immune cell infiltration into adipose tissue. n-3 PUFAs mediate these effects by modulating several pathways, such as those involving nuclear factor-κB, peroxisome proliferator-activated receptors and Toll-like receptors. The antioxidative effects of n-3 PUFAs in adipocytes appear to inhibit reactive oxygen species production and alter mitochondrial function. SUMMARY This review summarizes the evidence for beneficial effects of n-3 PUFAs on adipose tissue inflammation and oxidative stress. More studies are necessary to investigate the mechanisms underlying these effects and to relate this topic to human health.
Collapse
Affiliation(s)
- Chaonan Fan
- Key Laboratory of Major Disease in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
35
|
Arai T, Kim HJ, Hirako S, Nakasatomi M, Chiba H, Matsumoto A. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity. J Nutr Biochem 2013; 24:267-73. [DOI: 10.1016/j.jnutbio.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 12/22/2022]
|
36
|
Villaverde N, Galvis A, Marcano A, Priestap HA, Bennett BC, Barbieri MA. Saw palmetto ethanol extract inhibits adipocyte differentiation. J Nat Med 2012. [PMID: 23179316 DOI: 10.1007/s11418-012-0723-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.
Collapse
Affiliation(s)
- Nicole Villaverde
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
37
|
Colombo G, Bazzo M, Nogueira C, Colombo M, Schiavon L, d’Acampora A. A study on the short-term effect of cafeteria diet and pioglitazone on insulin resistance and serum levels of adiponectin and ghrelin. Braz J Med Biol Res 2012. [DOI: 10.1590/s0100879x2012007500117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- G. Colombo
- Universidade Federal de Santa Catarina, Brasil
| | - M.L. Bazzo
- Universidade Federal de Santa Catarina, Brasil
| | | | | | | | | |
Collapse
|
38
|
Fardin NM, Oyama LM, Campos RR. Changes in baroreflex control of renal sympathetic nerve activity in high-fat-fed rats as a predictor of hypertension. Obesity (Silver Spring) 2012; 20:1591-7. [PMID: 22257982 DOI: 10.1038/oby.2012.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is evidence that obesity is associated with increased sympathetic activity and hypertension. However, the mechanisms responsible for these changes are not fully understood. Therefore, the aim of the present study was to evaluate the cardiovascular function and the baroreceptor reflex control of renal sympathetic nerve activity (rSNA) in rats exposed to a high-fat diet over different periods (10 and 20 weeks) compared to control rats. Serum leptin levels were assessed for all time points. Male Wistar rats weighing 150-180 g were used. Four groups of rats were studied: control 10 weeks (Ct10), obese 10 weeks (Ob10), control 20 weeks (Ct20), and obese 20 weeks (Ob20). Blood pressure (BP) and rSNA were recorded in urethane-anesthetized rats (1.4 g/kg, intravenous).The sensitivity of rSNA responses to baroreceptor reflex was assessed by changes in BP induced by increasing doses of phenylephrine or sodium nitroprusside. Significant and progressive increases in serum leptin levels were found in the obese rats, but not in the control rats. No changes in basal BP or rSNA were found in the Ob10 and Ob20 groups; however, a significant impairment in the baroreceptor sensitivity was observed in the Ob20 group for phenylephrine (slope Ob20: -0.78 ± 0.12 vs. Ct20: -1.00 ± 0.08 potential per second (pps)/mm Hg, P < 0.05) and sodium nitroprusside (slope Ob20: -0.82 ± 0.09 vs. 1.13 ± 0.13 pps/mm Hg, P < 0.05). The results suggest that the baroreceptor dysfunction that controls the rSNA is an initial change in the obesity induced in high-fat-fed rats, which might be a predictor of sympathoexcitation and hypertension associated to obesity.
Collapse
Affiliation(s)
- Núbia M Fardin
- Departamento de Fisiologia, Disciplina de Fisiologia Cardiovascular e Respiratória, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
39
|
Yang X, Zhang Y, Lin J, Pen A, Ying C, Cao W, Mao L. A lower proportion of dietary saturated/monounsaturated/polyunsaturated fatty acids reduces the expression of adiponectin in rats fed a high-fat diet. Nutr Res 2012; 32:285-91. [PMID: 22575042 DOI: 10.1016/j.nutres.2011.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/12/2011] [Accepted: 12/30/2011] [Indexed: 11/18/2022]
Abstract
The role for the amount of different dietary fatty acids in regulating expression of adiponectin and metabolism of glucose and lipids has been implicated, but the optimal amount has not been established yet. To address this issue, we fed male Wistar rats with either chow diet or various high-fat diets (HFDs) for 12 weeks. The HFDs contained the same percentage of fat (35% energy from fat) but had different proportions of saturated/monounsaturated/polyunsaturated (S/M/P) (1:1.7:1.2, 1:1:1, 2:1.5:1, 1:2:1, or 1:1:2) fat. Glucose and lipid metabolism and adiponectin expression were subsequently examined. In comparison with chow diet, HFD with any proportion of S/M/P increased energy intake but had no obvious effect on body weight gain. The HFD with the S/M/P proportion at 1:1:1 or 1:1:2 significantly decreased the serum triglyceride level and increased the serum level of high-density lipoprotein cholesterol in comparison with the HFD with the S/M/P proportion at 1:1.7:1.2, 2:1.5:1, or 1:2:1. The HFD containing the highest level of saturated fatty acids (S/M/P proportion at 2:1.5:1) increased levels of total cholesterol, low-density lipoprotein cholesterol, and blood glucose. Levels of serum insulin and the homeostasis model assessment of insulin resistance index were significantly increased by HFD with S/M/P proportions at 1:1.7:1.2, 1:1:1, 2:1.5:1, or 1:2:1 but not by the HFD with the S/M/P proportions at 1:1:2 (containing the highest level of polyunsaturated fatty acids). Levels of adiponectin messenger RNA in subcutaneous and visceral adipose tissues were reduced by the HFD with the S/M/P proportion at 1:1.7:1.2 or 1:1:1 but increased by the HFD with the S/M/P proportion at 1:1:2. These changes in expression of adiponectin were inversely associated with those in levels of triglyceride, insulin, and homeostasis model assessment of insulin resistance. Together, the proportion of different fatty acids in diets plays an important role in expression of adiponectin and metabolism of glucose and lipids. Specifically, the proportion of S/M/P at 1:1:2 can promote expression of adiponectin, improve metabolism of glucose and lipids, and increase insulin sensitivity.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Neves VJ, Moura MJCS, Almeida BS, Costa R, Sanches A, Ferreira R, Tamascia ML, Romani EAO, Novaes PD, Marcondes FK. Chronic stress, but not hypercaloric diet, impairs vascular function in rats. Stress 2012; 15:138-48. [PMID: 21801080 DOI: 10.3109/10253890.2011.601369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate vascular and metabolic effects of chronic mild unpredictable stress (CMS) and hypercaloric diet (HD) without carbohydrate supplementation in rats. Male Sprague-Dawley rats were randomly assigned to four groups: Control, HD, CMS, and HD plus CMS. CMS consisted of the application of different stressors for 3 weeks. The rats were killed 15 days after CMS exposure. The HD group presented higher plasma lipid concentrations, without changes in fasting glucose concentration, glucose tolerance test, and vascular function and morphology, in comparison with the control group. Stressed rats presented higher fasting blood concentration of insulin, higher homeostasis model assessment index values and area under the curve in an oral glucose tolerance test, in comparison with non-stressed rats. CMS increased the plasma concentrations of corticosterone and lipids, and the atherogenic index values, without change in high-density lipoprotein level. CMS increased intima-media thickness and induced endothelium-dependent supersensitivity to phenylephrine, and lowered the relaxation response to acetylcholine in the thoracic aorta isolated from rats fed with control or HD, in comparison with non-stressed groups. CMS effects were independent of diet. In non-stressed rats, the HD induced dyslipidemia, but did not change glucose metabolism, vascular function, or morphology. The data from this study indicate that CMS promotes a set of events which together can contribute to impair function of the thoracic aorta.
Collapse
Affiliation(s)
- V J Neves
- Laboratory of Stress, Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tishinsky JM, Dyck DJ, Robinson LE. Lifestyle factors increasing adiponectin synthesis and secretion. VITAMINS AND HORMONES 2012; 90:1-30. [PMID: 23017710 DOI: 10.1016/b978-0-12-398313-8.00001-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adiponectin is an anti-inflammatory adipokine released from adipose tissue that is known to exert insulin-sensitizing effects in skeletal muscle and liver. Given that the secretion of adiponectin is impaired in obesity and related pathologies, strategies to enhance its synthesis and secretion are of interest. There is evidence that several lifestyle factors, including consumption of dietary long-chain n-3 PUFA, TZD administration, and weight loss can increase adiponectin synthesis and secretion. The effect of chronic exercise, independent of weight loss, is variable and less convincing. Potential mechanisms by which such lifestyle factors exert their favorable effects on adiponectin include activation of PPARγ and AMPK, regulation of posttranslational modifications, and changes in adipose tissue morphology and macrophage infiltration. As a clear role for adiponectin in mitigating obesity-related impairments in lipid metabolism and insulin sensitivity is evident, further research investigating factors that enhance adiponectin synthesis and secretion is distinctly warranted.
Collapse
Affiliation(s)
- Justine M Tishinsky
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
42
|
de Oliveira C, de Mattos ABM, Silva CBR, Mota JF, Zemdegs JCS. Nutritional and hormonal modulation of adiponectin and its receptors adipoR1 and adipoR2. VITAMINS AND HORMONES 2012; 90:57-94. [PMID: 23017712 DOI: 10.1016/b978-0-12-398313-8.00003-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adiponectin is the most abundant plasma protein synthesized mostly by adipose tissue and is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. Adiponectin effects are mediated via two receptors, adipoR1 and adipoR2. Several hormones and diet components that are involved in insulin resistance may impair insulin sensitivity at least in part by decreasing adiponectin and adiponectin receptors. Adiponectin expression and serum levels are associated with the amount and type of fatty acids and carbohydrate consumed. Other food items, such as vitamins, alcohol, sodium, green tea, and coffee, have been reported to modify adiponectin levels. Several hormones, including testosterone, estrogen, prolactin, glucocorticoids, catecholamines, and growth hormone, have been shown to inhibit adiponectin production, but the studies are still controversial. Even so, adiponectin is a potential therapeutic target in the treatment of diabetes mellitus and other diseases associated with hypoadiponectinemia.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, USA.
| | | | | | | | | |
Collapse
|
43
|
The multi-level action of fatty acids on adiponectin production by fat cells. PLoS One 2011; 6:e28146. [PMID: 22140527 PMCID: PMC3226650 DOI: 10.1371/journal.pone.0028146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/02/2011] [Indexed: 01/14/2023] Open
Abstract
Current epidemics of diabetes mellitus is largely caused by wide spread obesity. The best-established connection between obesity and insulin resistance is the elevated and/or dysregulated levels of circulating free fatty acids that cause and aggravate insulin resistance, type 2 diabetes, cardiovascular disease and other hazardous metabolic conditions. Here, we investigated the effect of a major dietary saturated fatty acid, palmitate, on the insulin-sensitizing adipokine adiponectin produced by cultured adipocytes. We have found that palmitate rapidly inhibits transcription of the adiponectin gene and the release of adiponectin from adipocytes. Adiponectin gene expression is controlled primarily by PPARγ and C/EBPα. Using mouse embryonic fibroblasts from C/EBPα-null mice, we have determined that the latter transcription factor may not solely mediate the inhibitory effect of palmitate on adiponectin transcription leaving PPARγ as a likely target of palmitate. In agreement with this model, palmitate increases phosphorylation of PPARγ on Ser273, and substitution of PPARγ for the unphosphorylated mutant Ser273Ala blocks the effect of palmitate on adiponectin transcription. The inhibitory effect of palmitate on adiponectin gene expression requires its intracellular metabolism via the acyl-CoA synthetase 1-mediated pathway. In addition, we found that palmitate stimulates degradation of intracellular adiponectin by lysosomes, and the lysosomal inhibitor, chloroquine, suppressed the effect of palmitate on adiponectin release from adipocytes. We present evidence suggesting that the intracellular sorting receptor, sortilin, plays an important role in targeting of adiponectin to lysosomes. Thus, palmitate not only decreases adiponectin expression at the level of transcription but may also stimulate lysosomal degradation of newly synthesized adiponectin.
Collapse
|
44
|
Kamath S, Chavez AO, Gastaldelli A, Casiraghi F, Halff GA, Abrahamian GA, Davalli AM, Bastarrachea RA, Comuzzie AG, Guardado-Mendoza R, Jimenez-Ceja LM, Mattern V, Paez AM, Ricotti A, Tejero ME, Higgins PB, Rodriguez-Sanchez IP, Tripathy D, DeFronzo RA, Dick EJ, Cline GW, Folli F. Coordinated defects in hepatic long chain fatty acid metabolism and triglyceride accumulation contribute to insulin resistance in non-human primates. PLoS One 2011; 6:e27617. [PMID: 22125617 PMCID: PMC3220682 DOI: 10.1371/journal.pone.0027617] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/20/2011] [Indexed: 01/07/2023] Open
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is characterized by accumulation of triglycerides (TG) in hepatocytes, which may also trigger cirrhosis. The mechanisms of NAFLD are not fully understood, but insulin resistance has been proposed as a key determinant.
Collapse
Affiliation(s)
- Subhash Kamath
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alberto O. Chavez
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amalia Gastaldelli
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Francesca Casiraghi
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Glenn A. Halff
- The UT Transplant Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Gregory A. Abrahamian
- The UT Transplant Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alberto M. Davalli
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Internal Medicine, Diabetes & Endocrinology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Raul A. Bastarrachea
- Southwest National Primate Research Center/Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Anthony G. Comuzzie
- Southwest National Primate Research Center/Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Rodolfo Guardado-Mendoza
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lilia M. Jimenez-Ceja
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Vicki Mattern
- Southwest National Primate Research Center/Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ana Maria Paez
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Andrea Ricotti
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Mary E. Tejero
- Southwest National Primate Research Center/Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Paul B. Higgins
- Southwest National Primate Research Center/Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Iram Pablo Rodriguez-Sanchez
- Southwest National Primate Research Center/Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Devjit Tripathy
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ralph A. DeFronzo
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Edward J. Dick
- Southwest National Primate Research Center/Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Gary W. Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Franco Folli
- Department of Medicine/Division of Diabetes. The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Internal Medicine, Diabetes & Endocrinology Unit, San Raffaele Scientific Institute, Milano, Italy
- * E-mail:
| |
Collapse
|
45
|
Acute pancreatitis in obesity: adipokines and dietary fish oil. Dig Dis Sci 2011; 56:2318-25. [PMID: 21347559 DOI: 10.1007/s10620-011-1626-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute pancreatitis is a substantial clinical problem accounting for 240,000 hospital admissions yearly in the United States. Obesity is epidemic and is clearly an independent risk factor for increased severity of acute pancreatitis (AP). Adipose tissue is an endocrine organ that secretes a variety of metabolically active substances termed adipokines. However, the role of adipokines in modulating acute pancreatitis severity remains incompletely understood. Dietary fish oil is rich in omega-3 free fatty acids and attenuates adipose tissue-induced inflammation. Therefore, we hypothesized that feeding obese mice diets rich in fish oil would alter the adipokine milieu and attenuate the severity of pancreatitis. METHODS Lean (C57BL/6 J) and obese (LepDb) mice were fed either a soybean oil- or fish oil-rich diet for 4 weeks. AP was induced by six hourly intraperitoneal injections of cerulein (50 μg/kg). Serum adipokine levels were measured, and pancreatitis severity was assessed histologically and by measuring pancreatic concentrations of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), myleoperoxidase (MPO), and monocyte chemoattractant protein-1 (MCP-1). RESULTS Obese mice developed more severe pancreatitis than lean mice. Fish oil significantly decreased serum leptin (lean and obese) and increased serum adiponectin (lean only). Fish oil did not alter the baseline pancreatic inflammatory milieu, nor did it change histologic or biochemical pancreatitis severity. CONCLUSION These data demonstrate that a diet rich in fish oil altered the adipokine milieu in lean and congenitally obese mice; however, fish oil did not improve pancreatitis severity induced with cerulein hyperstimulation.
Collapse
|
46
|
Garekani ET, Mohebbi H, Kraemer RR, Fathi R. Exercise training intensity/volume affects plasma and tissue adiponectin concentrations in the male rat. Peptides 2011; 32:1008-12. [PMID: 21291933 DOI: 10.1016/j.peptides.2011.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 01/05/2023]
Abstract
The objective of the study was to determine the effects of exercise training intensity/volume on plasma total and high molecular weight (HMW) adiponectin and tissue total adiponectin concentrations. Thirty-two, eight week-old male Wistar rats (185 ± 5g) were randomly assigned to one of four groups: high intensity (HI: 34 m/min ∼%80-%85 VO(2)max), moderate intensity (MI: 28 m/min ∼%70-%75 VO(2)max), low intensity (LI: 20 m/min ∼ %50-%55 VO(2)max), and sedentary control (SED). Experimental groups completed a 12-week exercise program of treadmill running at 0° slope, 1h/day, 5 days/week. Since frequency and duration of exercise were identical among training groups, the volume of training was highest in the HI group followed by the MI and LI groups. Compared with SED animals, fasting plasma total and HMW adiponectin and adipose tissue total adiponectin concentrations were significantly higher in the HI and MI groups, but total adiponectin concentrations in liver and soleus muscle were not significantly lower than the SED rats. There were significantly lower plasma total testosterone levels in the HI group vs. SED group. Plasma total and HMW adiponectin were negatively correlated with HOMA-IR and insulin whereas total adiponectin was inversely related to TNF-α and HMW adiponectin was negatively correlated with total testosterone. Thus, data suggest there is a dose effect for exercise training intensity and accompanying volume for the adaptation of adipose tissue and circulating total and HMW adiponectin concentrations, whereas the changes of adiponectin concentrations in skeletal muscle and liver tissue may depend on the body's energy balance in the recovery period.
Collapse
Affiliation(s)
- Elahe Talebi Garekani
- Department of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
| | | | | | | |
Collapse
|
47
|
Lira FS, Rosa JC, Cunha CA, Ribeiro EB, do Nascimento CO, Oyama LM, Mota JF. Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation. Lipids Health Dis 2011; 10:37. [PMID: 21352586 PMCID: PMC3050762 DOI: 10.1186/1476-511x-10-37] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/27/2011] [Indexed: 02/07/2023] Open
Abstract
Background It is well known that high fat diets (HFDs) induce obesity and an increase in proinflammatory adipokines. Interleukin-6 (IL-6) is considered the major inflammatory mediator in obesity. Obesity is associated with a vitamin deficiency, especially of vitamins E and D3. We examined the effects of vitamin D3 and vitamin E supplementation on levels of IL-6 and IL-10 (as a marker of anti-inflammatory cytokines since, a balance between pro- and anti-inflammatory cytokines is maintained) protein expression in adipose tissue of mice provided with an HFD. Additionally, we measured the effects of vitamin E and vitamin D3 treatment on LPS-stimulated 3T3-L1 adipocytes IL-6 and IL-10 secretion. Results IL-6 protein levels and the IL-6/IL-10 ratio were decreased in epididymal white adipose tissue in groups receiving vitamins E and D3 supplementation compared to the HFD group. A 24-hour treatment of vitamin D3 and vitamin E significantly reduced the IL-6 levels in the adipocytes culture medium without affecting IL-10 levels. Conclusions Vitamin D3 and vitamin E supplementation in an HFD had an anti-inflammatory effect by decreasing IL-6 production in epididymal adipose tissue in mice and in 3T3-L1 adipocytes stimulated with LPS. Our results suggest that vitamin E and D3 supplementation can be used as an adjunctive therapy to reduce the proinflammatory cytokines present in obese patients.
Collapse
Affiliation(s)
- Fábio S Lira
- Departamento de Fisiologia, Universidade Federal de São Paulo, Brasil
| | | | | | | | | | | | | |
Collapse
|
48
|
Tishinsky JM, Ma DWL, Robinson LE. Eicosapentaenoic acid and rosiglitazone increase adiponectin in an additive and PPARγ-dependent manner in human adipocytes. Obesity (Silver Spring) 2011; 19:262-8. [PMID: 20814411 DOI: 10.1038/oby.2010.186] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adiponectin, an anti-inflammatory and insulin-sensitizing protein secreted from adipose tissue, may be modulated by dietary fatty acids, although the mechanism is not fully known. Our objective was to investigate the effect of long-chain n-3 polyunsaturated fatty acids (PUFAs) on adiponectin in cultured human adipocytes, and to elucidate the role of peroxisome proliferator-activated receptor-γ (PPARγ) in this regulation. Isolated human adipocytes were cultured for 48 h with 100 µmol/l eicosapentaenoic acid (C20:5n-3, EPA), docosahexaenoic acid (C22:6n-3, DHA), palmitic acid (C16:0), 100 µmol/l EPA plus 100 µmol/l DHA, or bovine serum albumin (control). Additionally, adipocytes were treated for 48 h with a PPARγ antagonist (BADGE) or agonist (rosiglitazone) in isolation or in conjunction with either EPA or DHA. At 48 h, EPA and DHA increased (P < 0.05) adiponectin secretion by 88 and 47%, respectively, while EPA, but not DHA, also increased (136%, P < 0.001) cellular adiponectin protein. Interestingly, PPARγ antagonism completely abolished the DHA-mediated increase in secreted adiponectin, but only partially attenuated the EPA-mediated response. Thus, EPA's effects on adiponectin do not appear to be entirely PPARγ mediated. Rosiglitazone increased (P < 0.001) the secreted and cellular adiponectin protein (90 and 582%, respectively). Finally, the effects of EPA and rosiglitazone on adiponectin secretion were additive (+230% at 48 h combined, compared to 121 and 124% by EPA or rosiglitazone alone, respectively). Overall, our findings emphasize the therapeutic importance of long-chain n-3 PUFA alone, or in combination with a PPARγ agonist, as a stimulator of adiponectin, a key adipokine involved in obesity and related diseases.
Collapse
Affiliation(s)
- Justine M Tishinsky
- Department of Human Health and Nutritional Sciences, Animal Science and Nutrition Building, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
49
|
de Oliveira C, de Mattos ABM, Biz C, Oyama LM, Ribeiro EB, do Nascimento CMO. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations. Lipids Health Dis 2011; 10:11. [PMID: 21244702 PMCID: PMC3031255 DOI: 10.1186/1476-511x-10-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. RESULTS Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose tissue and reduced adipoR2 mRNA expression 2-fold in liver. CONCLUSION Hyperglycemia as a result of a high-fat diet is associated with an increase in the expression of the adiponectin receptors in muscle. An excess of glucocorticoids, rather than their absence, increase glucose and insulin and decrease adiponectin levels.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
It is now recognized that the low-grade inflammation observed with obesity is associated with the development of a wide range of downstream complications. As such, there is considerable interest in elucidating the regulatory mechanisms underlying the production of inflammatory molecules to improve the prevention and treatment of obesity and its co-morbidities. White adipose tissue is no longer considered a passive reservoir for storing lipids, but rather an important organ influencing energy metabolism, insulin sensitivity and inflammation by the secretion of proteins, commonly referred to as adipokines. Dysregulation of several adipokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and adiponectin, contributes to the low-grade inflammation that is a hallmark of obesity. Evidence now suggests that fatty acids represent a class of molecules that can modulate adipokine production, thereby influencing inflammatory status. Although the precise molecular mechanisms by which dietary fats regulate adipokine production remain unclear, recent findings indicate that diet-gene interactions may have an important role in the transcriptional and secretory regulation of adipokines. Single-nucleotide polymorphisms in the genes encoding TNF-α, IL-6 and adiponectin can modify circulating levels of these adipokines and, subsequently, obesity-related phenotypes. This genetic variation can also alter the influence of dietary fatty acids on adipokine production. Therefore, the current review will show that it is paramount to consider both genetic information and dietary fat intake to unravel the inter-individual variability in inflammatory response observed in intervention protocols targeting obesity.
Collapse
Affiliation(s)
- C Stryjecki
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|