1
|
Fu J, Mansfield C, Diakonov I, Judina A, Delahaye M, Bhogal N, Sanchez-Alonso JL, Kamp T, Gorelik J. Stretch regulation of β2-Adrenoceptor signalling in cardiomyocytes requires caveolae. Cardiovasc Res 2025; 121:440-453. [PMID: 39945052 PMCID: PMC12038227 DOI: 10.1093/cvr/cvae265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/25/2024] [Accepted: 11/03/2024] [Indexed: 04/30/2025] Open
Abstract
AIMS Caveolin-3 is essential for the formation of caveolae in cardiomyocytes. Caveolar microdomains have been shown to regulate the distribution of signalling proteins such as beta-adrenoceptors (βAR) and may act as membrane reserves to protect the cell from damage during the mechanical stretch. Myocardial stretch occurs during haemodynamic overload and may be normal (e.g. exercise) or pathological (e.g. heart failure); therefore, it is important to understand the effect of stretch on signalling pathways associated with mechanosensitive structures, such as caveolae. In this study, we investigate the role of caveolae in regulating the effect of stretch on βAR-signalling. METHODS AND RESULTS We used osmotic swelling of isolated rat ventricular cardiomyocytes as a method to stretch the cell membrane and investigate the effect of βAR stimulation on cyclic adenosine monophosphate (cAMP) activity and contractility. βAR response was measured using a Förster Resonance Energy Transfer reporter for the second messenger cAMP and using CytoCypher for the measurement of cell contractility. β1AR and β2AR blockers were used to selectively allow stimulation of β2AR and β1AR, respectively. We also investigated the effect of stretch on βAR response to isoprenaline stimulation in left ventricular trabeculae dissected from control and cardiac-specific caveolin-3 knock-out mice (Cav3KO). Stretching trabeculae produces increased baseline adenylyl cyclase activity and a higher level of cAMP and a greater β2AR-induced positive inotropy after stimulation of the β2AR but not β1AR, by isoprenaline. Similar findings were confirmed for isolated myocytes subjected to hypoosmotic conditions. In isolated cardiomyocytes, caveolae depletion using methyl-beta-cyclodextrin or Cav3KO abolished the increase in β2AR response induced by stretch. CONCLUSION Our study reveals a stretch-regulation of the β2AR signalling pathway, which requires functional caveolae. This indicates caveolae are mechanosensitive membrane domains that undergo structural and functional changes in response to stretch, thus leading to mechanical regulation of caveolae-associated signalling pathways.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Caveolae/metabolism
- Caveolae/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Caveolin 3/genetics
- Caveolin 3/metabolism
- Caveolin 3/deficiency
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Mechanotransduction, Cellular/drug effects
- Cyclic AMP/metabolism
- Male
- Mice, Knockout
- Myocardial Contraction/drug effects
- Mice
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Cells, Cultured
- Rats
- Signal Transduction
- Second Messenger Systems
- Isolated Heart Preparation
- Stress, Mechanical
- Isoproterenol/pharmacology
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jiarong Fu
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ivan Diakonov
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Aleksandra Judina
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Matthew Delahaye
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Navneet Bhogal
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Timothy Kamp
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53792, USA
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Liu T, Li X, Wang Y, Zhou M, Liang F. Computational modeling of electromechanical coupling in human cardiomyocyte applied to study hypertrophic cardiomyopathy and its drug response. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107372. [PMID: 36736134 DOI: 10.1016/j.cmpb.2023.107372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Knowledge of electromechanical coupling in cardiomyocyte and how it is influenced by various pathophysiological factors is fundamental to understanding the pathogenesis of myocardial disease and its response to medication, which is however hard to be thoroughly addressed by clinical/experimental studies due to technical limitations. At this point, computational modeling offers an alternative approach. The main objective of the study was to develop a computational model capable of simulating the process of electromechanical coupling and quantifying the roles of various factors in play in the human left ventricular cardiomyocyte. METHODS A new electrophysiological model was firstly built by combining several existing electrophysiological models and incorporating the mechanism of electrophysiological homeostasis, which was subsequently coupled to models representing the cross-bridge dynamics and active force generation during excitation-contraction coupling and the passive mechanical properties of cardiomyocyte to yield an integrative electromechanical model. Model parameters were calibrated or optimized based on a large amount of experimental data. The resulting model was applied to delineate the characteristics of electromechanical coupling and explore underlying determinant factors in hypertrophic cardiomyopathy (HCM) cardiomyocyte, as well as quantify their changes in response to different medications. RESULTS Model predictions captured the major electromechanical characteristics of cardiomyocyte under both normal physiological and HCM conditions. In comparison with normal cardiomyocyte, HCM cardiomyocyte suffered from systemic changes in both electrophysiological and mechanical variables. Numerical simulations of drug response revealed that Mavacamten and Metoprolol could both reduce the active contractility and alleviate calcium overload but had marked differential influences on many other electromechanical variables, which theoretically explained why the two drugs have differential therapeutic effects. In addition, our numerical experiments demonstrated the important role of compensatory ion transport in maintaining electrophysiological homeostasis and regulating cytoplasmic volume. CONCLUSIONS A sophisticated computational model has the advantage of providing quantitative and integrative insights for understanding the pathogenesis and drug responses of HCM or other myocardial diseases at the level of cardiomyocyte, and hence may contribute as a useful complement to clinical/experimental studies. The model may also be coupled to tissue- or organ-level models to strengthen the physiological implications of macro-scale numerical simulations.
Collapse
Affiliation(s)
- Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xuanyu Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 19991, Russia.
| |
Collapse
|
3
|
Lookin O, Khokhlova A, Myachina T, Butova X, Cazorla O, de Tombe P. Contractile State Dependent Sarcomere Length Variability in Isolated Guinea-Pig Cardiomyocytes. Front Physiol 2022; 13:857471. [PMID: 35444559 PMCID: PMC9013801 DOI: 10.3389/fphys.2022.857471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocytes contract keeping their sarcomere length (SL) close to optimal values for force generation. Transmural heterogeneity in SL across the ventricular wall coordinates the contractility of the whole-ventricle. SL heterogeneity (variability) exists not only at the tissue (macroscale) level, but also presents at the level of a single cardiomyocyte (microscale level). However, transmural differences in intracellular SL variability and its possible dependence on the state of contraction (e.g. end-diastole or end-systole) have not been previously reported. In the present study, we studied three aspects of sarcomere-to-sarcomere variability in intact cardiomyocytes isolated from the left ventricle of healthy guinea-pig: 1) transmural differences in SL distribution between subepi- (EPI) and subendocardial (ENDO) cardiomyocytes; 2) the dependence of intracellular variability in SL upon the state of contraction; 3) local differences in SL variability, comparing SL distributions between central and peripheral regions within the cardiomyocyte. To characterize the intracellular variability of SL, we used different normality tests for the assessment of SL distributions, as well as nonparametric coefficients to quantify the variability. We found that individual SL values in the end-systolic state of contraction followed a normal distribution to a lesser extent as compared to the end-diastolic state of contraction (∼1.3-fold and ∼1.6-fold in ENDO and EPI, respectively). The relative and absolute coefficients of sarcomere-to-sarcomere variability in end-systolic SL were significantly greater (∼1.3-fold) as compared to end-diastolic SL. This was independent of both the transmural region across the left ventricle and the intracellular region within the cardiomyocyte. We conclude that the intracellular variability in SL, which exists in normal intact guinea-pig cardiomyocytes, is affected by the contractile state of the myocyte. This phenomenon may play a role in inter-sarcomere communication in the beating heart.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
- *Correspondence: Oleg Lookin,
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Olivier Cazorla
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
| | - Pieter de Tombe
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
5
|
Wadthaisong M, Wattanapermpool J, de Tombe PP, Bupha-Intr T. Suppression of myofilament cross-bridge kinetic in the heart of orchidectomized rats. Life Sci 2020; 261:118342. [PMID: 32853655 DOI: 10.1016/j.lfs.2020.118342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 11/30/2022]
Abstract
AIMS The increased incidence of heart failure with reduced ejection fraction in men compared with women suggests that male sex hormones significantly impact myocardial contractile activation. This study aims to examine associations among molecular alterations, cellular modulations and in vivo cardiac contractile function upon deprivation of testicular hormones. MAIN METHODS Myocardial structure and functions were compared among sham-operated control and twelve-week orchidectomized (ORX) male rats with and without testosterone supplementation. KEY FINDINGS Echocardiography and pressure-volume relationships demonstrated a decreased left ventricular ejection fraction compared with sham-operated controls. The percentage of contractility reduction was generally similar to the decrease in tension development detected in both right ventricular trabeculae and skinned isolated left ventricular cardiomyocytes of ORX rats. Reductions in tension cost and the rate constant of tension redevelopment (ktr) in ORX samples suggested a decrease in the rate of cross-bridge formation, reflecting a reduced number of cross-bridges. Slow cross-bridge detachment in ORX rat hearts could result from a shift of myosin heavy chain isoforms towards a slower ATPase activity β-isoform and reductions in the phosphorylation levels of cardiac troponin I and myosin binding protein-C. All the changes in the ORX rat heart, including ejection fractions and myofilament protein expression and phosphorylation, were completed attenuated by a physiological dose of testosterone. SIGNIFICANCE Testosterone plays a critical role in regulating the mechanical and contractile dynamics of the heart. Deprivation of male sex hormones cause the loss of normal preserved cardiac contractile function leading to a high risk of severe cardiomyopathy progression.
Collapse
Affiliation(s)
- Munthana Wadthaisong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Cell and Molecular Physiology, Loyola University Chicago Health Sciences Division, Maywood, IL, United States of America
| | | | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Sciences Division, Maywood, IL, United States of America; Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Feng HZ, Jin JP. High efficiency preparation of skinned mouse cardiac muscle strips from cryosections for contractility studies. Exp Physiol 2020; 105:1869-1881. [PMID: 32857888 DOI: 10.1113/ep088521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can frozen cardiac papillary muscles and cryosectioning be used to reliably obtain uniform cardiac muscle strips with high yields? What is the main finding and its importance? A new method was developed using frozen cardiac papillary muscles and cryosectioning to reliably obtain uniform cardiac muscle strips with high yields. Experimental results demonstrate that this new methodology significantly increases the efficiency and application of quantitative biomechanical studies using skinned muscle fibres with an additional advantage of no need for transferring live animals. ABSTRACT Skinned cardiac muscle preparations are widely used to study contractile function of myofilament proteins and pathophysiological changes. The current methods applied in these biomechanical studies include detergent permeabilization of freshly isolated papillary muscle, ventricular trabeculae, surgically dissected ventricular muscle strips, mechanically blended cardiac muscle bundles or myocytes, and enzymatically isolated single cardiomyocytes. To facilitate and expand the skinned cardiac muscle approach, we have developed an efficient and readily practical method for mechanical studies of skinned mouse cardiac papillary muscle strips prepared from cryosections. Longitudinal papillary muscle strips of 120-150 µm width cut from 35-70 µm-thick cryosections are mounted to a force transducer and chemically skinned for the studies of force-pCa and sarcomere length-tension relationship and rate of tension redevelopment. In addition to more effective skinning and perfusion than with whole papillary muscle and much higher yield of useful preparations than that from trabeculae, this new methodology has two more major advantages. One is to allow for the use of frozen cardiac muscle in storage to maximize the value of muscle samples, facilitating resource sharing among research institutions without the need of transferring live animals or fresh biopsies. The other is that the integrity of the muscle strips is well preserved during the preparation and mechanical studies, allowing coupled characterization of myofilament proteins. The combined power of biomechanics and protein biochemistry can provide novel insights into integrative physiological and pathophysiological mechanisms of cardiac muscle contraction while the high yield of high-quality muscle strips also provides an efficient platform for development of therapeutic reagents.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Physiology Department, School of Medicine, Wayne State University, Detroit, MI, USA
| | - J-P Jin
- Physiology Department, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Khokhlova A, Konovalov P, Iribe G, Solovyova O, Katsnelson L. The Effects of Mechanical Preload on Transmural Differences in Mechano-Calcium-Electric Feedback in Single Cardiomyocytes: Experiments and Mathematical Models. Front Physiol 2020; 11:171. [PMID: 32256377 PMCID: PMC7091561 DOI: 10.3389/fphys.2020.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Transmural differences in ventricular myocardium are maintained by electromechanical coupling and mechano-calcium/mechano-electric feedback. In the present study, we experimentally investigated the influence of preload on the force characteristics of subendocardial (Endo) and subepicardial (Epi) single ventricular cardiomyocytes stretched by up to 20% from slack sarcomere length (SL) and analyzed the results with the help of mathematical modeling. Mathematical models of Endo and Epi cells, which accounted for regional heterogeneity in ionic currents, Ca2+ handling, and myofilament contractile mechanisms, showed that a greater slope of the active tension–length relationship observed experimentally in Endo cardiomyocytes could be explained by greater length-dependent Ca2+ activation in Endo cells compared with Epi ones. The models also predicted that greater length dependence of Ca2+ activation in Endo cells compared to Epi ones underlies, via mechano-calcium-electric feedback, the reduction in the transmural gradient in action potential duration (APD) at a higher preload. However, the models were unable to reproduce the experimental data on a decrease of the transmural gradient in the time to peak contraction between Endo and Epi cells at longer end-diastolic SL. We hypothesize that preload-dependent changes in viscosity should be involved alongside the Frank–Starling effects to regulate the transmural gradient in length-dependent changes in the time course of contraction of Endo and Epi cardiomyocytes. Our experimental data and their analysis based on mathematical modeling give reason to believe that mechano-calcium-electric feedback plays a critical role in the modulation of electrophysiological and contractile properties of myocytes across the ventricular wall.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Pavel Konovalov
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Gentaro Iribe
- Department of Physiology, Asahikawa Medical University, Hokkaido, Japan.,Department of Cardiovascular Physiology, Okayama University, Okayama, Japan
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Leonid Katsnelson
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
8
|
Lookin O, Protsenko Y. Length-Dependent Activation of Contractility and Ca-Transient Kinetics in Auxotonically Contracting Isolated Rat Ventricular Cardiomyocytes. Front Physiol 2019; 10:1473. [PMID: 31920687 PMCID: PMC6917588 DOI: 10.3389/fphys.2019.01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Length-dependent activation (LDA) of contraction is an important mechanism of proper myocardial function that is often blunted in diseases accompanied by deficient contractility and impaired calcium homeostasis. We evaluated how the extent of LDA is related to the decreased force in healthy rat myocardium under negative inotropic conditions that affect the calcium cycle. The length-dependent effects on auxotonic twitch and Ca-transient were compared in isolated rat ventricular cardiomyocytes at room temperature (“25C”) and near-physiological temperature (“35C”) in normal Tyrode and at 25°C with thapsigargin-depleted sarcoplasmic reticulum (“25C + Thap”). At the slack length, a similar negative inotropy in “35C” and “25C + Thap” was accompanied by totally different changes in Ca-transient amplitude, time-to-peak, and time-to-decline from peak to 50% amplitude. End-systolic/end-diastolic tension-sarcomere length relationships were obtained for each individual cell, and the ratio of their slopes, the dimensionless Frank-Starling Gain index, was 2.32 ± 0.16, 1.78 ± 0.09, and 1.37 ± 0.06 in “25C,” “35C” and “25C + Thap,” respectively (mean ± S.E.M.). Ca-transient diastolic level and amplitude did not differ between “25C” and “35C” at any SL, but in “35C” it developed and declined significantly faster. In contrast, thapsigargin-induced depletion of SERCA2a significantly attenuated and retarded Ca-transient. The relative amount of Ca2+ utilized by troponin C, evaluated by the integral magnitude of a short-lived component of Ca-transient decline (“bump”), increased by ~25% per each 0.05 μm increase in SL in all groups. The kinetics of the Ca-TnC dissociation, evaluated by the bump time-to-peak, was significantly faster in “35C” and slower in “25C + Thap” vs. “25C” (respectively, 63.7 ± 5.3 and 253.6 ± 8.3% of the value in “25C,” mean ± S.E.M.). In conclusion, a similar inotropic effect can be observed in rat ventricular myocardium under totally different kinetics of free cytosolic calcium. The extent of LDA is not determined by actual peak systolic tension but is regulated by the level of peak systolic calcium and the kinetics of Ca-transient decline which, in turn, are governed by Ca-TnC dissociation and Ca2+ reuptake by the sarcoplasmic reticulum. Altogether, these findings constitute new evidence about the role of the length-dependent modulation of Ca2+ homeostasis in the mechanisms of calcium regulation of contraction and mechano-calcium feedback in the myocardium.
Collapse
Affiliation(s)
- Oleg Lookin
- Laboratory of Biological Motility, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia.,Center for Fundamental Biotechnology and Bioengineering, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Yuri Protsenko
- Laboratory of Biological Motility, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
9
|
Wadthaisong M, Witayavanitkul N, Bupha‐Intr T, Wattanapermpool J, de Tombe PP. Chronic high-dose testosterone treatment: impact on rat cardiac contractile biology. Physiol Rep 2019; 7:e14192. [PMID: 31353833 PMCID: PMC6661270 DOI: 10.14814/phy2.14192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/28/2023] Open
Abstract
Androgen therapy provides cardiovascular benefits for hypogonadism. However, myocardial hypertrophy, fibrosis, and infarction have been reported in testosterone or androgenic anabolic steroid abuse. Therefore, better understanding of the factors leading to adverse results of androgen abuse is needed. The aim of the present study was to examine the impact of high dose of androgen treatment on cardiac biology, and whether exposure duration modulates this response. Male rats were treated with 10 mg/kg testosterone, three times a week, for either 4 or 12 weeks; vehicle injections served as controls. Four weeks of testosterone treatment induced an increase in ventricular wall thickness, indicative of concentric hypertrophy, as well as increased ejection fraction; in contrast, both parameters were blunted following 12 weeks of high-dose testosterone treatment. Cardiac myocyte contractile parameters were assessed in isolated electrically stimulated myocytes (sarcomere and intracellular calcium dynamics), and in chemically permeabilized isolated myocardium (myofilament force development and tension-cost). High-dose testosterone treatment for 4 weeks was associated with increased myocyte contractile parameters, while 12 weeks treatment induced significant depression of these parameters, mirroring the cardiac pump function results. In conclusion, chronic administration of high-dose testosterone initially induces increased cardiac function. However, this initial beneficial impact is followed by significant depression of cardiac pump function, myocyte contractility, and cardiac myofilament function. Our results indicate that chronic high-testosterone usage is of limited use and may, instead, induce significant cardiac dysfunction.
Collapse
Affiliation(s)
- Munthana Wadthaisong
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
- Department of Cell and Molecular PhysiologyLoyola University Chicago Health Sciences DivisionMaywoodIllinois
| | - Namthip Witayavanitkul
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
- Department of Cell and Molecular PhysiologyLoyola University Chicago Health Sciences DivisionMaywoodIllinois
| | - Tepmanas Bupha‐Intr
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
| | | | - Pieter P. de Tombe
- Department of Cell and Molecular PhysiologyLoyola University Chicago Health Sciences DivisionMaywoodIllinois
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinois
| |
Collapse
|
10
|
Li KL, Methawasin M, Tanner BCW, Granzier HL, Solaro RJ, Dong WJ. Sarcomere length-dependent effects on Ca 2+-troponin regulation in myocardium expressing compliant titin. J Gen Physiol 2018; 151:30-41. [PMID: 30523116 PMCID: PMC6314383 DOI: 10.1085/jgp.201812218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/01/2018] [Indexed: 11/20/2022] Open
Abstract
Increases in sarcomere length cause enhanced force generation in cardiomyocytes by an unknown mechanism. Li et al. reveal that titin-based passive tension contributes to length-dependent activation of myofilaments and that tightly bound myosin–actin cross-bridges are associated with this effect. Cardiac performance is tightly regulated at the cardiomyocyte level by sarcomere length, such that increases in sarcomere length lead to sharply enhanced force generation at the same Ca2+ concentration. Length-dependent activation of myofilaments involves dynamic and complex interactions between a multitude of thick- and thin-filament components. Among these components, troponin, myosin, and the giant protein titin are likely to be key players, but the mechanism by which these proteins are functionally linked has been elusive. Here, we investigate this link in the mouse myocardium using in situ FRET techniques. Our objective was to monitor how length-dependent Ca2+-induced conformational changes in the N domain of cardiac troponin C (cTnC) are modulated by myosin–actin cross-bridge (XB) interactions and increased titin compliance. We reconstitute FRET donor- and acceptor-modified cTnC(13C/51C)AEDANS-DDPM into chemically skinned myocardial fibers from wild-type and RBM20-deletion mice. The Ca2+-induced conformational changes in cTnC are quantified and characterized using time-resolved FRET measurements as XB state and sarcomere length are varied. The RBM20-deficient mouse expresses a more compliant N2BA titin isoform, leading to reduced passive tension in the myocardium. This provides a molecular tool to investigate how altered titin-based passive tension affects Ca2+-troponin regulation in response to mechanical stretch. In wild-type myocardium, we observe a direct association of sarcomere length–dependent enhancement of troponin regulation with both Ca2+ activation and strongly bound XB states. In comparison, measurements from titin RBM20-deficient animals show blunted sarcomere length–dependent effects. These results suggest that titin-based passive tension contributes to sarcomere length–dependent Ca2+-troponin regulation. We also conclude that strong XB binding plays an important role in linking the modulatory effect of titin compliance to Ca2+-troponin regulation of the myocardium.
Collapse
Affiliation(s)
- King-Lun Li
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Bertrand C W Tanner
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - R John Solaro
- The Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA .,Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
11
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
12
|
Khokhlova A, Balakina-Vikulova N, Katsnelson L, Iribe G, Solovyova O. Transmural cellular heterogeneity in myocardial electromechanics. J Physiol Sci 2018; 68:387-413. [PMID: 28573594 PMCID: PMC10717105 DOI: 10.1007/s12576-017-0541-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
Abstract
Myocardial heterogeneity is an attribute of the normal heart. We have developed integrative models of cardiomyocytes from the subendocardial (ENDO) and subepicardial (EPI) ventricular regions that take into account experimental data on specific regional features of intracellular electromechanical coupling in the guinea pig heart. The models adequately simulate experimental data on the differences in the action potential and contraction between the ENDO and EPI cells. The modeling results predict that heterogeneity in the parameters of calcium handling and myofilament mechanics in isolated ENDO and EPI cardiomyocytes are essential to produce the differences in Ca2+ transients and contraction profiles via cooperative mechanisms of mechano-calcium-electric feedback and may further slightly modulate transmural differences in the electrical properties between the cells. Simulation results predict that ENDO cells have greater sensitivity to changes in the mechanical load than EPI cells. These data are important for understanding the behavior of cardiomyocytes in the intact heart.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Ural Federal University, Ekaterinburg, Russia.
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia.
| | - Nathalie Balakina-Vikulova
- Ural Federal University, Ekaterinburg, Russia
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia
| | - Leonid Katsnelson
- Ural Federal University, Ekaterinburg, Russia
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia
| | - Gentaro Iribe
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Olga Solovyova
- Ural Federal University, Ekaterinburg, Russia
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia
| |
Collapse
|
13
|
Vaverka J, Burša J, Šumbera J, Pásek M. Effect of Transmural Differences in Excitation-Contraction Delay and Contraction Velocity on Left Ventricle Isovolumic Contraction: A Simulation Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4798512. [PMID: 29862273 PMCID: PMC5971307 DOI: 10.1155/2018/4798512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Recent studies have shown that left ventricle (LV) exhibits considerable transmural differences in active mechanical properties induced by transmural differences in electrical activity, excitation-contraction coupling, and contractile properties of individual myocytes. It was shown that the time between electrical and mechanical activation of myocytes (electromechanical delay: EMD) decreases from subendocardium to subepicardium and, on the contrary, the myocyte shortening velocity (MSV) increases in the same direction. To investigate the physiological importance of this inhomogeneity, we developed a new finite element model of LV incorporating the observed transmural gradients in EMD and MSV. Comparative simulations with the model showed that when EMD or MSV or both were set constant across the LV wall, the LV contractility during isovolumic contraction (IVC) decreased significantly ((dp/dt)max was reduced by 2 to 38% and IVC was prolonged by 18 to 73%). This was accompanied by an increase of transmural differences in wall stress. These results suggest that the transmural differences in EMD and MSV play an important role in physiological contractility of LV by synchronising the contraction of individual layers of ventricular wall during the systole. Reduction or enhancement of these differences may therefore impair the function of LV and contribute to heart failure.
Collapse
Affiliation(s)
- J Vaverka
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - J Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - J Šumbera
- Department of Cardiovascular Diseases, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Pásek
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Thermomechanics, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
14
|
Ait Mou Y, Lacampagne A, Irving T, Scheuermann V, Blot S, Ghaleh B, de Tombe PP, Cazorla O. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol 2017; 114:345-353. [PMID: 29275006 DOI: 10.1016/j.yjmcc.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
Abstract
AIM Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. OBJECTIVE The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. METHODS AND RESULTS We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. CONCLUSIONS We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.
Collapse
Affiliation(s)
- Younss Ait Mou
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar; Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alain Lacampagne
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France
| | - Thomas Irving
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA; Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Valérie Scheuermann
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France
| | - Stéphane Blot
- Inserm U955-E10, IMRB, Université Paris Est, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | | | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, IL 60153, USA
| | - Olivier Cazorla
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Physiologie et Médecine Expérimentale du cœur et des muscles - PHYMEDEXP, CHU Arnaud de Villeneuve, 34295 Montpellier cedex 05, France..
| |
Collapse
|
15
|
Ait-Mou Y, Zhang M, Martin JL, Greaser ML, de Tombe PP. Impact of titin strain on the cardiac slow force response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648628 DOI: 10.1016/j.pbiomolbio.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stretch of myocardium, such as occurs upon increased filling of the cardiac chamber, induces two distinct responses: an immediate increase in twitch force followed by a slower increase in twitch force that develops over the course of several minutes. The immediate response is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL). The slowly developing force response, termed the Slow Force Response (SFR), is caused by a slowly developing increase in intracellular Ca2+ upon sustained stretch. A blunted immediate force response was recently reported for myocardium isolated from homozygous giant titin mutant rats (HM) compared to muscle from wild-type littermates (WT). Here, we examined the impact of titin isoform on the SFR. Right ventricular trabeculae were isolated and mounted in an experimental chamber. SL was measured by laser diffraction. The SFR was recorded in response to a 0.2 μm SL stretch in the presence of [Ca2+]o = 0.4 mM, a bathing concentration reflecting ∼50% of maximum twitch force development at 25 °C. Presence of the giant titin isoform (HM) was associated with a significant reduction in diastolic passive force upon stretch, and ∼50% reduction of the magnitude of the SFR; the rate of SFR development was unaffected. The sustained SL stretch was identical in both muscle groups. Therefore, our data suggest that cytoskeletal strain may underlie directly the cellular mechanisms that lead to the increased intracellular [Ca2+]i that causes the SFR, possibly by involving cardiac myocyte integrin signaling pathways.
Collapse
Affiliation(s)
- Younss Ait-Mou
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave, Maywood, IL 60153, United States
| | - Mengjie Zhang
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave, Maywood, IL 60153, United States
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave, Maywood, IL 60153, United States
| | - Marion L Greaser
- Department of Animal Sciences, Muscle Biology Laboratory, University of Wisconsin - Madison, 1450 Linden Drive, Madison, WI 53706, United States
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave, Maywood, IL 60153, United States.
| |
Collapse
|
16
|
Khokhlova A, Iribe G, Yamaguchi Y, Naruse K, Solovyova O. Effects of simulated ischemia on the transmural differences in the Frank-Starling relationship in isolated mouse ventricular cardiomyocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:323-332. [PMID: 28571718 DOI: 10.1016/j.pbiomolbio.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
Abstract
The electrical and mechanical functions of cardiomyocytes differ in relation to the spatial locations of cells in the ventricular wall. This physiological heterogeneity may change under pathophysiological conditions, providing substrates for arrhythmia and contractile dysfunctions. Previous studies have reported distinctions in the electrophysiological and mechanical responses to ischemia of unloaded subendocardial (ENDO) and subepicardial (EPI) single cardiomyocytes. In this paper, we briefly recapitulated the available experimental data on the ischemia effects on the transmural cellular gradient in the heart ventricles and for the first time evaluated the preload-dependent changes in passive and active forces in ENDO and EPI cardiomyocytes isolated from mouse hearts subjected to simulated ischemia. Combining the results obtained in mechanically loaded contracting cardiomyocytes with data from previous studies, we showed that left ventricular ENDO and EPI cardiomyocytes are different in their mechanical responses to metabolic inhibition. Simulated ischemia showed opposite effects on the stiffness of ENDO and EPI cells and greatly prolonged the time course of contraction in EPI cells than in ENDO cells, thereby changing the normal transmural gradient in the cellular mechanics.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Ural Federal University, 620002, Mira 19, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Pervomajskaya 106, Ekaterinburg, Russia.
| | - Gentaro Iribe
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1700-8558, Shikata Cho 2-5-1, Okayama, Japan
| | - Yohei Yamaguchi
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1700-8558, Shikata Cho 2-5-1, Okayama, Japan
| | - Keiji Naruse
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1700-8558, Shikata Cho 2-5-1, Okayama, Japan
| | - Olga Solovyova
- Ural Federal University, 620002, Mira 19, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Pervomajskaya 106, Ekaterinburg, Russia
| |
Collapse
|
17
|
Li KL, Ghashghaee NB, Solaro RJ, Dong W. Sarcomere length dependent effects on the interaction between cTnC and cTnI in skinned papillary muscle strips. Arch Biochem Biophys 2016; 601:69-79. [PMID: 26944554 PMCID: PMC4899114 DOI: 10.1016/j.abb.2016.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
Sarcomere length dependent activation (LDA) of myocardial force development is the cellular basis underlying the Frank-Starling law of the heart, but it is still elusive how the sarcomeres detect the length changes and convert them into altered activation of thin filament. In this study we investigated how the C-domain of cardiac troponin I (cTnI) functionally and structurally responds to the comprehensive effects of the Ca(2+), crossbridge, and sarcomere length of chemically skinned myocardial preparations. Using our in situ technique which allows for simultaneous measurements of time-resolved FRET and mechanical force of the skinned myocardial preparations, we measured changes in the FRET distance between cTnI(167C) and cTnC(89C), labeled with FRET donor and acceptor, respectively, as a function of [Ca(2+)], crossbridge state and sarcomere length of the skinned muscle preparations. Our results show that [Ca(2+)], cross-bridge feedback and sarcomere length have different effects on the structural transition of the C-domain cTnI. In particular, the interplay between crossbridges and sarcomere length has significant impacts on the functional structural change of the C-domain of cTnI in the relaxed state. These novel observations suggest the importance of the C-domain of cTnI and the dynamic and complex interplay between various components of myofilament in the LDA mechanism.
Collapse
Affiliation(s)
- King-Lun Li
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Nazanin Bohlooli Ghashghaee
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - R John Solaro
- The Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wenji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; Integrative Neuroscience Physiology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
18
|
Milani-Nejad N, Chung JH, Canan BD, Davis JP, Fedorov VV, Higgins RSD, Kilic A, Mohler PJ, Janssen PML. Insights into length-dependent regulation of cardiac cross-bridge cycling kinetics in human myocardium. Arch Biochem Biophys 2016; 601:48-55. [PMID: 26854725 PMCID: PMC4899103 DOI: 10.1016/j.abb.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
Abstract
Cross-bridge cycling kinetics play an essential role in the heart's ability to contract and relax. The rate of tension redevelopment (ktr) slows down as a muscle length is increased in intact human myocardium. We set out to determine the effect of rapid length step changes and protein kinase A (PKA) and protein kinase C-βII (PKC-βII) inhibitors on the ktr in ultra-thin non-failing and failing human right ventricular trabeculae. After stabilizing the muscle either at L90 (90% of optimal length) or at Lopt (optimal length), we rapidly changed the length to either Lopt or L90 and measured ktr. We report that length-dependent changes in ktr occur very rapidly (in the order of seconds or faster) in both non-failing and failing muscles and that the length at which a muscle had been stabilized prior to the length change does not significantly affect ktr. In addition, at L90 and at Lopt, PKA and PKC-βII inhibitors did not significantly change ktr. Our results reveal that length-dependent regulation of cross-bridge cycling kinetics predominantly occurs rapidly and involves the intrinsic properties of the myofilament rather than post-translational modifications that are known to occur in the cardiac muscle as a result of a change in muscle/sarcomere length.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, USA
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, USA
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
| | - Robert S D Higgins
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, USA
| | - Ahmet Kilic
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
19
|
Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc Natl Acad Sci U S A 2016; 113:2306-11. [PMID: 26858417 DOI: 10.1073/pnas.1516732113] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Frank-Starling mechanism of the heart is due, in part, to modulation of myofilament Ca(2+) sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank-Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.
Collapse
|
20
|
Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 2016; 96:83-102. [PMID: 26656602 PMCID: PMC4807693 DOI: 10.1016/j.addr.2015.11.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) structure and biochemistry provide cell-instructive cues that promote and regulate tissue growth, function, and repair. From a structural perspective, the ECM is a scaffold that guides the self-assembly of cells into distinct functional tissues. The ECM promotes the interaction between individual cells and between different cell types, and increases the strength and resilience of the tissue in mechanically dynamic environments. From a biochemical perspective, factors regulating cell-ECM adhesion have been described and diverse aspects of cell-ECM interactions in health and disease continue to be clarified. Natural ECMs therefore provide excellent design rules for tissue engineering scaffolds. The design of regenerative three-dimensional (3D) engineered scaffolds is informed by the target ECM structure, chemistry, and mechanics, to encourage cell infiltration and tissue genesis. This can be achieved using nanofibrous scaffolds composed of polymers that simultaneously recapitulate 3D ECM architecture, high-fidelity nanoscale topography, and bio-activity. Their high porosity, structural anisotropy, and bio-activity present unique advantages for engineering 3D anisotropic tissues. Here, we use the heart as a case study and examine the potential of ECM-inspired nanofibrous scaffolds for cardiac tissue engineering. We asked: Do we know enough to build a heart? To answer this question, we tabulated structural and functional properties of myocardial and valvular tissues for use as design criteria, reviewed nanofiber manufacturing platforms and assessed their capabilities to produce scaffolds that meet our design criteria. Our knowledge of the anatomy and physiology of the heart, as well as our ability to create synthetic ECM scaffolds have advanced to the point that valve replacement with nanofibrous scaffolds may be achieved in the short term, while myocardial repair requires further study in vitro and in vivo.
Collapse
Affiliation(s)
- A K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - L A MacQueen
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Sean P Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
21
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|
22
|
Gregorich ZR, Peng Y, Lane NM, Wolff JJ, Wang S, Guo W, Guner H, Doop J, Hacker TA, Ge Y. Comprehensive assessment of chamber-specific and transmural heterogeneity in myofilament protein phosphorylation by top-down mass spectrometry. J Mol Cell Cardiol 2015; 87:102-12. [PMID: 26268593 DOI: 10.1016/j.yjmcc.2015.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/28/2022]
Abstract
The heart is characterized by a remarkable degree of heterogeneity, the basis of which is a subject of active investigation. Myofilament protein post-translational modifications (PTMs) represent a critical mechanism regulating cardiac contractility, and emerging evidence shows that pathological cardiac conditions induce contractile heterogeneity that correlates with transmural variations in the modification status of myofilament proteins. Nevertheless, whether there exists basal heterogeneity in myofilament protein PTMs in the heart remains unclear. Here we have systematically assessed chamber-specific and transmural variations in myofilament protein PTMs, specifically, the phosphorylation of cardiac troponin I (cTnI), cardiac troponin T (cTnT), tropomyosin (Tpm), and myosin light chain 2 (MLC2). We show that the phosphorylation of cTnI and αTm vary in the different chambers of the heart, whereas the phosphorylation of MLC2 and cTnT does not. In contrast, no significant transmural differences were observed in the phosphorylation of any of the myofilament proteins analyzed. These results highlight the importance of appropriate tissue sampling-particularly for studies aimed at elucidating disease mechanisms and biomarker discovery-in order to minimize potential variations arising from basal heterogeneity in myofilament PTMs in the heart.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole M Lane
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Sijian Wang
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Guo
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Huseyin Guner
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Justin Doop
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ying Ge
- Molecular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Ait Mou Y, Bollensdorff C, Cazorla O, Magdi Y, de Tombe PP. Exploring cardiac biophysical properties. Glob Cardiol Sci Pract 2015; 2015:10. [PMID: 26779498 PMCID: PMC4448074 DOI: 10.5339/gcsp.2015.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/26/2015] [Indexed: 11/03/2022] Open
Abstract
The heart is subject to multiple sources of stress. To maintain its normal function, and successfully overcome these stresses, heart muscle is equipped with fine-tuned regulatory mechanisms. Some of these mechanisms are inherent within the myocardium itself and are known as intrinsic mechanisms. Over a century ago, Otto Frank and Ernest Starling described an intrinsic mechanism by which the heart, even ex vivo, regulates its function on a beat-to-beat basis. According to this phenomenon, the higher the ventricular filling is, the bigger the stroke volume. Thus, the Frank-Starling law establishes a direct relationship between the diastolic and systolic function of the heart. To observe this biophysical phenomenon and to investigate it, technologic development has been a pre-requisite to scientific knowledge. It allowed for example to observe, at the cellular level, a Frank-Starling like mechanism and has been termed: Length Dependent Activation (LDA). In this review, we summarize some experimental systems that have been developed and are currently still in use to investigate cardiac biophysical properties from the whole heart down to the single myofibril. As a scientific support, investigation of the Frank-Starling mechanism will be used as a case study.
Collapse
Affiliation(s)
- Younss Ait Mou
- Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | | | - Olivier Cazorla
- U1046 INSERM - UMR9214 CNRS- Université de Montpellier, Montpellier, France
| | - Yacoub Magdi
- Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
24
|
Cardiac tissue structure, properties, and performance: a materials science perspective. Ann Biomed Eng 2014; 42:2003-13. [PMID: 25081385 DOI: 10.1007/s10439-014-1071-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
From an engineering perspective, many forms of heart disease can be thought of as a reduction in biomaterial performance, in which the biomaterial is the tissue comprising the ventricular wall. In materials science, the structure and properties of a material are recognized to be interconnected with performance. In addition, for most measurements of structure, properties, and performance, some processing is required. Here, we review the current state of knowledge regarding cardiac tissue structure, properties, and performance as well as the processing steps taken to acquire those measurements. Understanding the impact of these factors and their interactions may enhance our understanding of heart function and heart failure. We also review design considerations for cardiac tissue property and performance measurements because, to date, most data on cardiac tissue has been obtained under non-physiological loading conditions. Novel measurement systems that account for these design considerations may improve future experiments and lead to greater insight into cardiac tissue structure, properties, and ultimately performance.
Collapse
|
25
|
Milani-Nejad N, Xu Y, Davis JP, Campbell KS, Janssen PML. Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature. ACTA ACUST UNITED AC 2013; 141:133-9. [PMID: 23277479 PMCID: PMC3536524 DOI: 10.1085/jgp.201210894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank–Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (ktr; which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K+ contractures to induce a tonic level of force, we showed the ktr was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of ktr in rat muscle at optimal length (Lopt) and 90% of optimal length (L90) revealed that ktr was significantly slower at Lopt (27.7 ± 3.3 and 27.8 ± 3.0 s−1 in duplicate analyses) than at L90 (45.1 ± 7.6 and 47.5 ± 9.2 s−1). We therefore show that ktr can be measured in intact rat and rabbit cardiac trabeculae, and that the ktr decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank–Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
26
|
Lee EJ, Nedrud J, Schemmel P, Gotthardt M, Irving TC, Granzier HL. Calcium sensitivity and myofilament lattice structure in titin N2B KO mice. Arch Biochem Biophys 2012; 535:76-83. [PMID: 23246787 DOI: 10.1016/j.abb.2012.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
The cellular basis of the Frank-Starling "Law of the Heart" is the length-dependence of activation, but the mechanisms by which the sarcomere detects length changes and converts this information to altered calcium sensitivity has remained elusive. Here the effect of titin-based passive tension on the length-dependence of activation (LDA) was studied by measuring the tension-pCa relation in skinned mouse LV muscle at two sarcomere lengths (SLs). N2B KO myocardium, where the N2B spring element in titin is deleted and passive tension is elevated, was compared to WT myocardium. Myofilament lattice structure was studied with low-angle X-ray diffraction; the myofilament lattice spacing (d1,0) was measured as well as the ratio of the intensities of the 1,1 and 1,0 diffraction peaks (I1,1/I1,0) as an estimate of the degree of association of myosin heads with the thin filaments. Experiments were carried out in skinned muscle in which the lattice spacing was reduced with Dextran-T500. Experiments with and without lattice compression were also carried out following PKA phosphorylation of the skinned muscle. Under all conditions that were tested, LDA was significantly larger in N2B KO myocardium compared to WT myocardium, with the largest differences following PKA phosphorylation. A positive correlation between passive tension and LDA was found that persisted when the myofilament lattice was compressed with Dextran and that was enhanced following PKA phosphorylation. Low-angle X-ray diffraction revealed a shift in mass from thin filaments to thick filaments as sarcomere length was increased. Furthermore, a positive correlation was obtained between myofilament lattice spacing and passive tension and the change in I1,1/I1,0 and passive tension and these provide possible explanations for how titin-based passive tension might regulate calcium sensitivity.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Sarver Molecular Cardiovascular Research and Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
27
|
Vasilyeva AD, Solovyova OE. Electromechanical coupling in cardiomyocytes from transmural layers of guinea pig left ventricle. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912050235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Mateja RD, Greaser ML, de Tombe PP. Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:804-11. [PMID: 22951219 DOI: 10.1016/j.bbamcr.2012.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 01/19/2023]
Abstract
The magnitude of length dependent activation in striated muscle has been shown to vary with titin isoform. Recently, a rat that harbors a homozygous autosomal mutation (HM) causing preferential expression of a longer, giant titin isoform was discovered (Greaser et al. 2005). Here, we investigated the impact of titin isoform on myofilament force development and cross-bridge cycling kinetics as function of sarcomere length (SL) in tibialis anterior skeletal muscle isolated from wild type (WT) and HM. Skeletal muscle bundles from HM rats exhibited reductions in passive tension, maximal force development, myofilament calcium sensitivity, maximal ATP consumption, and tension cost at both short and long sarcomere length (SL=2.8μm and SL=3.2μm, respectively). Moreover, the SL-dependent changes in these parameters were attenuated in HM muscles. Additionally, myofilament Ca(2+) activation-relaxation properties were assessed in single isolated myofibrils. Both the rate of tension generation upon Ca(2+) activation (kACT) as well as the rate of tension redevelopment following a length perturbation (kTR) were reduced in HM myofibrils compared to WT, while relaxation kinetics were not affected. We conclude that presence of a long isoform of titin in the striated muscle sarcomere is associated with reduced myofilament force development and cross-bridge cycling kinetics, and a blunting of myofilament length dependent activation. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Ryan D Mateja
- Department of Cell and Molecular Physiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
29
|
van der Velden J, Merkus D, de Beer V, Hamdani N, Linke WA, Boontje NM, Stienen GJM, Duncker DJ. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodeled myocardium of pigs with a recent myocardial infarction. Front Physiol 2011; 2:83. [PMID: 22131977 PMCID: PMC3223384 DOI: 10.3389/fphys.2011.00083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/28/2011] [Indexed: 02/05/2023] Open
Abstract
Aim: Transmural differences in sarcomeric protein composition and function across the left ventricular (LV) wall have been reported. We studied in pigs sarcomeric function and protein phosphorylation in subepicardial (EPI) and subendocardial (ENDO) layers of remote LV myocardium after myocardial infarction (MI), induced by left circumflex coronary artery ligation. Methods: EPI and ENDO samples were taken 3 weeks after sham surgery (n = 12) or induction of MI (n = 12) at baseline (BL) and during β-adrenergic receptor (βAR) stimulation with dobutamine. Isometric force was measured in single cardiomyocytes at various [Ca2+] and 2.2 μm sarcomere length. Results: In sham hearts, no significant transmural differences were observed in myofilament function or protein phosphorylation. Myofilament Ca2+-sensitivity was significantly higher in both EPI and ENDO of MI compared to sham hearts. Maximal force was significantly reduced in MI compared to sham, but solely in ENDO cells. A higher passive force was observed in MI hearts, but only in EPI cells. The proportion of stiff N2B isoform was higher in EPI than in ENDO in both sham and MI hearts, and a trend toward increased N2B-proportion appeared in MI EPI, but not MI Endo. Analysis of myofilament protein phosphorylation did not reveal significant transmural differences in phosphorylation of myosin binding protein C, desmin, troponin T, troponin I (cTnI), and myosin light chain 2 (MLC-2) both at BL and during βAR stimulation with dobutamine infusion. A significant increase in MLC-2 phosphorylation was observed during dobutamine only in sham. In addition, the increase in cTnI phosphorylation upon dobutamine was twofold lower in MI than in sham. Conclusion: Myofilament dysfunction is present in both EPI and ENDO in post-MI remodeled myocardium, but shows a high degree of qualitative heterogeneity across the LV wall. These heterogeneous transmural changes in sarcomeric properties likely contribute differently to systolic vs. diastolic global LV dysfunction after MI.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Farman GP, Gore D, Allen E, Schoenfelt K, Irving TC, de Tombe PP. Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am J Physiol Heart Circ Physiol 2011; 300:H2155-60. [PMID: 21460195 PMCID: PMC3119094 DOI: 10.1152/ajpheart.01221.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/29/2011] [Indexed: 11/22/2022]
Abstract
The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I(1,1)/I(1,0) intensity ratio decreases, whereas the M3 meridional reflection intensity (I(M3)) increases, concomitant with increases in diastolic and systolic force. Using a short (∼10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailed structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by I(M3)) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.
Collapse
Affiliation(s)
- Gerrie P Farman
- James R. DePauw Professor of Physiology, Dept. of Cell and Molecular Physiology, Loyola Univ. Chicago, 2160 South First Ave., Stritch School of Medicine, Maywood, IL, 60153-5500, USA
| | | | | | | | | | | |
Collapse
|
31
|
McDonald KS. The interdependence of Ca2+ activation, sarcomere length, and power output in the heart. Pflugers Arch 2011; 462:61-7. [PMID: 21404040 PMCID: PMC10155511 DOI: 10.1007/s00424-011-0949-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 11/30/2022]
Abstract
Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.
Collapse
Affiliation(s)
- Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, MA 415 Medical Sciences Building, Columbia, MO 65212, USA.
| |
Collapse
|
32
|
Cazorla O, Lacampagne A. Regional variation in myofilament length-dependent activation. Pflugers Arch 2011; 462:15-28. [DOI: 10.1007/s00424-011-0933-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
|
33
|
Lee EJ, Peng J, Radke M, Gotthardt M, Granzier HL. Calcium sensitivity and the Frank-Starling mechanism of the heart are increased in titin N2B region-deficient mice. J Mol Cell Cardiol 2010; 49:449-58. [PMID: 20507834 PMCID: PMC2917497 DOI: 10.1016/j.yjmcc.2010.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 11/16/2022]
Abstract
Previous work suggests that titin-based passive tension is a factor in the Frank-Starling mechanism of the heart, by increasing length-dependent activation (LDA) through an increase in calcium sensitivity at long sarcomere length. We tested this hypothesis in a mouse model (N2B KO model) in which titin-based passive tension is elevated as a result of the excision of the N2B element, one of cardiac titin's spring elements. LDA was assessed by measuring the active tension-pCa (-log[Ca(2+)]) relationship at sarcomere length (SLs) of 1.95, 2.10, and 2.30 microm in WT and N2B KO skinned myocardium. LDA was positively correlated with titin-based passive tension due to an increase in calcium sensitivity at the longer SLs in the KO. For example, at pCa 6.0, the KO:WT tension ratio was 1.28+/-0.07 and 1.42+/-0.04 at SLs of 2.1 and 2.3 microm, respectively. There was no difference in protein expression or total phosphorylation of sarcomeric proteins. We also measured the calcium sensitivity after PKA treating the skinned muscle and found that titin-based passive tension was also now correlated with LDA, with a slope that was significantly increased compared to no PKA treatment. Finally, we performed isolated heart experiments and measured the Frank-Starling relation (slope of developed wall stress-LV volume relation) as well as diastolic stiffness (slope of diastolic wall stress-volume relation). The FSM was more pronounced in the N2B KO hearts and the slope of the FSM correlated with diastolic stiffness. These findings support that titin-based passive tension triggers an increase in calcium sensitivity at long sarcomere length, thereby playing an important role in the Frank-Starling mechanism of the heart.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Department of Physiology, University of Arizona, Tucson AZ
| | - Jun Peng
- Department of Physiology, University of Arizona, Tucson AZ
| | - Michael Radke
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Cell Biology and Anatomy, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson AZ
| | | |
Collapse
|
34
|
Hanft LM, McDonald KS. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres. J Physiol 2010; 588:2891-903. [PMID: 20530113 DOI: 10.1113/jphysiol.2010.190504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length-tension relationships appear able to switch between slow-twitch-like and fast-twitch-like by PKA-mediated myofibrillar phosphorylation, which implicates a novel means for controlling Frank-Starling relationships.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | |
Collapse
|
35
|
Enhanced length-dependent Ca2+ activation in fish cardiomyocytes permits a large operating range of sarcomere lengths. J Mol Cell Cardiol 2010; 48:917-24. [PMID: 20170661 DOI: 10.1016/j.yjmcc.2010.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/15/2010] [Accepted: 02/08/2010] [Indexed: 02/08/2023]
Abstract
Fish myocytes continue to develop active tension when stretched to sarcomere lengths (SLs) on the descending limb of the mammalian length-tension relationship. A greater length-dependent activation in fish than mammals could account for this because the increase in Ca(2+) sensitivity may overcome the tendency for force to fall due to reduced cross-bridge availability at SLs above optimal myofilament overlap. We stretched skinned fish and rat ventricular myocytes over a wide range of SLs, including those on the descending limb of the mammalian length-tension relationship. We found that fish myocytes developed greater active tension than rat myocytes at physiological Ca(2+) concentrations at long SLs as a result of a higher Ca(2+) sensitivity and a steeper relationship between Ca(2+) sensitivity and SL. We also investigated the diastolic properties of fish and rat myocytes at long SLs by measuring titin-based passive tension, titin isoform expression and titin phosphorylation. Fish myocytes produced higher titin-based passive tension despite expressing a higher proportion of a long N2BA-like isoform (38.0+/-2% of total vs 0% in rat). However, titin phosphorylation in fish myocytes was lower than in rat, which may explain some of the difference in passive tension between species. The high level of titin-based passive tension and the differential phosphorylation of sarcomeric proteins in fish myocytes may contribute to the enhanced length-dependent activation and underlie the extended range of in vivo stroke volumes found in fish compared with mammals.
Collapse
|
36
|
Myofilament length dependent activation. J Mol Cell Cardiol 2010; 48:851-8. [PMID: 20053351 DOI: 10.1016/j.yjmcc.2009.12.017] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 01/04/2023]
Abstract
The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca(2+) ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the "Frank-Starling law of the heart" constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.
Collapse
|
37
|
Barefield D, Sadayappan S. Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J Mol Cell Cardiol 2009; 48:866-75. [PMID: 19962384 DOI: 10.1016/j.yjmcc.2009.11.014] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/12/2009] [Accepted: 11/24/2009] [Indexed: 12/22/2022]
Abstract
During the past 5 years there has been an increasing body of literature describing the roles cardiac myosin binding protein C (cMyBP-C) phosphorylation play in regulating cardiac function and heart failure. cMyBP-C is a sarcomeric thick filament protein that interacts with titin, myosin and actin to regulate sarcomeric assembly, structure and function. Elucidating the function of cMyBP-C is clinically important because mutations in this protein have been linked to cardiomyopathy in more than sixty million people worldwide. One function of cMyBP-C is to regulate cross-bridge formation through dynamic phosphorylation by protein kinase A, protein kinase C and Ca(2+)-calmodulin-activated kinase II, suggesting that cMyBP-C phosphorylation serves as a highly coordinated point of contractile regulation. Moreover, dephosphorylation of cMyBP-C, which accelerates its degradation, has been shown to associate with the development of heart failure in mouse models and in humans. Strikingly, cMyBP-C phosphorylation presents a potential target for therapeutic development as protection against ischemic-reperfusion injury, which has been demonstrated in mouse hearts. Also, emerging evidence suggests that cMyBP-C has the potential to be used as a biomarker for diagnosing myocardial infarction. Although many aspects of cMyBP-C phosphorylation and function remain poorly understood, cMyBP-C and its phosphorylation states have significant promise as a target for therapy and for providing a better understanding of the mechanics of heart function during health and disease. In this review we discuss the most recent findings with respect to cMyBP-C phosphorylation and function and determine potential future directions to better understand the functional role of cMyBP-C and phosphorylation in sarcomeric structure, myocardial contractility and cardioprotection.
Collapse
Affiliation(s)
- David Barefield
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|