1
|
Kuravi SJ, Ahmed NS, Taylor KA, Capes EM, Bye A, Unsworth AJ, Gibbins JM, Pugh N. Delineating Zinc Influx Mechanisms during Platelet Activation. Int J Mol Sci 2023; 24:11689. [PMID: 37511448 PMCID: PMC10380784 DOI: 10.3390/ijms241411689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Zinc (Zn2+) is released by platelets during a hemostatic response to injury. Extracellular zinc ([Zn2+]o) initiates platelet activation following influx into the platelet cytosol. However, the mechanisms that permit Zn2+ influx are unknown. Fluctuations in intracellular zinc ([Zn2+]i) were measured in fluozin-3-loaded platelets using fluorometry and flow cytometry. Platelet activation was assessed using light transmission aggregometry. The detection of phosphoproteins was performed by Western blotting. [Zn2+]o influx and subsequent platelet activation were abrogated by blocking the sodium/calcium exchanged, TRP channels, and ZIP7. Cation store depletion regulated Zn2+ influx. [Zn2+]o stimulation resulted in the phosphorylation of PKC substates, MLC, and β3 integrin. Platelet activation via GPVI or Zn2+ resulted in ZIP7 phosphorylation in a casein kinase 2-dependent manner and initiated elevations of [Zn2+]i that were sensitive to the inhibition of Orai1, ZIP7, or IP3R-mediated pathways. These data indicate that platelets detect and respond to changes in [Zn2+]o via influx into the cytosol through TRP channels and the NCX exchanger. Platelet activation results in the externalization of ZIP7, which further regulates Zn2+ influx. Increases in [Zn2+]i contribute to the activation of cation-dependent enzymes. Sensitivity of Zn2+ influx to thapsigargin indicates a store-operated pathway that we term store-operated Zn2+ entry (SOZE). These mechanisms may affect platelet behavior during thrombosis and hemostasis.
Collapse
Affiliation(s)
- Sahithi J. Kuravi
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Niaz S. Ahmed
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Kirk A. Taylor
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Emily M. Capes
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Alex Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Nicholas Pugh
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| |
Collapse
|
2
|
Tan Y, Lu W, Yi X, Cai H, Yuan Y, Zhang S. Improvement of platelet preservation by inhibition of TRPC6. Transfus Med 2023. [PMID: 36746770 DOI: 10.1111/tme.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/27/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The preservation of platelets (PLTs) by room temperature (RT) oscillation limits their shelf life to between 4 and 7 days because of the decrease in PLT function. TRPC6 is a non-selective mechanically sensitive cation channel that has been shown to mediate Ca2+ signalling, implying a role in PLT activation during preservation by RT oscillation. OBJECTIVES This study was designed to investigate whether inhibition of TRPC6 can improve the RT preservation of PLTs and the possible underlying mechanism. METHODS Human PLTs from whole blood were stored at 22 ± 2°C with oscillation in plasma or M-sol (mixture of solutions). BI-749327, a specific TRPC6 inhibitor, was administered throughout the preservation period. PLT distribution width (PDW), mean platelet volume (MPV), maximum platelet aggregation rate (MAR) and average aggregation rate (AAR) were measured. The MTT method was used to assess the relative viability of PLTs. Flow cytometry was used to measure the changes of Ca2+ concentration in PLTs and phosphatidylserine (PS) exposure on the PLT surface, and western blotting was used to assess the expression changes of platelet TRPC6 and CD62P proteins. RESULTS Compared with the control group, inhibition of TRPC6 with BI-749327 significantly reduced the PDW, MPV and Ca2+ concentration, the MAR and AAR were significantly increased, the expression of TRPC6 and CD62P protein was significantly down-regulated in PLTs, and the PS exposure was significantly reduced on the PLT surface. However, these effects were all reversed by activation of TRPC6. CONCLUSION Inhibition of TRPC6 improves the quality of PLT preservation by inhibiting the Ca2+ signal mediated by TRPC6.
Collapse
Affiliation(s)
- Yuanjia Tan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Wei Lu
- Office, The Blood Bank Center of Yichang City, Yichang, China
| | - Xiaomei Yi
- Office, The Blood Bank Center of Yichang City, Yichang, China
| | - Huili Cai
- Department of Hematology, Yichang Central People' Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yurong Yuan
- Office, The Blood Bank Center of Yichang City, Yichang, China
| | - Shizhong Zhang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| |
Collapse
|
3
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
4
|
Xia J, Dou Y, Mei Y, Munoz FM, Gao R, Gao X, Li D, Osei-Owusu P, Schiffenhaus J, Bekker A, Tao YX, Hu H. Orai1 is a crucial downstream partner of group I metabotropic glutamate receptor signaling in dorsal horn neurons. Pain 2022; 163:652-664. [PMID: 34252911 PMCID: PMC8741882 DOI: 10.1097/j.pain.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Group I metabotropic glutamate receptors (group I mGluRs) have been implicated in several central nervous system diseases including chronic pain. It is known that activation of group I mGluRs results in the production of inositol triphosphate (IP3) and diacylglycerol that leads to activation of extracellular signal-regulated kinases (ERKs) and an increase in neuronal excitability, but how group I mGluRs mediate this process remains unclear. We previously reported that Orai1 is responsible for store-operated calcium entry and plays a key role in central sensitization. However, how Orai1 is activated under physiological conditions is unknown. Here, we tested the hypothesis that group I mGluRs recruit Orai1 as part of its downstream signaling pathway in dorsal horn neurons. We demonstrate that neurotransmitter glutamate induces STIM1 puncta formation, which is not mediated by N-Methyl-D-aspartate (NMDA) or α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Glutamate-induced Ca2+ entry in the presence of NMDA or AMPA receptor antagonists is eliminated in Orai1-deficient neurons. Dihydroxyphenylglycine (DHPG) (an agonist of group I mGluRs)-induced Ca2+ entry is abolished by Orai1 deficiency, but not affected by knocking down of transient receptor potential cation channel 1 (TRPC1) or TRPC3. Dihydroxyphenylglycine-induced activation of ERKs and modulation of neuronal excitability are abolished in cultured Orai1-deficient neurons. Moreover, DHPG-induced nociceptive behavior is markedly reduced in Orai1-deficient mice. Our findings reveal previously unknown functional coupling between Orai1 and group I mGluRs and shed light on the mechanism underlying group I mGluRs-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Frances M. Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ruby Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Daling Li
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - James Schiffenhaus
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
5
|
CRACking the Molecular Regulatory Mechanism of SOCE during Platelet Activation in Thrombo-Occlusive Diseases. Cells 2022; 11:cells11040619. [PMID: 35203269 PMCID: PMC8870035 DOI: 10.3390/cells11040619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Thrombo-occlusive diseases such as myocardial infarction, ischemic stroke and deep vein thrombosis with subsequent pulmonary embolism still represent a major health burden worldwide. Besides the cells of the vasculature or other hematopoietic cells, platelets are primarily responsible for the development and progression of an occluding thrombus. The activation and function of platelets crucially depend on free cytosolic calcium (Ca2+) as second messenger, which modulates platelet secretion, aggregation and thrombus formation. Ca2+ is elevated upon platelet activation by release of Ca2+ from intracellular stores thus triggering of the subsequent store-operated Ca2+ entry (SOCE), which is facilitated by Ca2+ release-activated channels (CRACs). In general, CRACs are assembled by the pore-forming unit Orai in the plasma membrane and the Ca2+-sensing stromal interaction molecule (STIM) in the endoplasmic reticulum after the depletion of internal Ca2+ stores. In the last few years, there is a growing body of the literature demonstrating the importance of STIM and Orai-mediated mechanism in thrombo-occlusive disorders. Thus, this review provides an overview of the recent understanding of STIM and Orai signaling in platelet function and its implication in the development and progression of ischemic thrombo-occlusive disorders. Moreover, potential pharmacological implications of STIM and Orai signaling in platelets are anticipated and discussed in the end.
Collapse
|
6
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Ortiz-Muñoz G, Yu MA, Lefrançais E, Mallavia B, Valet C, Tian JJ, Ranucci S, Wang KM, Liu Z, Kwaan N, Dawson D, Kleinhenz ME, Khasawneh FT, Haggie PM, Verkman AS, Looney MR. Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation. J Clin Invest 2020; 130:2041-2053. [PMID: 31961827 PMCID: PMC7108932 DOI: 10.1172/jci129635] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge. CFTR loss of function in mouse or human platelets resulted in agonist-induced hyperactivation and increased calcium entry into platelets. Inhibition of the transient receptor potential cation channel 6 (TRPC6) reduced platelet activation and calcium flux, and reduced lung injury in CF mice after intratracheal LPS or Pseudomonas aeruginosa challenge. CF subjects receiving CFTR modulator therapy showed partial restoration of CFTR function in platelets, which may be a convenient approach to monitoring biological responses to CFTR modulators. We conclude that CFTR dysfunction in platelets produces aberrant TRPC6-dependent platelet activation, which is a major driver of CF lung inflammation and impaired bacterial clearance. Platelets and TRPC6 are what we believe to be novel therapeutic targets in the treatment of CF lung disease.
Collapse
Affiliation(s)
| | - Michelle A. Yu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Emma Lefrançais
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Beñat Mallavia
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Colin Valet
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Serena Ranucci
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kristin M. Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Zhe Liu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Nicholas Kwaan
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Diana Dawson
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Fadi T. Khasawneh
- School of Pharmacy, University of Texas, El Paso, El Paso, Texas, USA
| | - Peter M. Haggie
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Physiology and
| | - Alan S. Verkman
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Physiology and
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
8
|
Paez Espinosa EV, Lin OA, Karim ZA, Alshbool FZ, Khasawneh FT. Mouse transient receptor potential channel type 6 selectively regulates agonist-induced platelet function. Biochem Biophys Rep 2019; 20:100685. [PMID: 31508510 PMCID: PMC6726914 DOI: 10.1016/j.bbrep.2019.100685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/20/2023] Open
Abstract
While changes in intracellular calcium levels is a central step in platelet activation and thrombus formation, the contribution and mechanism of receptor-operated calcium entry (ROCE) via transient receptor potential channels (TRPCs) in platelets remains poorly defined. In previous studies, we have shown that TRPC6 regulates hemostasis and thrombosis, in mice. In the present studies, we employed a knockout mouse model system to characterize the role of TRPC6 in ROCE and platelet activation. It was observed that the TRPC6 deletion (Trpc6−/−) platelets displayed impaired elevation of intracellular calcium, i.e., defective ROCE. Moreover, these platelets also exhibited defects in a host of functional responses, namely aggregation, granule secretion, and integrin αIIbβ3. Interestingly, the aforementioned defects were specific to the thromboxane receptor (TPR), as no impaired responses were observed in response to ADP or the thrombin receptor-activating peptide 4 (TRAP4). The defect in ROCE in the Trpc6−/− was also observed with 1-oleoyl-2-acetyl-sn-glycerol (OAG). Finally, our studies also revealed that TRPC6 regulates clot retraction. Taken together, our findings demonstrate that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Thus, TRPC6 may serve as a novel target for the therapeutic management of thrombotic diseases. TRPC6 regulates TPR-mediated/receptor-operated calcium entry. TRPC6 regulates TPR-dependent platelet aggregation, secretion and integrin activation. TRPC6 regulates clot retraction. TRPC6 expression levels are age-dependent in platelets.
Collapse
Affiliation(s)
| | | | - Zubair A Karim
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
| | - Fatima Z Alshbool
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
| | - Fadi T Khasawneh
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
| |
Collapse
|
9
|
Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium 2018; 77:39-48. [PMID: 30530092 DOI: 10.1016/j.ceca.2018.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
Cytosolic free calcium (Ca2+) is a second messenger regulating a wide variety of functions in blood cells, including adhesion, activation, proliferation and migration. Store-operated Ca2+ entry (SOCE), triggered by depletion of Ca2+ from the endoplasmic reticulum, provides a main mechanism of regulated Ca2+ influx in blood cells. SOCE is mediated and regulated by isoforms of the ion channel proteins ORAI and TRP, and the transmembrane Ca2+ sensors stromal interaction molecules (STIMs), respectively. This report provides an overview of the (patho)physiological importance of SOCE in blood cells implicated in thrombosis and thrombo-inflammation, i.e. platelets and immune cells. We also discuss the physiological consequences of dysregulated SOCE in platelets and immune cells and the potential of SOCE inhibition as a therapeutic option to prevent or treat arterial thrombosis as well as thrombo-inflammatory disease states such as ischemic stroke.
Collapse
|
10
|
Nielsen N, Kondratska K, Ruck T, Hild B, Kovalenko I, Schimmelpfennig S, Welzig J, Sargin S, Lindemann O, Christian S, Meuth SG, Prevarskaya N, Schwab A. TRPC6 channels modulate the response of pancreatic stellate cells to hypoxia. Pflugers Arch 2017; 469:1567-1577. [PMID: 28849300 DOI: 10.1007/s00424-017-2057-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6-/- mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6-/- PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6-/- PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.
Collapse
Affiliation(s)
- Nikolaj Nielsen
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Tobias Ruck
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Benedikt Hild
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Ilya Kovalenko
- Bayer-Pharma AG, Müllerstr. 178, 13353, Berlin, Germany.,Cancer Center, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48104, USA
| | - Sandra Schimmelpfennig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Jana Welzig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Sarah Sargin
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Otto Lindemann
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | | | - Sven G Meuth
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| |
Collapse
|
11
|
Beck S, Leitges M, Stegner D. Protein kinase Cι/λ is dispensable for platelet function in thrombosis and hemostasis in mice. Cell Signal 2017; 38:223-229. [PMID: 28739484 DOI: 10.1016/j.cellsig.2017.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
Abstract
Platelet activation at sites of vascular injury is crucial for hemostasis, but it may also cause myocardial infarction or ischemic stroke. Upon platelet activation, cytoskeletal reorganization is essential for platelet secretion and thrombus formation. Members of the protein kinase C family, which includes 12 isoforms, are involved in most platelet responses required for thrombus formation. The atypical protein kinase Cι/λ (PKCι/λ) has been implicated as an important mediator of cell polarity, carcinogenesis and immune cell responses. PKCι/λ is known to be associated with the small GTPase Cdc42, an important mediator of multiple platelet functions; however, its exact function in platelets is not known. To study the role of PKCι/λ, we generated platelet- and megakaryocyte-specific PKCι/λ knockout mice (Prkcifl/fl, Pf4-Cre) and used them to investigate the function of PKCι/λ in platelet activation and aggregation in vitro and in vivo. Surprisingly, lack of PKCι/λ had no detectable effect on platelet spreading and function in vitro and in vivo under all tested conditions. These results indicate that PKCι/λ is dispensable for Cdc42-triggered processes and for thrombosis and hemostasis in mice.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - David Stegner
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
Tanwar J, Trebak M, Motiani RK. Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:425-452. [PMID: 28900927 DOI: 10.1007/978-3-319-57732-6_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Store-operated Ca2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca2+ levels and transmits the message to plasma membrane Ca2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca2+ influx into the cells. This increase in cytosolic Ca2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.
| |
Collapse
|
13
|
Lopez JJ, Salido GM, Rosado JA. Cardiovascular and Hemostatic Disorders: SOCE and Ca 2+ Handling in Platelet Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:453-472. [PMID: 28900928 DOI: 10.1007/978-3-319-57732-6_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the Ca2+ entry mechanisms in platelets, store-operated Ca2+ entry (SOCE) plays a prominent role as it is necessary to achieve full activation of platelet functions and replenish intracellular Ca2+ stores. In platelets, as in other non-excitable cells, SOCE has been reported to involve the activation of plasma membrane channels by the ER Ca2+ sensor STIM1. Despite electrophysiological studies are not possible in human platelets, indirect analyses have revealed that the Ca2+-permeable channels involve Orai1 and, most likely, TRPC1 subunits. A relevant role for the latter has not been found in mouse platelets. There is a body of evidence revealing a number of abnormalities in SOCE or in its molecular regulators that result in qualitative platelet disorders and, as a consequence, altered platelet responsiveness upon stimulation with multiple physiological agonists. Platelet SOCE abnormalities include STIM1 and Orai1 mutations. This chapter summarizes the current knowledge in this field, as well as the disorders associated to platelet SOCE dysfunction.
Collapse
Affiliation(s)
- Jose J Lopez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Gines M Salido
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
14
|
Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis. Int J Mol Sci 2016; 17:ijms17122055. [PMID: 27941645 PMCID: PMC5187855 DOI: 10.3390/ijms17122055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Store-Operated Calcium Entry (SOCE) is a universal calcium (Ca2+) influx mechanism expressed by several different cell types. It is now known that Stromal Interaction Molecule (STIM), the Ca2+ sensor of the intracellular compartments, together with Orai and Transient Receptor Potential Canonical (TRPC), the subunits of Ca2+ permeable channels on the plasma membrane, cooperate in regulating multiple cellular functions as diverse as proliferation, differentiation, migration, gene expression, and many others, depending on the cell type. In particular, a growing body of evidences suggests that a tight control of SOCE expression and function is achieved by megakaryocytes along their route from hematopoietic stem cells to platelet production. This review attempts to provide an overview about the SOCE dynamics in megakaryocyte development, with a focus on most recent findings related to its involvement in physiological and pathological thrombopoiesis.
Collapse
|
15
|
Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves-Cintrón M, Navedo MF. Calcium Channels in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:49-87. [PMID: 28212803 DOI: 10.1016/bs.apha.2016.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) plays a central role in excitation, contraction, transcription, and proliferation of vascular smooth muscle cells (VSMs). Precise regulation of intracellular Ca2+ concentration ([Ca2+]i) is crucial for proper physiological VSM function. Studies over the last several decades have revealed that VSMs express a variety of Ca2+-permeable channels that orchestrate a dynamic, yet finely tuned regulation of [Ca2+]i. In this review, we discuss the major Ca2+-permeable channels expressed in VSM and their contribution to vascular physiology and pathology.
Collapse
Affiliation(s)
- D Ghosh
- University of California, Davis, CA, United States
| | - A U Syed
- University of California, Davis, CA, United States
| | - M P Prada
- University of California, Davis, CA, United States
| | - M A Nystoriak
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - L F Santana
- University of California, Davis, CA, United States
| | | | - M F Navedo
- University of California, Davis, CA, United States.
| |
Collapse
|
16
|
Store-Operated Calcium Entry in Müller Glia Is Controlled by Synergistic Activation of TRPC and Orai Channels. J Neurosci 2016; 36:3184-98. [PMID: 26985029 DOI: 10.1523/jneurosci.4069-15.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The endoplasmic reticulum (ER) is at the epicenter of astrocyte Ca(2+) signaling. We sought to identify the molecular mechanism underlying store-operated calcium entry that replenishes ER stores in mouse Müller cells. Store depletion, induced through blockade of sequestration transporters in Ca(2+)-free saline, induced synergistic activation of canonical transient receptor potential 1 (TRPC1) and Orai channels. Store-operated TRPC1 channels were identified by their electrophysiological properties, pharmacological blockers, and ablation of the Trpc1 gene. Ca(2+) release-activated currents (ICRAC) were identified by ion permeability, voltage dependence, and sensitivity to selective Orai antagonists Synta66 and GSK7975A. Depletion-evoked calcium influx was initiated at the Müller end-foot and apical process, triggering centrifugal propagation of Ca(2+) waves into the cell body. EM analysis of the end-foot compartment showed high-density ER cisternae that shadow retinal ganglion cell (RGC) somata and axons, protoplasmic astrocytes, vascular endothelial cells, and ER-mitochondrial contacts at the vitreal surface of the end-foot. The mouse retina expresses transcripts encoding both Stim and all known Orai genes; Müller glia predominantly express stromal interacting molecule 1 (STIM1), whereas STIM2 is mainly confined to the outer plexiform and RGC layers. Elimination of TRPC1 facilitated Müller gliosis induced by the elevation of intraocular pressure, suggesting that TRPC channels might play a neuroprotective role during mechanical stress. By characterizing the properties of store-operated signaling pathways in Müller cells, these studies expand the current knowledge about the functional roles these cells play in retinal physiology and pathology while also providing further evidence for the complexity of calcium signaling mechanisms in CNS astroglia. SIGNIFICANCE STATEMENT Store-operated Ca(2+) signaling represents a major signaling pathway and source of cytosolic Ca(2+) in astrocytes. Here, we show that the store-operated response in Müller cells, radial glia that perform key structural, signaling, osmoregulatory, and mechanosensory functions within the retina, is mediated through synergistic activation of transient receptor potential and Orai channels. The end-foot disproportionately expresses the depletion sensor stromal interacting molecule 1, which contains an extraordinarily high density of endoplasmic reticulum cisternae that shadow neuronal, astrocytic, vascular, and axonal structures; interface with mitochondria; but also originate store-operated Ca(2+) entry-induced transcellular Ca(2+) waves that propagate glial excitation into the proximal retina. These results identify a molecular mechanism that underlies complex interactions between the plasma membrane and calcium stores, and contributes to astroglial function, regulation, and response to mechanical stress.
Collapse
|
17
|
Ramanathan G, Mannhalter C. Increased expression of transient receptor potential canonical 6 (TRPC6) in differentiating human megakaryocytes. Cell Biol Int 2016; 40:223-31. [PMID: 26514329 DOI: 10.1002/cbin.10558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022]
Abstract
Members of the transient receptor potential (TRP) family of cation conducting channels are found in several tissues and cell types where they have different physiological functions. The canonical TRP channel 6 (TRPC6) is present on the platelet membrane and appears to participate in calcium influx during platelet activation. However, limited information is available on the importance of TRPC channels in megakaryocytes (MKs), the precursor cells of platelets. We determined the mRNA and protein expression of TRPC family members and investigated the role of TRPC6 for proliferation and differentiation of human MKs derived from CD34+ progenitor cells. TRPC6 transcripts were highly expressed during the differentiation of MKs and TRPC6 protein was detectable in MK cytoplasm by confocal staining. TRPC6 channel activity was modulated by pharmacological approaches using flufenamic acid (FFA) for activation and SKF96365 for inhibition. Upon FFA stimulation in MKs, an increase in intracellular calcium was observed, which was blocked by SKF96365 at 10 µM concentration. Incubation of MKs with SKF96365 resulted in a reduction in thrombopoietin-stimulated cell proliferation. Our results suggest a role of TRPC6 in calcium homeostasis during MK development, particularly for cell proliferation.
Collapse
Affiliation(s)
| | - Christine Mannhalter
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Berna-Erro A, Jardín I, Smani T, Rosado JA. Regulation of Platelet Function by Orai, STIM and TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:157-81. [PMID: 27161229 DOI: 10.1007/978-3-319-26974-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agonist-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca(2+) signals is store-operated Ca(2+) entry (SOCE), where the Ca(2+) sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca(2+) signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, 10003, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
19
|
Vemana HP, Karim ZA, Conlon C, Khasawneh FT. A critical role for the transient receptor potential channel type 6 in human platelet activation. PLoS One 2015; 10:e0125764. [PMID: 25928636 PMCID: PMC4416038 DOI: 10.1371/journal.pone.0125764] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022] Open
Abstract
While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders.
Collapse
Affiliation(s)
- Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Zubair A. Karim
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Christine Conlon
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Fadi T. Khasawneh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Potentiation of the store-operated calcium entry (SOCE) induces phytohemagglutinin-activated Jurkat T cell apoptosis. Cell Calcium 2015; 58:171-85. [PMID: 25963393 DOI: 10.1016/j.ceca.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/12/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) is the main Ca(2+) entry pathway of non-excitable cells. In the past decade, the activation of this entry has been unveiled, with STIM1, a protein of the endoplasmic reticulum able to sense the intraluminal Ca(2+) content, and Orai1, the pore-forming unit of the Ca(2+) release activated Ca(2+) (CRAC) channels. When Ca(2+) ions are released from the endoplasmic reticulum, STIM1 proteins oligomerize and directly interact with Orai1 proteins, allowing the opening of the CRAC channels and a massive Ca(2+) ion influx known as SOCE. As Ca(2+) is involved in various cellular processes, the discovery of new drugs acting on the SOCE should be of interest to control the cell activity. By testing analogs of 2-aminoethyl diphenylborinate (2-APB), a well known, though not so selective effector of the SOCE, we identified methoxy diethylborinate (MDEB), a molecule able to potentiate the SOCE in three leukocyte and two breast cancer cell lines by increasing the Ca(2+) influx amplitude. Unlike 2-APB, MDEB does not affect the Ca(2+) pumps or the Ca(2+) release from the endoplasmic reticulum. MDEB could therefore represent the first member of a new group of molecules, specifically able to potentiate SOCE. Although not toxic for non-activated Jurkat T cells, it could induce the apoptosis of phytohemagglutinin-stimulated cells.
Collapse
|
21
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
22
|
Abstract
SOCE (store-operated Ca2+ entry) is mediated via specific plasma membrane channels in response to ER (endoplasmic reticulum) Ca2+ store depletion. This route of Ca2+ entry is central to the dynamic interplay between Ca2+ and cAMP signalling in regulating the activity of Ca2+-sensitive adenylate cyclase isoforms (AC1, AC5, AC6 and AC8). Two proteins have been identified as key components of SOCE: STIM1 (stromal interaction molecule 1), which senses ER Ca2+ store content and translocates to the plasma membrane upon store depletion, where it then activates Orai1, the pore-forming component of the CRAC (Ca2+ release-activated Ca2+) channel. Previous studies reported that co-expression of STIM1 and Orai1 in HEK-293 (human embryonic kidney 293) cells enhances Ca2+-stimulated AC8 activity and that AC8 and Orai1 directly interact to enhance this regulation. Nonetheless, the additional involvement of TRPC (transient receptor potential canonical) channels in SOCE has also been proposed. In the present study, we evaluate the contribution of TRPC1 to SOCE-mediated regulation of Ca2+-sensitive ACs in HEK-293 cells stably expressing AC8 (HEK-AC8) and HSG (human submandibular gland) cells expressing an endogenous Ca2+-inhibited AC6. We demonstrate a role for TRPC1 as an integral component of SOCE, alongside STIM1 and Orai1, in regulating Ca2+ fluxes within AC microdomains and influencing cAMP production.
Collapse
|
23
|
Serrano-Flores B, Garay E, Vázquez-Cuevas FG, Arellano RO. Differential role of STIM1 and STIM2 during transient inward (T in) current generation and the maturation process in the Xenopus oocyte. BMC PHYSIOLOGY 2014; 14:9. [PMID: 25399338 PMCID: PMC4236480 DOI: 10.1186/s12899-014-0009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Xenopus oocyte is a useful cell model to study Ca2+ homeostasis and cell cycle regulation, two highly interrelated processes. Here, we used antisense oligonucleotides to investigate the role in the oocyte of stromal interaction molecule (STIM) proteins that are fundamental elements of the store-operated calcium-entry (SOCE) phenomenon, as they are both sensors for Ca2+ concentration in the intracellular reservoirs as well as activators of the membrane channels that allow Ca2+ influx. RESULTS Endogenous STIM1 and STIM2 expression was demonstrated, and their synthesis was knocked down 48-72 h after injecting oocytes with specific antisense sequences. Selective elimination of their mRNA and protein expression was confirmed by PCR and Western blot analysis, and we then evaluated the effect of their absence on two endogenous responses: the opening of SOC channels elicited by G protein-coupled receptor (GPCR)-activated Ca2+ release, and the process of maturation stimulated by progesterone. Activation of SOC channels was monitored electrically by measuring the T in response, a Ca2+-influx-dependent Cl- current, while maturation was assessed by germinal vesicle breakdown (GVBD) scoring and electrophysiology. CONCLUSIONS It was found that STIM2, but not STIM1, was essential in both responses, and T in currents and GVBD were strongly reduced or eliminated in cells devoid of STIM2; STIM1 knockdown had no effect on the maturation process, but it reduced the T in response by 15 to 70%. Thus, the endogenous SOCE response in Xenopus oocytes depended mainly on STIM2, and its expression was necessary for entry into meiosis induced by progesterone.
Collapse
|
24
|
Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator? Cells 2014; 3:939-62. [PMID: 25268281 PMCID: PMC4276908 DOI: 10.3390/cells3040939] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/07/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
Collapse
|
25
|
Albarran L, Berna-Erro A, Dionisio N, Redondo PC, Lopez E, Lopez JJ, Salido GM, Brull Sabate JM, Rosado JA. TRPC6 participates in the regulation of cytosolic basal calcium concentration in murine resting platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:789-96. [DOI: 10.1016/j.bbamcr.2014.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|
26
|
Di Buduo CA, Moccia F, Battiston M, De Marco L, Mazzucato M, Moratti R, Tanzi F, Balduini A. The importance of calcium in the regulation of megakaryocyte function. Haematologica 2014; 99:769-78. [PMID: 24463213 DOI: 10.3324/haematol.2013.096859] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Platelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry. Indeed, we demonstrate that megakaryocytes express the major candidates to mediate Store-Operated Calcium Entry, stromal interaction molecule 1, Orai1 and canonical transient receptor potential 1, which are activated upon either pharmacological or physiological depletion of the intracellular calcium pool. This mechanism is inhibited by phospholipase C or inositol-3-phosphate receptor inhibitors and by a specific calcium entry blocker. Studies on megakaryocyte behavior, on extracellular matrix proteins that support proplatelet extension, show that calcium mobilization from intracellular stores activates signaling cascades that trigger megakaryocyte adhesion and proplatelet formation, and promotes extracellular calcium entry which is primarily involved in the regulation of the contractile force responsible for megakaryocyte motility. These findings provide the first evidence that both calcium mobilization from intracellular stores and extracellular calcium entry specifically regulate human megakaryocyte functions.
Collapse
|
27
|
Abstract
The TRPC1 ion channel was the first mammalian TRP channel to be cloned. In humans, it is encoded by the TRPC1 gene located in chromosome 3. The protein is predicted to consist of six transmembrane segments with the N- and C-termini located in the cytoplasm. The extracellular loop connecting transmembrane segments 5 and 6 participates in the formation of the ionic pore region. Inside the cell, TRPC1 is present in the endoplasmic reticulum, plasma membrane, intracellular vesicles, and primary cilium, an antenna-like sensory organelle functioning as a signaling platform. In human and rodent tissues, it shows an almost ubiquitous expression. TRPC1 interacts with a diverse group of proteins including ion channel subunits, receptors, and cytosolic proteins to mediate its effect on Ca(2+) signaling. It primarily functions as a cation nonselective channel within pathways controlling Ca(2+) entry in response to cell surface receptor activation. Through these pathways, it affects basic cell functions, such as proliferation and survival, differentiation, secretion, and cell migration, as well as cell type-specific functions such as chemotropic turning of neuronal growth cones and myoblast fusion. The biological role of TRPC1 has been studied in genetically engineered mice where the Trpc1 gene has been experimentally ablated. Although these mice live to adulthood, they show defects in several organs and tissues, such as the cardiovascular, central nervous, skeletal and muscular, and immune systems. Genetic and functional studies have implicated TRPC1 in diabetic nephropathy, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, cancer, seizures, and Darier-White skin disease.
Collapse
Affiliation(s)
- Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|
28
|
Ambily A, Kaiser WJ, Pierro C, Chamberlain EV, Li Z, Jones CI, Kassouf N, Gibbins JM, Authi KS. The role of plasma membrane STIM1 and Ca(2+)entry in platelet aggregation. STIM1 binds to novel proteins in human platelets. Cell Signal 2013; 26:502-11. [PMID: 24308967 PMCID: PMC4062937 DOI: 10.1016/j.cellsig.2013.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 12/05/2022]
Abstract
Ca2 + elevation is essential to platelet activation. STIM1 senses Ca2 + in the endoplasmic reticulum and activates Orai channels allowing store-operated Ca2 + entry (SOCE). STIM1 has also been reported to be present in the plasma membrane (PM) with its N-terminal region exposed to the outside medium but its role is not fully understood. We have examined the effects of the antibody GOK/STIM1, which recognises the N-terminal region of STIM1, on SOCE, agonist-stimulated Ca2 + entry, surface exposure, in vitro thrombus formation and aggregation in human platelets. We also determined novel binding partners of STIM1 using proteomics. The dialysed GOK/STIM1 antibody failed to reduced thapsigargin- and agonist-mediated Ca2 + entry in Fura2-labelled cells. Using flow cytometry we detect a portion of STIM1 to be surface-exposed. The dialysed GOK/STIM1 antibody reduced thrombus formation by whole blood on collagen-coated capillaries under flow and platelet aggregation induced by collagen. In immunoprecipitation experiments followed by proteomic analysis, STIM1 was found to extract a number of proteins including myosin, DOCK10, thrombospondin-1 and actin. These studies suggest that PM STIM1 may facilitate platelet activation by collagen through novel interactions at the plasma membrane while the essential Ca2 +-sensing role of STIM1 is served by the protein in the ER. STIM1 promotes collagen induced platelet aggregation and thrombus formation. In human platelets SOCE activates but is not essential for platelet aggregation. Plasma membrane STIM1 may facilitate platelet activation independent of SOCE.
Collapse
Affiliation(s)
- A Ambily
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - W J Kaiser
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - C Pierro
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - E V Chamberlain
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - Z Li
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - C I Jones
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - N Kassouf
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - J M Gibbins
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - K S Authi
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
29
|
Hooper R, Samakai E, Kedra J, Soboloff J. Multifaceted roles of STIM proteins. Pflugers Arch 2013; 465:1383-96. [PMID: 23568369 DOI: 10.1007/s00424-013-1270-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Abstract
Stromal interaction molecules (STIM1 and STIM2) are critical components of store-operated calcium entry. Sensing depletion of endoplasmic reticulum (ER) Ca(2+) stores, STIM couples with plasma membrane Orai channels, resulting in the influx of Ca(2+) across the PM into the cytosol. Although best recognized for their primary role as ER Ca(2+) sensors, increasing evidence suggests that STIM proteins have a broader variety of sensory capabilities than first envisaged, reacting to cell stressors such as oxidative stress, temperature, and hypoxia. Further, the array of partners for STIM proteins is now understood to range far beyond the Orai channel family. Here we discuss the implications of STIM's expanding role, both as a stress sensor and a general modulator of multiple physiological processes in the cell.
Collapse
Affiliation(s)
- Robert Hooper
- Department of Biochemistry, Temple University School of Medicine, 3440 North Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The tight regulation of endothelial barrier function is of prime importance for physiology and, when this barrier is compromised, it contributes to pathophysiology. Endothelial cells that line the vasculature change shape, and monolayers of these cells react to thrombin with increased permeability. In vivo, this increased permeability allows for transudation of plasma proteins and edema formation. The endoplasmic reticulum-resident calcium (Ca2+) sensor stromal interacton molecule 1 (STIM1) is intimately involved in the cellular response to thrombin. In human endothelial cells, STIM1 fulfills its role within the thrombin signaling cascade independently of store-operated Ca2+ entry (SOCE) through Orai channels, and thus STIM1 emerges as a signaling component linking the thrombin receptor to RhoA activation and stress fiber formation. This SOCE-independent role of STIM1 highlights a surprising new aspect of this multifaceted cellular regulator.
Collapse
Affiliation(s)
- Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Goethestrasse 33, D-80336 Munich, Germany.
| | | |
Collapse
|
31
|
Bergmeier W, Weidinger C, Zee I, Feske S. Emerging roles of store-operated Ca²⁺ entry through STIM and ORAI proteins in immunity, hemostasis and cancer. Channels (Austin) 2013; 7:379-91. [PMID: 23511024 DOI: 10.4161/chan.24302] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is an important Ca(2+) influx pathway, which is defined by the fact that depletion of intracellular Ca(2+) stores, mainly the endoplasmic reticulum (ER), triggers the opening of Ca(2+) channels in the plasma membrane. The best characterized SOC channel is the Ca(2+) release-activated Ca(2+) (CRAC) channel, which was first described in cells of the immune system but has since been reported in many different cell types. CRAC channels are multimers of ORAI family proteins, of which ORAI1 is the best characterized. They are activated by stromal interaction molecules (STIM) 1 and 2, which respond to the depletion of intracellular Ca(2+) stores with oligomerization and binding to ORAI proteins. The resulting SOCE is critical for the physiological function of many cell types including immune cells and platelets. Recent studies using cell lines, animal models and primary cells from human patients with defects in SOCE have highlighted the importance of this Ca(2+) entry mechanism in a variety of pathophysiological processes. This review focuses on the role of SOCE in immunity to infection, allergy, hemostasis and cancer.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and Biophysics; McAllister Heart Institute; University of North Carolina; Chapel Hill, NC USA
| | - Carl Weidinger
- Department of Pathology; New York University Langone Medical Center; New York, NY USA
| | - Isabelle Zee
- Department of Pathology; New York University Langone Medical Center; New York, NY USA
| | - Stefan Feske
- Department of Pathology; New York University Langone Medical Center; New York, NY USA
| |
Collapse
|
32
|
Contribution and regulation of TRPC channels in store-operated Ca2+ entry. CURRENT TOPICS IN MEMBRANES 2013; 71:149-79. [PMID: 23890115 DOI: 10.1016/b978-0-12-407870-3.00007-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Store-operated calcium entry (SOCE) is activated in response to depletion of the endoplasmic reticulum-Ca(2+) stores following stimulation of plasma membrane receptors that couple to PIP2 hydrolysis and IP3 generation. Search for the molecular components of SOCE channels led to the identification of mammalian transient receptor potential canonical (TRPC) family of calcium-permeable channels (TRPC1-TRPC7), which are all activated in response to stimuli that result in PIP2 hydrolysis. While several TRPCs, including TRPC1, TRPC3, and TRPC4, have been implicated in SOCE, the data are most consistent for TRPC1. Extensive studies in cell lines and knockout mouse models have established the contribution of TRPC1 to SOCE. Furthermore, there is a critical functional interaction between TRPC1 and the key components of SOCE, STIM1, and Orai1, which determines the activation of TRPC1. Orai1-mediated Ca(2+) entry is required for recruitment of TRPC1 and its insertion into surface membranes while STIM1 gates the channel. Notably, TRPC1 and Orai1 generate distinct patterns of Ca(2+) signals in cells that are decoded for the regulation of specific cellular functions. Thus, SOCE appears to be a complex process that depends on temporal and spatial coordination of several distinct steps mediated by proteins in different cellular compartments. Emerging data suggest that, in many cell types, the net Ca(2+) entry measured in response to store depletion is the result of the coordinated regulation of different calcium-permeable ion channels. Orai1 and STIM1 are central players in this process, and by mediating recruitment or activation of other Ca(2+) channels, Orai1-CRAC function can elicit rapid changes in global and local [Ca(2+)]i signals in cells. It is most likely that the type of channels and the [Ca(2+)]i signature that are generated by this process reflect the physiological function of the cell that is regulated by Ca(2+).
Collapse
|
33
|
Heemskerk JWM, Mattheij NJA, Cosemans JMEM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013; 11:2-16. [PMID: 23106920 DOI: 10.1111/jth.12045] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets in a thrombus interact with (anti)coagulation factors and support blood coagulation. In the concept of cell-based control of coagulation, three different roles of platelets can be distinguished: control of thrombin generation, support of fibrin formation, and regulation of fibrin clot retraction. Here, we postulate that different populations of platelets with distinct surface properties are involved in these coagulant functions. Platelets with elevated Ca(2+) and exposed phosphatidylserine control thrombin and fibrin generation, while platelets with activated α(IIb) β(3) regulate clot retraction. We review how coagulation factor binding depends on the platelet activation state. Furthermore, we discuss the ligands, platelet receptors and downstream intracellular signaling pathways implicated in these coagulant functions. These insights lead to an adapted model of platelet-based coagulation.
Collapse
Affiliation(s)
- J W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | | | | |
Collapse
|
34
|
Spatial and temporal characteristics of Ca2+ signaling in endothelial cells of intact rat tail artery. Artery Res 2013. [DOI: 10.1016/j.artres.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
35
|
López E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC. FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:652-62. [PMID: 23228564 DOI: 10.1016/j.bbamcr.2012.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/17/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
Abstract
Immunophilins are FK506-binding proteins that have been involved in the regulation of calcium homeostasis, either by modulating Ca(2+) channels located in the plasma membrane or in the rough endoplasmic reticulum (RE). We have investigated whether immunophilins would participate in the regulation of stored-operated Ca(2+) entry (SOCE) in human platelets and MEG 01. Both cell types were loaded with fura-2 for determining cytosolic calcium concentration changes ([Ca(2+)](c)), or stimulated and fixed to evaluate the protein interaction profile by performing immunoprecipitation and western blotting. We have found that incubation of platelets with FK506 increases Ca(2+) mobilization. Thapsigargin (TG)-evoked, Thr-evoked SOCE and TG-evoked Mn(2+) entry resulted in significant reduction by treatment of platelets with immunophilin antagonists. We confirmed by immunoprecipitation that immunophilins interact with transient receptor potential channel 1 (TRPC1) and Orai1 in human platelets. FK506 and rapamycin reduced the association between TRPC1 and Orai1 with FK506 binding protein (52) (FKBP52) in human platelets, and between TRPC1 and the type II IP(3)R, which association is known to be crucial for the maintenance of SOCE in human platelets. FKBP52 role in SOCE activation was confirmed by silencing FKBP52 using SiRNA FKBP52 in MEG 01 as demonstrated by single cell configuration imaging technique. TRPC1 silencing and depletion of cell of TRPC1 and FKBP52 simultaneously, impair activation of SOCE evoked by TG in MEG 01. Finally, in MEG 01 incubated with FK506 we observed a reduction in TRPC1/FKBP52 coupling, and similarly, FKBP52 silencing reduced the association between IP3R type II and TRPC1 during SOCE. All together, these results demonstrate that immunophilins participate in the regulation of SOCE in human platelets.
Collapse
Affiliation(s)
- Esther López
- Department of Physiology Cellular Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain
| | | | | | | | | |
Collapse
|
36
|
Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012; 13:549-65. [PMID: 22914293 DOI: 10.1038/nrm3414] [Citation(s) in RCA: 537] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal interaction molecule (STIM) proteins function in cells as dynamic coordinators of cellular calcium (Ca(2+)) signals. Spanning the endoplasmic reticulum (ER) membrane, they sense tiny changes in the levels of Ca(2+) stored within the ER lumen. As ER Ca(2+) is released to generate primary Ca(2+) signals, STIM proteins undergo an intricate activation reaction and rapidly translocate into junctions formed between the ER and the plasma membrane. There, STIM proteins tether and activate the highly Ca(2+)-selective Orai channels to mediate finely controlled Ca(2+) signals and to homeostatically balance cellular Ca(2+). Details are emerging on the remarkable organization within these STIM-induced junctional microdomains and the identification of new regulators and alternative target proteins for STIM.
Collapse
Affiliation(s)
- Jonathan Soboloff
- Department of Biochemistry, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Ion channels are transmembrane proteins that play ubiquitous roles in cellular homeostasis and activation. In addition to their recognized role in the regulation of ionic permeability and thus membrane potential, some channel proteins possess intrinsic kinase activity, directly interact with integrins or are permeable to molecules up to ≈1000 Da. The small size and anuclear nature of the platelet has often hindered progress in understanding the role of specific ion channels in hemostasis, thrombosis and other platelet-dependent events. However, with the aid of transgenic mice and 'surrogate' patch clamp recordings from primary megakaryocytes, important unique contributions to platelet function have been identified for several classes of ion channel. Examples include ATP-gated P2X1 channels, Orai1 store-operated Ca2+ channels, voltage-gated Kv1.3 channels, AMPA and kainate glutamate receptors and connexin gap junction channels. Furthermore, evidence exists that some ion channels, such as NMDA glutamate receptors, contribute to megakaryocyte development. This review examines the evidence for expression of a range of ion channels in the platelet and its progenitor cell, and highlights the distinct roles that these proteins may play in health and disease.
Collapse
Affiliation(s)
- M P Mahaut-Smith
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.
| |
Collapse
|
38
|
Molnar T, Barabas P, Birnbaumer L, Punzo C, Kefalov V, Križaj D. Store-operated channels regulate intracellular calcium in mammalian rods. J Physiol 2012; 590:3465-81. [PMID: 22674725 DOI: 10.1113/jphysiol.2012.234641] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Exposure to daylight closes cyclic nucleotide-gated (CNG) and voltage-operated Ca(2+) -permeable channels in mammalian rods. The consequent lowering of the cytosolic calcium concentration ([Ca(2+)](i)), if protracted, can contribute to light-induced damage and apoptosis in these cells. We here report that mouse rods are protected against prolonged lowering of [Ca(2+)](i) by store-operated Ca(2+) entry (SOCE). Ca(2+) stores were depleted in Ca(2+)-free saline supplemented with the endoplasmic reticulum (ER) sequestration blocker cyclopiazonic acid. Store depletion elicited [Ca(2+)](i) signals that exceeded baseline [Ca(2+)](i) by 5.9 ± 0.7-fold and were antagonized by an inhibitory cocktail containing 2-APB, SKF 96365 and Gd(3+). Cation influx through SOCE channels was sufficient to elicit a secondary activation of L-type voltage-operated Ca2+ entry. We also found that TRPC1, the type 1 canonical mammalian homologue of the Drosophila photoreceptor TRP channel, is predominantly expressed within the outer nuclear layer of the retina. Rod loss in Pde6b(rdl) (rd1), Chx10/Kip1(-/-rdl) and Elovl4(TG2) dystrophic models was associated with ∼70% reduction in Trpc1 mRNA content whereas Trpc1 mRNA levels in rodless cone-full Nrl(-/-) retinas were decreased by ∼50%. Genetic ablation of TRPC1 channels, however, had no effect on SOCE, the sensitivity of the rod phototransduction cascade or synaptic transmission at rod and cone synapses. Thus, we localized two new mechanisms, SOCE and TRPC1, to mammalian rods and characterized the contribution of SOCE to Ca(2+) homeostasis. By preventing the cytosolic [Ca(2+)](i) from dropping too low under sustained saturating light conditions, these signalling pathways may protect Ca(2+)-dependent mechanisms within the ER and the cytosol without affecting normal rod function.
Collapse
Affiliation(s)
- Tünde Molnar
- Department of Ophthalmology & Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ramanathan G, Gupta S, Thielmann I, Pleines I, Varga-Szabo D, May F, Mannhalter C, Dietrich A, Nieswandt B, Braun A. Defective diacylglycerol-induced Ca2+ entry but normal agonist-induced activation responses in TRPC6-deficient mouse platelets. J Thromb Haemost 2012; 10:419-29. [PMID: 22176814 DOI: 10.1111/j.1538-7836.2011.04596.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Platelet adhesion, activation and aggregation at sites of vascular injury are essential processes for primary hemostasis. Elevation of the intracellular Ca(2+) concentration is a central event in platelet activation but the underlying mechanisms are not fully understood. Store-operated calcium entry (SOCE) through Orai1 was shown to be the main Ca(2+) influx pathway in murine platelets, but there are additional non-store-operated Ca(2+) (non-SOC) and receptor operated Ca(2+) (ROC) channels expressed in the platelet plasma membrane. OBJECTIVE Canonical transient receptor potential (TRPC) channel 6 is found both in human and murine platelets and has been proposed to mediate diacylglycerol (DAG) activated ROCE but also a role in the regulation of SOCE has been suggested. METHODS To investigate the function of TRPC6 in platelet Ca(2+) signaling and activation, we analyzed platelets from mice deficient in TRPC6 using a wide range of in vitro and in vivo assays. RESULTS In the mutant platelets, DAG activated Ca(2+) influx was found to be abolished. However, this did not significantly affect SOCE or agonist induced Ca(2+) responses. Platelet function in vitro and in vivo was also unaltered in the absence of TRPC6. CONCLUSION Our results indicate that DAG activated ROCE is mediated exclusively by TRPC6 in murine platelets, but this Ca(2+) influx has no major functional relevance for hemostasis and thrombosis. Further, in contrast to previous suggestions, based on studies with human platelets, TRPC6 appears to play an insignificant role in the regulation of SOCE in murine platelets.
Collapse
Affiliation(s)
- G Ramanathan
- Chair of Vascular Medicine, DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 2011; 287:3530-40. [PMID: 22157757 DOI: 10.1074/jbc.m111.283218] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration.
Collapse
Affiliation(s)
- Ursula Storch
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
42
|
Ma X, Cheng KT, Wong CO, O'Neil RG, Birnbaumer L, Ambudkar IS, Yao X. Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2+) entry in vascular endothelial cells. Cell Calcium 2011; 50:502-9. [PMID: 21930300 DOI: 10.1016/j.ceca.2011.08.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/18/2011] [Accepted: 08/28/2011] [Indexed: 01/06/2023]
Abstract
There is controversy as to whether TRP channels participate in mediating store-operated current (I(SOC)) and store-operated Ca(2+) entry (SOCE). Our recent study has demonstrated that TRPC1 forms heteromeric channels with TRPV4 in vascular endothelial cells and that Ca(2+) store depletion enhances the vesicle trafficking of heteromeric TRPV4-C1 channels, causing insertion of more channels into the plasma membrane in vascular endothelial cells. In the present study, we determined whether the enhanced TRPV4-C1 insertion to the plasma membrane could contribute to SOCE and I(SOC). We found that thapsigargin-induced SOCE was much lower in aortic endothelial cells derived from trpv4(-/-) or trpc1(-/-) knockout mice when compared to that of wild-type mice. In human umbilical vein endothelial cells (HUVECs), thapsigargin-induced SOCE was markedly reduced by knocking down the expression of TRPC1 and/or TRPV4 with respective siRNAs. Brefeldin A, a blocker of vesicular translocation, inhibited the SOCE. These results suggest that an enhanced vesicular trafficking of heteromeric TRPV4-C1 channels contributes to SOCE in vascular endothelial cells. Vascular tension studies suggest that such an enhanced trafficking of TRPV4-C1 channels may play a role in thapsigargin-induced vascular relaxation in rat small mesenteric arteries.
Collapse
Affiliation(s)
- Xin Ma
- School of Biomedical Sciences, Chinese University of Hong Kong
| | | | | | | | | | | | | |
Collapse
|
43
|
Nieswandt B, Pleines I, Bender M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 2011; 9 Suppl 1:92-104. [PMID: 21781245 DOI: 10.1111/j.1538-7836.2011.04361.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Platelet adhesion, activation and aggregation on the exposed subendothelial extracellular matrix (ECM) are essential for haemostasis, but may also lead to occlusion of diseased vessels. Binding of the glycoprotein (GP)Ib-V-IX complex to immobilised von Willebrand factor (VWF) initiates adhesion of flowing platelets to the ECM, and thereby enables the collagen receptor GPVI to interact with its ligand and to mediate platelet activation. This process is reinforced by locally produced thrombin and platelet-derived secondary mediators, such as adenosine diphosphate (ADP) and thromboxane A(2) (TxA(2)). Together, these events promote a shift of β1 and β3 integrins from a low to a high affinity state for their ligands through 'inside-out' signalling allowing firm platelet adhesion and aggregation. Formed platelet aggregates are stabilised by fibrin formation and signalling events between adjacent platelets involving multiple platelet receptors, such as the newly discovered C-type lectin-like receptor 2 (CLEC-2). While occlusive thrombus formation is the principal pathogenic event in myocardial infarction, the situation is more complex in ischaemic stroke where infarct development often progresses despite sustained early reperfusion of previously occluded major intracranial arteries, a process referred to as 'reperfusion injury'. Increasing experimental evidence now suggests that early platelet adhesion and activation events, orchestrate a 'thrombo-inflammatory' cascade in this setting, whereas platelet aggregation and thrombus formation are not required. This review summarises recent developments in understanding the principal platelet adhesion receptor systems with a focus on their involvement in arterial thrombosis and ischaemic stroke models.
Collapse
Affiliation(s)
- B Nieswandt
- Vascular Medicine, University Hospital Würzburg and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
44
|
Oláh T, Fodor J, Ruzsnavszky O, Vincze J, Berbey C, Allard B, Csernoch L. Overexpression of transient receptor potential canonical type 1 (TRPC1) alters both store operated calcium entry and depolarization-evoked calcium signals in C2C12 cells. Cell Calcium 2011; 49:415-25. [DOI: 10.1016/j.ceca.2011.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 12/25/2022]
|
45
|
Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS. Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions. PLoS Biol 2011; 9:e1001025. [PMID: 21408196 PMCID: PMC3050638 DOI: 10.1371/journal.pbio.1001025] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/27/2011] [Indexed: 11/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca2+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent ISOC, activated in response to Ca2+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated ICRAC; the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(684EE685). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca2+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd3+, removal of extracellular Ca2+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca2+-containing, but not Ca2+-free, medium. Consistent with this, ICRAC is activated in cells pretreated with thapsigargin in Ca2+-free medium while ISOC is activated in cells pretreated in Ca2+-containing medium. Significantly, TRPC1 function is required for sustained KCa activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca2+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca2+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE. Store-operated Ca2+ entry is present in all cell types and determines sustained cytosolic [Ca2+] increases that are critical for regulating a wide variety of physiological functions. This Ca2+ entry mechanism is activated in response to depletion of Ca2+ in the endoplasmic reticulum (ER). When ER [Ca2+] is decreased, the Ca2+-sensor protein STIM1 aggregates in the ER membrane and moves to regions in the periphery of the cells where it interacts with and activates two major types of channels that contribute to store-operated Ca2+ entry: CRAC and SOC. While gating of Orai1 by STIM1 is sufficient for CRAC channel activity, both Orai1 and transient receptor potential channel 1 (TRPC1) contribute to SOC channel function. The molecular composition of SOC channels and the critical role of Orai1 in activation of TRPC1 have not yet been established. In this study, we demonstrate that TRPC1 and Orai1 are components of distinct channels, both of which are regulated by STIM1. Importantly, we show that Orai1-mediated Ca2+ entry triggers plasma membrane insertion of TRPC1 which is then gated by STIM1. Ca2+ entry via functional TRPC1-STIM1 channels provides additional increase in cytosolic [Ca2+] that is required for regulation of specific cell functions such as KCa activation. Together, our findings elucidate the critical role of Orai1 in TRPC1 channel function. We suggest that the regulation of TRPC1 trafficking provides a mechanism for rapidly modulating cytosolic [Ca2+] following Ca2+ store depletion.
Collapse
Affiliation(s)
- Kwong Tai Cheng
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - Xibao Liu
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - William Swaim
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - Indu S. Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Dellis O, Mercier P, Chomienne C. The boron-oxygen core of borinate esters is responsible for the store-operated calcium entry potentiation ability. BMC Pharmacol 2011; 11:1. [PMID: 21266088 PMCID: PMC3036632 DOI: 10.1186/1471-2210-11-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 01/26/2011] [Indexed: 05/16/2025] Open
Abstract
Background Store-Operated Calcium Entry (SOCE) is the major Ca2+ ion entry pathway in lymphocytes and is responsible of a severe combined immunodeficiency (SCID) when deficient. It has recently been observed or highlighted in other cell types such as myoblasts and neurons, suggesting a wider physiological role of this pathway. Whereas Orai1 protein is considered to be the channel allowing the SOCE in T cells, it is hypothesized that other proteins like TRPC could associate with Orai1 to form SOCE with different pharmacology and kinetics in other cell types. Unraveling SOCE cell functions requires specific effectors to be identified, just as dihydropyridines were crucial for the study of Ca2+ voltage-gated channels, or spider/snake toxins for other ion channel classes. To identify novel SOCE effectors, we analyzed the effects of 2-aminoethyl diphenylborinate (2-APB) and its analogues. 2-APB is a molecule known to both potentiate and inhibit T cell SOCE, but it is also an effector of TRP channels and endoplasmic reticulum Ca2+-ATPase. Results A structure-function analysis allowed to discover that the boron-oxygen core present in 2-APB and in the borinate ester analogues is absolutely required for the dual effects on SOCE. Indeed, a 2-APB analogue where the boron-oxygen core is replaced by a carbon-phosphorus core is devoid of potentiating capacity (while retaining inhibition capacity), highlighting the key role of the boron-oxygen core present in borinate esters for the potentiation function. However, dimesityl borinate ester, a 2-APB analogue with a terminal B-OH group showed an efficient inhibitory ability, without any potentiating capacity. The removal or addition of phenyl groups respectively decrease or increase the efficiency of the borinate esters to potentiate and inhibit the SOCE. mRNA expression revealed that Jurkat T cells mainly expressed Orai1, and were the more sensitive to 2-APB modulation of SOCE. Conclusions This study allows the discovery of new boron-oxygen core containing compounds with the same ability as 2-APB to both potentiate and inhibit the SOCE of different leukocyte cell lines. These compounds could represent new tools to characterize the different types of SOCE and the first step in the development of new immunomodulators.
Collapse
Affiliation(s)
- Olivier Dellis
- INSERM UMR-S 940, Institut Universitaire d'Hématologie - Université Denis Diderot Paris 7, Hôpital Saint Louis, Paris, France.
| | | | | |
Collapse
|
47
|
Putney JW. The physiological function of store-operated calcium entry. Neurochem Res 2011; 36:1157-65. [PMID: 21234676 DOI: 10.1007/s11064-010-0383-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 01/22/2023]
Abstract
Store-operated Ca(2+) entry is a process whereby the depletion of intracellular Ca(2+) stores signals the opening of plasma membrane Ca(2+) channels. It has long been thought that the main function of store-operated Ca(2+) entry was the replenishment of intracellular Ca(2+) stores following their discharge during intracellular Ca(2+) signaling. Recent results, however, suggest that the primary function of these channels may be to provide direct Ca(2+) signals to recipients localized to spatially restricted areas close to the sites of Ca(2+) entry in order to initiate specific signaling pathways.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
48
|
Cheng KT, Ong HL, Liu X, Ambudkar IS. Contribution of TRPC1 and Orai1 to Ca(2+) entry activated by store depletion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:435-49. [PMID: 21290310 DOI: 10.1007/978-94-007-0265-3_24] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is activated in response to depletion of the ER-Ca(2+) stores by the ER Ca(2+) sensor protein, STIM1 which oligomerizes and moves to ER/PM junctional domains where it interacts with and activates channels involved in SOCE. Two types of channel activities have been described. I(CRAC), via Ca(2+) release-activated Ca(2+) (CRAC) channel, which displays high Ca(2+) selectivity and accounts for the SOCE and cell function in T lymphocytes, mast cells, platelets, and some types of smooth muscle and endothelial cells. Orai1 has been established as the pore-forming component of CRAC channels and interaction of Orai1 with STIM1 is sufficient for generation of the CRAC channel. Store depletion also leads to activation of relatively non-selective cation currents (referred to as I(SOC)) that contribute to SOCE in several other cell types. TRPC channels, including TRPC1, TRPC3, and TRPC4, have been proposed as possible candidate channels for this Ca(2+) influx. TRPC1 is the best characterized channel in this regard and reported to contribute to endogenous SOCE in many cells types. TRPC1-mediated Ca(2+) entry and cation current in cells stimulated with agonist or thapsigargin are inhibited by low [Gd(3+)] and 10-20 μM 2APB (conditions that block SOCE). Importantly, STIM1 also associates with and gates TRPC1 via electrostatic interaction between STIM1 ((684)KK(685)) and TRPC1 ((639)DD(640)). Further, store depletion induces dynamic recruitment of a TRPC1/STIM1/Orai1 complex and knockdown of Orai1 completely abrogates TRPC1 function. Despite these findings, there has been much debate regarding the activation of TRPC1 by store depletion as well as the role of Orai1 and STIM1 in SOC channel function. This chapter summarizes recent studies and concepts regarding the contributions of Orai1 and TRPC1 to SOCE. Major unresolved questions regarding functional interaction between Orai1 and TRPC1 as well as possible mechanisms involved in the regulation of TRPC channels by store depletion will be discussed.
Collapse
Affiliation(s)
- Kwong Tai Cheng
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
49
|
TRP channels in the cardiopulmonary vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:781-810. [PMID: 21290327 DOI: 10.1007/978-94-007-0265-3_41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential (TRP) channels are expressed in almost every human tissue, including the heart and the vasculature. They play unique roles not only in physiological functions but, if over-expressed, also in pathophysiological disease states. Cardiovascular diseases are the leading cause of death in the industrialized countries. Therefore, TRP channels are attractive drug targets for more effective pharmacological treatments of these diseases. This review focuses on three major cell types of the cardiovascular system: cardiomyocytes as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. TRP channels initiate multiple signals in all three cell types (e.g. contraction, migration) and are involved in gene transcription leading to cell proliferation or cell death. Identification of their genes has significantly improved our knowledge of multiple signal transduction pathways in these cells. Some TRP channels are important cellular sensors and are mostly permeable to Ca(2+), while most other TRP channels are receptor activated and allow for the entry of Na(+), Ca(2+) and Mg(2+). Physiological functions of TRPA, TRPC, TRPM, TRPP and TRPV channels in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. The involvement of TRPs as homomeric or heteromeric channels in pathophysiological processes in the cardiovascular system like heart failure, cardiac hypertrophy, hypertension as well as edema formation by increased endothelial permeability will be discussed.
Collapse
|
50
|
Protein kinase C alpha enhances sodium-calcium exchange during store-operated calcium entry in mouse platelets. Cell Calcium 2010; 48:333-40. [PMID: 21094527 DOI: 10.1016/j.ceca.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/20/2022]
Abstract
A rise in intracellular calcium concentration ([Ca(2+)](i)) is necessary for platelet activation. A major component of the [Ca(2+)](i) elevation occurs through store-operated Ca(2+) entry (SOCE). The aim of this study was to understand the contribution of the classical PKC isoform, PKCα to platelet SOCE, using platelets from PKCα-deficient mice. SOCE was reduced by approximately 50% in PKCα(-/-) platelets, or following treatment with bisindolylmaleimide I, a PKC inhibitor. However, TG-induced Mn(2+) entry was unaffected, which suggests that divalent cation entry through store-operated channels is not directly regulated. Blocking the autocrine action of secreted ADP or 5-HT on its receptors did not reproduce the effect of PKCα deficiency. In contrast, SN-6, a Na(+)/Ca(2+) exchanger inhibitor, did reduce SOCE to the same extent as loss of PKCα, as did replacing extracellular Na(+) with NMDG(+). These treatments had no further effect in PKCα(-/-) platelets. These data suggest that PKCα enhances the extent of SOCE in mouse platelets by regulating Ca(2+) entry through the Na(+)/Ca(2+) exchanger.
Collapse
|