1
|
Roca M, Eren GG, Böger L, Didenko O, Lo WS, Scholz M, Lightfoot JW. Evolution of sensory systems underlies the emergence of predatory feeding behaviours in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644997. [PMID: 40196577 PMCID: PMC11974876 DOI: 10.1101/2025.03.24.644997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sensory systems are the primary interface between an organism and its environment with changes in selectivity or sensitivity representing key events in behavioural evolution. Here, we explored the molecular modifications influencing sensory perception across the nematode phyla. Pristionchus pacificus is a predatory species and has evolved contact-dependent sensing and teeth-like structures to attack prey. Using mutants defective for mechanosensory neuron function, we found an expanded role for this sensory modality in efficient predation alongside its canonical function in sensing aversive touch. To identify the precise mechanism involved in this tactile divergence we generated mutations in 26 canonical mechanosensory genes and tested their function using a combination of behavioural assays, automated behavioural tracking and machine learning. While mechanosensory defects were observed in several mutants, Ppa-mec-6 mutants specifically also induced predation deficiencies. Previously, a similar phenotype was observed in a chemosensory defective mutant and we found a synergistic influence on predation in mutants lacking both sensory inputs. Importantly, both chemosensory and mechanosensory receptor expression converge on the same environmentally exposed IL2 neurons revealing these as the primary mechanism for sensing prey. Thus, predation evolved through the co-option of both mechanosensory and chemosensory systems which act synergistically to shape the evolution of complex behavioural traits.
Collapse
Affiliation(s)
- Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Güniz Göze Eren
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Leonard Böger
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Olena Didenko
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Wen-Sui Lo
- Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| |
Collapse
|
2
|
Wu J, Feng S, Luo Y, Ning Y, Qiu P, Lin Y, Ma F, Zhuo Y. Transcriptomic profile of premature ovarian insufficiency with RNA-sequencing. Front Cell Dev Biol 2024; 12:1370772. [PMID: 38655066 PMCID: PMC11035783 DOI: 10.3389/fcell.2024.1370772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction This study aimed to explore the transcriptomic profile of premature ovarian insufficiency (POI) by investigating alterations in gene expression. Methods A total of sixty-one women, comprising 31 individuals with POI in the POI group and 30 healthy women in the control group (HC group), aged between 24 and 40 years, were recruited for this study. The transcriptomic profiles of peripheral blood samples from all study subjects were analyzed using RNA-sequencing. Results The results revealed 39 differentially expressed genes in individuals with POI compared to healthy controls, with 10 upregulated and 29 downregulated genes. Correlation analysis highlighted the relationship between the expression of SLC25A39, CNIH3, and PDZK1IP1 and hormone levels. Additionally, an effective classification model was developed using SLC25A39, CNIH3, PDZK1IP1, SHISA4, and LOC389834. Functional enrichment analysis demonstrated the involvement of these differentially expressed genes in the "haptoglobin-hemoglobin complex," while KEGG pathway analysis indicated their participation in the "Proteoglycans in cancer" pathway. Conclusion The identified genes could play a crucial role in characterizing the genetic foundation of POI, potentially serving as valuable biomarkers for enhancing disease classification accuracy.
Collapse
Affiliation(s)
- Jiaman Wu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Feng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingping Qiu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yanting Lin
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Fei Ma
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zhuo
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
3
|
Yang Y, Guo W, Wang M, Zhang D. Genome-Wide Characterization and Gene Expression Analysis of TRP Channel Superfamily Genes in the Migratory Locust, Locusta migratoria. Genes (Basel) 2023; 14:1427. [PMID: 37510331 PMCID: PMC10379062 DOI: 10.3390/genes14071427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The TRP channel superfamily was widely found in multiple species. They were involved in many extrasensory perceptions and were important for adapting to the environment. The migratory locust was one of the worldwide agricultural pests due to huge damage. In this study, we identified 13 TRP superfamily genes in the locust genome. The number of LmTRP superfamily genes was consistent with most insects. The phylogenetic tree showed that LmTRP superfamily genes could be divided into seven subfamilies. The conserved motifs and domains analysis documented that LmTRP superfamily genes contained unique characteristics of the TRP superfamily. The expression profiles in different organs identified LmTRP superfamily genes in the head and antennae, which were involved in sensory function. The expression pattern of different life phases also demonstrated that LmTRP superfamily genes were mainly expressed in third-instar nymphs and male adults. Our findings could contribute to a better understanding of the TRP channel superfamily gene and provide potential targets for insect control.
Collapse
Affiliation(s)
- Yong Yang
- The International Centre for Precision Environmental Health and Governance, The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Wenhui Guo
- The International Centre for Precision Environmental Health and Governance, The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Mingjun Wang
- The International Centre for Precision Environmental Health and Governance, The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Daochuan Zhang
- The International Centre for Precision Environmental Health and Governance, The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Positive interaction between ASH and ASK sensory neurons accelerates nociception and inhibits behavioral adaptation. iScience 2022; 25:105287. [PMID: 36304123 PMCID: PMC9593764 DOI: 10.1016/j.isci.2022.105287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/22/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Central and peripheral sensory neurons tightly regulate nociception and avoidance behavior. The peripheral modulation of nociception provides more veridical and instantaneous information for animals to achieve rapid, more fine-tuned and concentrated behavioral responses. In this study, we find that positive interaction between ASH and ASK sensory neurons is essential for the fast-rising phase of ASH Ca2+ responses to noxious copper ions and inhibits the adaption of avoiding Cu2+. We reveal the underlying neuronal circuit mechanism. ASK accelerates the ASH Ca2+ responses by transferring cGMP through gap junctions. ASH excites ASK via a disinhibitory neuronal circuit composed of ASH, AIA, and ASK. Avoidance adaptation depends on the slope rate of the rising phase of ASH Ca2+ responses. Thus, in addition to amplitude, sensory kinetics is significant for sensations and behaviors, especially for sensory and behavioral adaptations.
Collapse
|
5
|
Bao K, Liu W, Song Z, Feng J, Mao Z, Bao L, Sun T, Hu Z, Li J. Crotamiton derivative JM03 extends lifespan and improves oxidative and hypertonic stress resistance in Caenorhabditis elegans via inhibiting OSM-9. eLife 2022; 11:72410. [PMID: 35510610 PMCID: PMC9071264 DOI: 10.7554/elife.72410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
While screening our in-house 1072 marketed drugs for their ability to extend the lifespan using Caenorhabditis elegans (C. elegans) as an animal model, crotamiton (N-ethyl-o-crotonotoluidide) showed anti-aging activity and was selected for further structural optimization. After replacing the ortho-methyl of crotamiton with ortho-fluoro, crotamiton derivative JM03 was obtained and showed better activity in terms of lifespan-extension and stress resistance than crotamiton. It was further explored that JM03 extended the lifespan of C. elegans through osmotic avoidance abnormal-9 (OSM-9). Besides, JM03 improves the ability of nematode to resist oxidative stress and hypertonic stress through OSM-9, but not osm-9/capsaicin receptor related-2 (OCR-2). Then the inhibition of OSM-9 by JM03 reduces the aggregation of Q35 in C. elegans via upregulating the genes associated with proteostasis. SKN-1 signaling was also found to be activated after JM03 treatment, which might contribute to proteostasis, stress resistance and lifespan extension. In summary, this study explored a new small molecule derived from crotamiton, which has efficient anti-oxidative, anti-hypertonic, and anti-aging effects, and could further lead to promising application prospects.
Collapse
Affiliation(s)
- Keting Bao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, China
| | - Zhouzhi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiali Feng
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhifan Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lingyuan Bao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tianyue Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zelan Hu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, China.,Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali, China.,Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Bicarbonate-Triggered In Vitro Capacitation of Boar Spermatozoa Conveys an Increased Relative Abundance of the Canonical Transient Receptor Potential Cation (TRPC) Channels 3, 4, 6 and 7 and of CatSper-γ Subunit mRNA Transcripts. Animals (Basel) 2022; 12:ani12081012. [PMID: 35454259 PMCID: PMC9031844 DOI: 10.3390/ani12081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The detection of sub-fertile boars has been a difficult task, and despite their prevalence being low, its impact is very significant because it implies economic drawbacks for artificial insemination (AI) centers and farms. Unfortunately, some crucial reproductive processes fall beyond the routine analysis performed in the porcine model, such as sperm capacitation, which is a necessary event for fertilization. A synergistic action of bicarbonate (HCO3−) with calcium (Ca2+) is needed to achieve capacitation. The transport of Ca2+ is mediated by CatSper channels and Canonical Transient Potential Channels (TRPC). We quantified mRNA transcripts of different subunits of CatSper (β, γ and δ) and TRPC (1, 3, 4, 6 and 7) before and after in vitro capacitation by HCO3− ions. Our results showed that in vitro capacitation using HCO3− increases the relative abundance of mRNA transcripts of almost all subunits of Ca2+ channels, except CatSper-δ and TRPC1, which were significantly reduced. More studies are needed to elucidate the specific roles of the TRPC channels at a physiological and functional level. Abstract Sperm capacitation is a stepwise complex biochemical process towards fertilization. It includes a crucial early calcium (Ca2+) transport mediated by CatSper channels and Canonical Transient Potential Channels (TRPC). We studied the relative abundance of mRNA transcripts changes of the CatSper β, γ and δ subunits and TRPC-channels 1, 3, 4, 6 and 7 in pig spermatozoa, after triggering in vitro capacitation by bicarbonate ions at levels present in vivo at the fertilization site. For this purpose, we analyzedfive5 ejaculate pools (from three fertile adult boars) before (control-fresh samples) and after in vitro exposure to capacitation conditions (37 mM NaHCO3, 2.25 mM CaCl2, 2 mM caffeine, 0.5% bovine serum albumin and 310 mM lactose) at 38 °C, 5% CO2 for 30 min. In vitro capacitation using bicarbonate elicits an increase in the relative abundance of mRNA transcripts of almost all studied Ca2+ channels, except CatSper-δ and TRPC1 (significantly reduced). These findings open new avenues of research to identify the specific role of each channel in boar sperm capacitation and elucidate the physiological meaning of the changes on sperm mRNA cargo.
Collapse
|
7
|
Lezama-García K, Mota-Rojas D, Pereira AMF, Martínez-Burnes J, Ghezzi M, Domínguez A, Gómez J, de Mira Geraldo A, Lendez P, Hernández-Ávalos I, Falcón I, Olmos-Hernández A, Wang D. Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals (Basel) 2022; 12:106. [PMID: 35011212 PMCID: PMC8749608 DOI: 10.3390/ani12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences, [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Adriana Domínguez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Jocelyn Gómez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Pamela Lendez
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico;
| | - Isabel Falcón
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
8
|
Akhilesh, Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci 2022; 288:120187. [PMID: 34856209 DOI: 10.1016/j.lfs.2021.120187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is among the most common clinical complications associated with the use of anti-cancer drugs. CINP occurs in nearly 68.1% of the cancer patients receiving chemotherapeutic drugs. Most of the clinically available analgesics are ineffective in the case of CINP patients as the pathological mechanisms involved with different chemotherapeutic drugs are distinct from each other. CINP triggers the somatosensory nervous system, increases the neuronal firing and activation of nociceptive mediators including transient receptor protein vanilloid 1 (TRPV1). TRPV1 is widely present in the peripheral nociceptive nerve cells and it has been reported that the higher expression of TRPV1 in DRGs serves a critical role in the potentiation of CINP. The therapeutic glory of TRPV1 is well recognized in clinics which gives a promising insight into the treatment of pain. But the adverse effects associated with some of the antagonists directed the scientists towards RNA interference (RNAi), a tool to silence gene expression. Thus, ongoing research is focused on developing small interfering RNA (siRNA)-based therapeutics targeting TRPV1. In this review, we have discussed the involvement of TRPV1 in the nociceptive signaling associated with CINP and targeting this nociceptor, using siRNA will potentially arm us with effective therapeutic interventions for the clinical management of CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nimisha Verma
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
9
|
Peng C, Yang Z, Liu Z, Wang S, Yu H, Cui C, Hu Y, Xing Q, Hu J, Huang X, Bao Z. A Systematical Survey on the TRP Channels Provides New Insight into Its Functional Diversity in Zhikong Scallop ( Chlamys farreri). Int J Mol Sci 2021; 22:ijms222011075. [PMID: 34681735 PMCID: PMC8539334 DOI: 10.3390/ijms222011075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential (TRP) channel plays a significant role in mediating various sensory physiological functions. It is widely present in the vertebrate and invertebrate genomes and can be activated by multiple compounds, messenger molecules, temperature, and mechanical stimulation. Mollusks are the second largest phylum of the animal kingdom and are sensitive to environmental factors. However, the molecular underpinnings through which mollusks sense and respond to environmental stimulus are unknown. In this study, we systematically identified and characterized 17 TRP channels (C.FA TRPs, seven subfamilies) in the genome of the Zhikong scallop (Chlamys farreri). All C.FA TRPs had six transmembrane structures (TM1–TM6). The sequences and structural features of C.FA TRPs are highly conserved with TRP channels of other species. Spatiotemporal expression profiling suggested that some C.FA TRPs participated in the early embryonic development of scallops and the sensory process of adult tissues. Notably, the expression of C.FA TRPM3 continuously increased during developmental stages and was highest among all C.FA TRPs. C.FA TRPC-α was specifically expressed in eyes, which may be involved in light transmission of scallop eyes. Under high temperature stress, C.FA TRPA1 and C.FA TRPA1-homolog upregulated significantly, which indicated that the TRPA subfamily is the thermoTRPs channel of scallops. Our results provided the first systematic study of TRP channels in scallops, and the findings will provide a valuable resource for a better understanding of TRP evolution and function in mollusks.
Collapse
Affiliation(s)
- Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence:
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| |
Collapse
|
10
|
Yang Y, Liu Y, Song H, Li Y, Wang Q. Design, Synthesis, and Insecticidal Activity of Novel Triazone Derivatives Containing Sulfonamide or Sulfonimide Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10790-10796. [PMID: 34375105 DOI: 10.1021/acs.jafc.1c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
On the basis of sulfonamide moieties widely used in drugs and the mode of action of pymetrozine and the structures of some transient receptor potential channel antagonists and to improve the insecticidal activities of triazone insecticides, a series of triazone derivatives containing sulfonamide or sulfonimide moieties were designed, synthesized, and characterized. The bioassay results showed that most of these derivatives containing sulfonamide moieties exhibited excellent insecticidal activities against Aphis craccivora. Especially, (substituted)phenylsulfonylamino triazones I-9 (LC50 = 2.9869 mg/kg), I-10 (LC50 = 3.4957 mg/kg), I-11 (LC50 = 2.3154 mg/kg), I-12 (LC50 = 4.1614 mg/kg), I-13 (LC50 = 2.1690 mg/kg), and I-14 (LC50 = 3.0077 mg/kg) exhibited much higher aphicidal activity than pymetrozine (LC50 = 6.0635 mg/kg). All monosulfonyl-substituted 4-amino-triazinones had better activities than the corresponding disulfonyl-substituted compounds. In addition, some derivatives also exhibited insecticidal activities against Culex pipiens pallens. Among Helicoverpa armigera, Mythimna separata, and Ostrinia nubilalis, compounds I-18 and I-21 exhibited good larvicidal activities (LC50 values were 0.6929 and 0.2592 mg/kg, respectively) against C. pipiens pallens.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
11
|
Park KM, Kim SD, Park JB, Hong SJ, Ryu PD. Electrophysiological Properties of Ion Channels in Ascaris suum Tissue Incorporated into Planar Lipid Bilayers. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:329-339. [PMID: 34470084 PMCID: PMC8413856 DOI: 10.3347/kjp.2021.59.4.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022]
Abstract
Ion channels are important targets of anthelmintic agents. In this study, we identified 3 types of ion channels in Ascaris suum tissue incorporated into planar lipid bilayers using an electrophysiological technique. The most frequent channel was a large-conductance cation channel (209 pS), which accounted for 64.5% of channels incorporated (n=60). Its open-state probability (Po) was ~0.3 in the voltage range of −60~+60 mV. A substate was observed at 55% of the main-state. The permeability ratio of Cl− to K+ (PCl/PK) was ~0.5 and PNa/PK was 0.81 in both states. Another type of cation channel was recorded in 7.5% of channels incorporated (n=7) and discriminated from the large-conductance cation channel by its smaller conductance (55.3 pS). Its Po was low at all voltages tested (~0.1). The third type was an anion channel recorded in 27.9% of channels incorporated (n=26). Its conductance was 39.0 pS and PCl/PK was 8.6±0.8. Po was ~1.0 at all tested potentials. In summary, we identified 2 types of cation and 1 type of anion channels in Ascaris suum. Gating of these channels did not much vary with voltage and their ionic selectivity is rather low. Their molecular nature, functions, and potentials as anthelmintic drug targets remain to be studied further.
Collapse
Affiliation(s)
- Kwon Moo Park
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sun-Don Kim
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,ChemOn Inc., Yongin 17162, Korea
| | - Jin Bong Park
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Redolfi N, García-Casas P, Fornetto C, Sonda S, Pizzo P, Pendin D. Lighting Up Ca 2+ Dynamics in Animal Models. Cells 2021; 10:2133. [PMID: 34440902 PMCID: PMC8392631 DOI: 10.3390/cells10082133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) signaling coordinates are crucial processes in brain physiology. Particularly, fundamental aspects of neuronal function such as synaptic transmission and neuronal plasticity are regulated by Ca2+, and neuronal survival itself relies on Ca2+-dependent cascades. Indeed, impaired Ca2+ homeostasis has been reported in aging as well as in the onset and progression of neurodegeneration. Understanding the physiology of brain function and the key processes leading to its derangement is a core challenge for neuroscience. In this context, Ca2+ imaging represents a powerful tool, effectively fostered by the continuous amelioration of Ca2+ sensors in parallel with the improvement of imaging instrumentation. In this review, we explore the potentiality of the most used animal models employed for Ca2+ imaging, highlighting their application in brain research to explore the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paloma García-Casas
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Chiara Fornetto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Sonia Sonda
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
13
|
Ronan EA, Xiao R, Shawn Xu XZ. TRP channels: Intestinal bloating TRiPs up pathogen avoidance. Cell Calcium 2021; 98:102446. [PMID: 34303264 DOI: 10.1016/j.ceca.2021.102446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
Transient receptor potential (TRP) channels are expressed in many nonneural tissues where their functions are not well known. Using C. elegans as a model, a new study demonstrated that colonization of the Gram-positive pathogenic bacteria E. faecalis in the intestine causes intestinal distention. Two TRPM channels sense such intestinal distension to trigger fast pathogen avoidance behavior, thereby limiting pathogen infection. This work signifies the novel role of TRP channels in gut physiology and pathogen defense.
Collapse
Affiliation(s)
- Elizabeth A Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor 48109, United States
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL 32610, United States.
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor 48109, United States.
| |
Collapse
|
14
|
Chen Z, Kerwin M, Keenan O, Montell C. Conserved Modules Required for Drosophila TRP Function in Vivo. J Neurosci 2021; 41:5822-5832. [PMID: 34099505 PMCID: PMC8265800 DOI: 10.1523/jneurosci.0200-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Transient receptor potential (TRP) channels are broadly required in animals for sensory physiology. To provide insights into regulatory mechanisms, the structures of many TRPs have been solved. This has led to new models, some of which have been tested in vitro Here, using the classical TRP required for Drosophila visual transduction, we uncovered structural requirements for channel function in photoreceptor cells. Using a combination of molecular genetics, field recordings, protein expression analysis, and molecular modeling, we interrogated roles for the S4-S5 linker and the TRP domain, and revealed mutations in the S4-S5 linker that impair channel opening or closing. We also uncovered differential requirements for the two highly conserved motifs in the TRP domain for activation and protein stability. By performing genetic complementation, we found an intrasubunit interaction between the S4-S5 linker and the S5 segment that contributes to activation. This analysis highlights key structural requirements for TRP channel opening, closing, folding, and for intrasubunit interactions in a native context-Drosophila photoreceptor cells.SIGNIFICANCE STATEMENT The importance of TRP channels for sensory biology and human health has motivated tremendous effort in trying to understand the roles of the structural motifs essential for their activation, inactivation, and protein folding. In the current work, we have exploited the unique advantages of the Drosophila visual system to reveal mechanistic insights into TRP channel function in a native system-photoreceptor cells. Using a combination of electrophysiology (field recordings), cell biology, and molecular modeling, we have revealed roles of key motifs for activation, inactivation and protein folding of TRP in vivo.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Maggie Kerwin
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Orlaith Keenan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
15
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Xiao R, Xu XZS. Temperature Sensation: From Molecular Thermosensors to Neural Circuits and Coding Principles. Annu Rev Physiol 2020; 83:205-230. [PMID: 33085927 DOI: 10.1146/annurev-physiol-031220-095215] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Temperature is a universal cue and regulates many essential processes ranging from enzymatic reactions to species migration. Due to the profound impact of temperature on physiology and behavior, animals and humans have evolved sophisticated mechanisms to detect temperature changes. Studies from animal models, such as mouse, Drosophila, and C. elegans, have revealed many exciting principles of thermosensation. For example, conserved molecular thermosensors, including thermosensitive channels and receptors, act as the initial detectors of temperature changes across taxa. Additionally, thermosensory neurons and circuits in different species appear to adopt similar logic to transduce and process temperature information. Here, we present the current understanding of thermosensation at the molecular and cellular levels. We also discuss the fundamental coding strategies of thermosensation at the circuit level. A thorough understanding of thermosensation not only provides key insights into sensory biology but also builds a foundation for developing better treatments for various sensory disorders.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging and Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA;
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
17
|
Wypych D, Pomorski P. Calcium Signaling in Glioma Cells: The Role of Nucleotide Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:67-86. [PMID: 32034709 DOI: 10.1007/978-3-030-30651-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y1 and P2Y12 nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
18
|
Paulsen RT, Burrell BD. Comparative studies of endocannabinoid modulation of pain. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190279. [PMID: 31544609 PMCID: PMC6790382 DOI: 10.1098/rstb.2019.0279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech Hirudo verbana. Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | - Brian D. Burrell
- Division of Basic Biomedical Sciences, Neuroscience, Nanotechnology, and Networks Program, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
19
|
Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Exp Gerontol 2018; 114:99-106. [PMID: 30399408 PMCID: PMC6336457 DOI: 10.1016/j.exger.2018.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 01/26/2023]
Abstract
Lifespan extension under low temperature is well conserved across both endothermic and exothermic taxa, but the mechanism underlying this change in aging is poorly understood. Low temperature is thought to decrease metabolic rate, thus slowing the accumulation of cellular damage from reactive oxygen species, although recent evidence suggests involvement of specific cold-sensing biochemical pathways. We tested the effect of low temperature on aging in 11 strains of Brachionus rotifers, with the hypothesis that if the mechanism of lifespan extension is purely thermodynamic, all strains should have a similar increase in lifespan. We found differences in change in median lifespan ranging from a 6% decrease to a 100% increase, as well as differences in maximum and relative lifespan extension and in mortality rate. Low temperature delays reproductive senescence in most strains, suggesting an extension of healthspan, even in strains with little to no change in lifespan. The combination of low temperature and caloric restriction in one strain resulted in an additive lifespan increase, indicating these interventions may work via non- or partially-overlapping pathways. The known low temperature sensor TRPA1 is present in the rotifer genome, but chemical TRPA1 agonists did not affect lifespan, suggesting that this gene may be involved in low temperature sensation but not in chemoreception in rotifers. The congeneric variability in response to low temperature suggests that the mechanism of low temperature lifespan extension is an active genetic process rather than a passive thermodynamic one and is dependent upon genotype.
Collapse
|
20
|
Startek JB, Voets T, Talavera K. To flourish or perish: evolutionary TRiPs into the sensory biology of plant-herbivore interactions. Pflugers Arch 2018; 471:213-236. [PMID: 30229297 DOI: 10.1007/s00424-018-2205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
The interactions between plants and their herbivores are highly complex systems generating on one side an extraordinary diversity of plant protection mechanisms and on the other side sophisticated consumer feeding strategies. Herbivores have evolved complex, integrative sensory systems that allow them to distinguish between food sources having mere bad flavors from the actually toxic ones. These systems are based on the senses of taste, olfaction and somatosensation in the oral and nasal cavities, and on post-ingestive chemosensory mechanisms. The potential ability of plant defensive chemical traits to induce tissue damage in foragers is mainly encoded in the latter through chemesthetic sensations such as burning, pain, itch, irritation, tingling, and numbness, all of which induce innate aversive behavioral responses. Here, we discuss the involvement of transient receptor potential (TRP) channels in the chemosensory mechanisms that are at the core of complex and fascinating plant-herbivore ecological networks. We review how "sensory" TRPs are activated by a myriad of plant-derived compounds, leading to cation influx, membrane depolarization, and excitation of sensory nerve fibers of the oronasal cavities in mammals and bitter-sensing cells in insects. We also illustrate how TRP channel expression patterns and functionalities vary between species, leading to intriguing evolutionary adaptations to the specific habitats and life cycles of individual organisms.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium. .,VIB Center for Brain & Disease Research, Leuven, Belgium.
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
21
|
A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol 2018; 16:e2004929. [PMID: 29883446 PMCID: PMC6010301 DOI: 10.1371/journal.pbio.2004929] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/20/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Animal locomotion is mediated by a sensory system referred to as proprioception. Defects in the proprioceptive coordination of locomotion result in uncontrolled and inefficient movements. However, the molecular mechanisms underlying proprioception are not fully understood. Here, we identify two transient receptor potential cation (TRPC) channels, trp-1 and trp-2, as necessary and sufficient for proprioceptive responses in C. elegans head steering locomotion. Both channels are expressed in the SMDD neurons, which are required and sufficient for head bending, and mediate coordinated head steering by sensing mechanical stretches due to the contraction of head muscle and orchestrating dorsal head muscle contractions. Moreover, the SMDD neurons play dual roles to sense muscle stretch as well as to control muscle contractions. These results demonstrate that distinct locomotion patterns require dynamic and homeostatic modulation of feedback signals between neurons and muscles. Proprioception provides the nervous system with feedback about body posture in animals and is essential for the generation of coherent locomotive behaviors, such as walking, running, or crawling. However, little is known about the identity of proprioceptive receptors that sense body movement to regulate locomotion and the extent to which proprioception modulates sensorimotor coordination. Here, we analyze the molecular mechanisms that control head steering locomotion of Caenorhabditis elegans. We show that this movement is regulated by the transient receptor potential cation (TRPC) channels TRP-1 and TRP-2 and the SMDD proprioceptive neurons. We observe that mutant animals for both channels are defective in head steering locomotion and that ectopic expression of TRP-1 or TPR-2 in a C. elegans chemosensory neuron confers head bending–dependent responses, suggesting roles for these channels in proprioception. We also find that SMDD neurons are both necessary and sufficient to generate head steering locomotion via the two channels. Moreover, we demonstrate that the proprioceptive system mediates locomotion coordination by desynchronizing activities in motor systems. We conclude that two TRPC channels in collaboration with the proprioceptive receptor SMDD neurons control head steering in worms during forward locomotion.
Collapse
|
22
|
Sheng Y, Tang L, Kang L, Xiao R. Membrane ion Channels and Receptors in Animal lifespan Modulation. J Cell Physiol 2017; 232:2946-2956. [PMID: 28121014 PMCID: PMC7008462 DOI: 10.1002/jcp.25824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023]
Abstract
Acting in the interfaces between environment and membrane compartments, membrane ion channels, and receptors transduce various physical and chemical cues into downstream signaling events. Not surprisingly, these membrane proteins play essential roles in a wide range of cellular processes such as sensory perception, synaptic transmission, cellular growth and development, fate determination, and apoptosis. However, except insulin and insulin-like growth factor receptors, the functions of membrane receptors in animal lifespan modulation have not been well appreciated. On the other hand, although ion channels are popular therapeutic targets for many age-related diseases, their potential roles in aging itself are largely neglected. In this review, we will discuss our current understanding of the conserved functions and mechanisms of membrane ion channels and receptors in the modulation of lifespan across multiple species including Caenorhabditis elegans, Drosophila, mouse, and human.
Collapse
Affiliation(s)
- Yi Sheng
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lanlan Tang
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lijun Kang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xiao
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
- Center for Smell and Taste, University of Florida, Gainesville, Florida
- Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
He Z. TRPC Channel Downstream Signaling Cascades. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:25-33. [PMID: 28508310 DOI: 10.1007/978-94-024-1088-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The family of TRP channel is comprised of a large group of cation-permeable channels, displaying as signaling integrators for sensing extracellular stimulus and initiating intracellular signaling cascades. This chapter offers a brief review of the signaling molecules related to TRPC channels, the first identified mammalian TRP family. Besides the signaling molecules involved in TRPC activation, I will focus on their upstream and downstream signaling cascades and the molecules involved in their intracellular trafficking.
Collapse
Affiliation(s)
- Zhuohao He
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Promotion of behavior and neuronal function by reactive oxygen species in C. elegans. Nat Commun 2016; 7:13234. [PMID: 27824033 PMCID: PMC5105148 DOI: 10.1038/ncomms13234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) are well known to elicit a plethora of detrimental effects on cellular functions by causing damages to proteins, lipids and nucleic acids. Neurons are particularly vulnerable to ROS, and nearly all forms of neurodegenerative diseases are associated with oxidative stress. Here, we report the surprising finding that exposing C. elegans to low doses of H2O2 promotes, rather than compromises, sensory behavior and the function of sensory neurons such as ASH. This beneficial effect of H2O2 is mediated by an evolutionarily conserved peroxiredoxin-p38/MAPK signaling cascade. We further show that p38/MAPK signals to AKT and the TRPV channel OSM-9, a sensory channel in ASH neurons. AKT phosphorylates OSM-9, and such phosphorylation is required for H2O2-induced potentiation of sensory behavior and ASH neuron function. Our results uncover a beneficial effect of ROS on neurons, revealing unexpected complexity of the action of oxidative stressors in the nervous system. The deleterious role of reactive oxygen species has been widely reported in the nervous system. Here the authors report that surprisingly, low doses of H2O2 in fact enhances sensory neuron function and promotes sensory behaviors in C. elegans.
Collapse
|
25
|
Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel. Nat Commun 2016; 7:13135. [PMID: 27731314 PMCID: PMC5064019 DOI: 10.1038/ncomms13135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity. TRPV are cation channels activated by physical and chemical stimuli. Here the authors show that nicotinamide is a soluble, endogenous agonist for orthologous TRPV channels from C. elegans and Drosophila, unveiling a metabolic-based regulation for TRPV channel activity.
Collapse
|
26
|
Yang Y, Liu Y, Song H, Li Y, Wang Q. Design, synthesis, insecticidal activity, and structure-activity relationship (SAR): studies of novel triazone derivatives containing a urea bridge group based on transient receptor potential (TRP) channels. Mol Divers 2016; 20:919-932. [PMID: 27385263 DOI: 10.1007/s11030-016-9687-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/19/2016] [Indexed: 12/01/2022]
Abstract
Numerous compounds containing urea bridge and biurea moieties are used in a variety of fields, especially as drugs and pesticides. To search for novel, environmentally benign and ecologically safe pesticides with unique modes of action, four series of novel triazone analogues containing urea, thiourea, biurea, and thiobiurea bridge, respectively, were designed and synthesized, according to various calcium ion channel inhibitors which act on transient receptor potential protein. Their structures were characterized by [Formula: see text] NMR, [Formula: see text] NMR, and HRMS. The insecticidal activities of the new compounds were obtained. The bioassay results indicated that compounds containing a thiourea bridge and a thiobiurea bridge exhibited excellent insecticidal activities against bean aphid. Specifically, compounds [Formula: see text], [Formula: see text], and [Formula: see text] exhibited 85, 90, and 95 % activities, respectively, at 10 mg/kg. Compounds [Formula: see text] (30 %), [Formula: see text] (35 %), [Formula: see text] (30 %), and [Formula: see text] (40 %) exhibited the approximate aphicidal activity of pymetrozine (30 %) at 5 mg/kg. In addition, some target compounds exhibited insecticidal activities against lepidopteran pests. From a molecular design standpoint, the information obtained in this study could help in the further design of new derivatives with improved insecticidal activities.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
27
|
Majhi RK, Saha S, Kumar A, Ghosh A, Swain N, Goswami L, Mohapatra P, Maity A, Kumar Sahoo V, Kumar A, Goswami C. Expression of temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate evolution. PeerJ 2015; 3:e1310. [PMID: 26500819 PMCID: PMC4614861 DOI: 10.7717/peerj.1310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8) is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th-5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA). We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.
Collapse
Affiliation(s)
- Rakesh Kumar Majhi
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Somdatta Saha
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India
| | - Ashutosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Arijit Ghosh
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Nirlipta Swain
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Luna Goswami
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India
| | - Pratyush Mohapatra
- Department of Zoology, Government Science College, Chatrapur, Ganjam, Odisha, India
| | - Apratim Maity
- Department of Veterinary Biochemistry, CVSc & AH, Orissa University of Agriculture & Technology, Bhubaneswar, Orissa, India
| | - Vivek Kumar Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel, SH, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| |
Collapse
|
28
|
Gopal S, Søgaard P, Multhaupt HAB, Pataki C, Okina E, Xian X, Pedersen ME, Stevens T, Griesbeck O, Park PW, Pocock R, Couchman JR. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 2015; 210:1199-211. [PMID: 26391658 PMCID: PMC4586746 DOI: 10.1083/jcb.201501060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Syndecans regulate members of the transient receptor potential family to control cytosolic calcium levels with impact on cell adhesion, junction formation, and neuronal guidance. Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.
Collapse
Affiliation(s)
- Sandeep Gopal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pernille Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Csilla Pataki
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Okina
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xiaojie Xian
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikael E Pedersen
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troy Stevens
- Department of Pharmacology, Center for Lung Biology, University of South Alabama, Mobile, AL 36688 Department of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL 36688
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Pyong Woo Park
- Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115 Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Roger Pocock
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
29
|
The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression. Cancers (Basel) 2015; 7:1447-71. [PMID: 26264026 PMCID: PMC4586778 DOI: 10.3390/cancers7030845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.
Collapse
|
30
|
Thermosensation and longevity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:857-67. [PMID: 26101089 DOI: 10.1007/s00359-015-1021-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022]
Abstract
Temperature has profound effects on behavior and aging in both poikilotherms and homeotherms. To thrive under the ever fluctuating environmental temperatures, animals have evolved sophisticated mechanisms to sense and adapt to temperature changes. Animals sense temperature through various molecular thermosensors, such as thermosensitive transient receptor potential (TRP) channels expressed in neurons, keratinocytes, and intestine. These evolutionarily conserved thermosensitive TRP channels feature distinct activation thresholds, thereby covering a wide spectrum of ambient temperature. Temperature changes trigger complex thermosensory behaviors. Due to the simplicity of the nervous system in model organisms such as Caenorhabditis elegans and Drosophila, the mechanisms of thermosensory behaviors in these species have been extensively studied at the circuit and molecular levels. While much is known about temperature regulation of behavior, it remains largely unclear how temperature affects aging. Recent studies in C. elegans demonstrate that temperature modulation of longevity is not simply a passive thermodynamic phenomenon as suggested by the rate-of-living theory, but rather a process that is actively regulated by genes, including those encoding thermosensitive TRP channels. In this review, we discuss our current understanding of thermosensation and its role in aging.
Collapse
|
31
|
Laursen WJ, Anderson EO, Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2015; 2:214-26. [PMID: 27227025 PMCID: PMC4843866 DOI: 10.1080/23328940.2014.1000702] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Cellular and Molecular Physiology; Yale University School of Medicine; New Haven, CT, USA; Program in Cellular Neuroscience; Neurodegeneration and Repair; Yale University School of Medicine; New Haven, CT, USA
| | - Evan O Anderson
- Department of Cellular and Molecular Physiology; Yale University School of Medicine ; New Haven, CT, USA
| | - Lydia J Hoffstaetter
- Department of Cellular and Molecular Physiology; Yale University School of Medicine; New Haven, CT, USA; Program in Cellular Neuroscience; Neurodegeneration and Repair; Yale University School of Medicine; New Haven, CT, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology; Yale University School of Medicine ; New Haven, CT, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology; Yale University School of Medicine; New Haven, CT, USA; Program in Cellular Neuroscience; Neurodegeneration and Repair; Yale University School of Medicine; New Haven, CT, USA
| |
Collapse
|
32
|
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 2015; 67:36-73. [PMID: 25361914 DOI: 10.1124/pr.114.009555] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Sensory nerves are equipped with receptors and ion channels that allow them to detect and respond to diverse chemical, mechanical, and thermal stimuli. These sensory proteins include G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) ion channels. A subclass of peptidergic sensory nerves express GPCRs and TRP channels that detect noxious, irritant, and inflammatory stimuli. Activation of these nerves triggers protective mechanisms that lead to withdrawal from danger (pain), removal of irritants (itch, cough), and resolution of infection (neurogenic inflammation). The GPCR-TRP axis is central to these mechanisms. Signals that emanate from the GPCR superfamily converge on the small TRP family, leading to channel sensitization and activation, which amplify pain, itch, cough, and neurogenic inflammation. Herein we discuss how GPCRs and TRP channels function independently and synergistically to excite sensory nerves that mediate noxious and irritant responses and inflammation in the skin and the gastrointestinal and respiratory systems. We discuss the signaling mechanisms that underlie the GPCR-TRP axis and evaluate how new information about the structure of GPCRs and TRP channels provides insights into their functional interactions. We propose that a deeper understanding of the GPCR-TRP axis may facilitate the development of more selective and effective therapies to treat dysregulated processes that underlie chronic pain, itch, cough, and inflammation.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Megan Grace
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Peter McIntyre
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| |
Collapse
|
33
|
Lindy AS, Parekh PK, Zhu R, Kanju P, Chintapalli SV, Tsvilovskyy V, Patterson RL, Anishkin A, van Rossum DB, Liedtke WB. TRPV channel-mediated calcium transients in nociceptor neurons are dispensable for avoidance behaviour. Nat Commun 2014; 5:4734. [PMID: 25178952 PMCID: PMC4164786 DOI: 10.1038/ncomms5734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/17/2014] [Indexed: 12/21/2022] Open
Abstract
Animals need to sense and react to potentially dangerous environments. TRP ion channels participate in nociception, presumably via Ca2+ influx, in most animal species. However, the relationship between ion permeation and animals’ nocifensive behaviour is unknown. Here we use an invertebrate animal model with relevance for mammalian pain. We analyse the putative selectivity filter of OSM-9, a TRPV channel, in osmotic avoidance behaviour of Caenorhabditis elegans. Using mutagenized OSM-9 expressed in the head nociceptor neuron, ASH, we study nocifensive behaviour and Ca2+ influx. Within the selectivity filter, M601-F609, Y604G strongly reduces avoidance behaviour and eliminates Ca2+ transients. Y604F also abolishes Ca2+ transients in ASH, while sustaining avoidance behaviour, yet it disrupts behavioral plasticity. Homology modelling of the OSM-9 pore suggests that Y604 may assume a scaffolding role. Thus, aromatic residues in the OSM-9 selectivity filter are critical for pain behaviour and ion permeation. These findings have relevance for understanding evolutionary roots of mammalian nociception. TRPs are calcium-permeable channels involved in the sensing of damaging stimuli but the relationship between calcium influx and pain behaviour has been elusive. Here the authors find that the TRP channel OSM-9 functions as an ion channel in vivo in C. elegans, and establish residues that are critical for worm pain-like behaviour.
Collapse
Affiliation(s)
- Amanda S Lindy
- 1] Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Puja K Parekh
- Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Richard Zhu
- Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Patrick Kanju
- Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sree V Chintapalli
- 1] Department of Membrane Biology and Physiology, University of California, Davis, California 95616, USA [2] Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616, USA
| | - Volodymyr Tsvilovskyy
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Randen L Patterson
- 1] Department of Membrane Biology and Physiology, University of California, Davis, California 95616, USA [2] Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616, USA
| | - Andriy Anishkin
- 1] Center for Computational Proteomics, The Pennsylvania State University, University Park, Pennsylvania 16801, USA [2] Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, USA
| | - Damian B van Rossum
- 1] Center for Computational Proteomics, The Pennsylvania State University, University Park, Pennsylvania 16801, USA [2] Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, USA
| | - Wolfgang B Liedtke
- 1] Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Duke University Clinics for Pain and Palliative Care, 932 Morreene Road, Durham, North Carolina 27705, USA [3] Departments of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA [4] Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
34
|
Venkatachalam K, Luo J, Montell C. Evolutionarily conserved, multitasking TRP channels: lessons from worms and flies. Handb Exp Pharmacol 2014; 223:937-62. [PMID: 24961975 DOI: 10.1007/978-3-319-05161-1_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Transient Receptor Potential (TRP) channel family is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling. TRPs allow animals to detect chemicals, mechanical force, light, and changes in temperature. Consequently, these channels control a plethora of animal behaviors. Moreover, their functions are not limited to the classical senses, as they are cellular sensors, which are critical for ionic homeostasis and metabolism. Two genetically tractable invertebrate model organisms, Caenorhabditis elegans and Drosophila melanogaster, have led the way in revealing a wide array of sensory roles and behaviors that depend on TRP channels. Two overriding themes have emerged from these studies. First, TRPs are multitasking proteins, and second, many functions and modes of activation of these channels are evolutionarily conserved, including some that were formerly thought to be unique to invertebrates, such as phototransduction. Thus, worms and flies offer the potential to decipher roles for mammalian TRPs, which would otherwise not be suspected.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX, 77030, USA,
| | | | | |
Collapse
|
35
|
Kambiz S, Duraku LS, Holstege JC, Hovius SER, Ruigrok TJH, Walbeehm ET. Thermo-sensitive TRP channels in peripheral nerve injury: a review of their role in cold intolerance. J Plast Reconstr Aesthet Surg 2013; 67:591-9. [PMID: 24439213 DOI: 10.1016/j.bjps.2013.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 10/30/2013] [Accepted: 12/17/2013] [Indexed: 11/16/2022]
Abstract
One of the sensory complications of traumatic peripheral nerve injury is thermal intolerance, which manifests in humans mainly as cold intolerance. It has a major effect on the quality of life, and adequate therapy is not yet available. In order to better understand the pathophysiological background of thermal intolerance, we focus first on the various transient receptor potential (TRP) channels that are involved in temperature sensation, including their presence in peripheral nerves and in keratinocytes. Second, the role of thermo-sensitive TRP channels in cold and heat intolerance is described showing three different mechanisms that contribute to thermal intolerance in the skin: (a) an increased expression of TRP channels on nerve fibres and on keratinocytes, (b) a lower activation threshold of TRP channels and (c) the sprouting of non-injured nerve fibres. Finally, the data that are available on the effects of TRP channel agonists and antagonists and their clinical use are discussed. In conclusion, TRP channels play a major role in temperature sensation and in cold and heat intolerance. Unfortunately, the available pharmaceutical agents that successfully target TRP channels and counteract thermal intolerance are still very limited. Yet, our focus should remain on TRP channels since it is difficult to imagine a reliable treatment for thermal intolerance that will not involve TRP channels.
Collapse
Affiliation(s)
- S Kambiz
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - L S Duraku
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J C Holstege
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S E R Hovius
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T J H Ruigrok
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - E T Walbeehm
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Liu Z, Wang B, He R, Zhao Y, Miao L. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:299-308. [PMID: 24239721 DOI: 10.1016/j.bbamcr.2013.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.
Collapse
Affiliation(s)
- Zhiyu Liu
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruijun He
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmei Zhao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
37
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
38
|
Sassa T, Maruyama IN. A G-protein α subunit, GOA-1, plays a role in C. elegans avoidance behavior of strongly alkaline pH. Commun Integr Biol 2013; 6:e26668. [PMID: 24563709 PMCID: PMC3917944 DOI: 10.4161/cib.26668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
The ability of animals to avoid strongly alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. We have previously found that the nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. Detection involves ASH nociceptive neurons as the major sensors. Upon stimulation, transient receptor potential vanilloid-type (TRPV) ion channels encoded by osm-9 and ocr-2 play an essential role in Ca2+ entry into ASH. Here we report that C. elegans mutants deficient in a G-protein α subunit, GOA-1, failed to avoid strongly alkaline pH with normal Ca2+ influx into ASH. These results suggest that GOA-1 regulates signal transmission downstream of Ca2+ influx through OSM-9/OCR-2 TRPV channels in ASH.
Collapse
Affiliation(s)
- Toshihiro Sassa
- Information Processing Biology Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa, Japan
| | - Ichi N Maruyama
- Information Processing Biology Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa, Japan
| |
Collapse
|
39
|
Sassa T, Murayama T, Maruyama IN. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neurosci Lett 2013; 555:248-52. [PMID: 23769685 DOI: 10.1016/j.neulet.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022]
Abstract
High pH is a noxious stimulus to animals, and their ability to avoid dangerously alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. The nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. In contrast, C. elegans mutants with structurally, developmentally, and/or functionally abnormal sensory cilia fail to avoid high pH, suggesting that sensory neurons in the cilia participate in sensing. Genetic rescue of the mutants indicates that ASH polymodal sensory neurons play a vital role in the process. Consistently, specific laser ablation of ASH neurons made animals insensitive to high pH. Furthermore, avoidance assays of other mutants also indicated that transient receptor potential vanilloid type (TRPV) ion channels encoded by osm-9 and ocr-2 are involved in sensing. Indeed, genetic rescue of osm-9 mutants by specifically expressing OSM-9 in ASH showed that TRPV channels play an essential role in sensing of high pH. Ca(2+) imaging in vivo also revealed that ASH neurons were activated by high pH stimulation, but ASH of osm-9 or ocr-2 mutants were not. These results demonstrate that in C. elegans, high pH is sensed by ASH nociceptors through opening of OSM-9/OCR-2 TRPV channels.
Collapse
Affiliation(s)
- Toshihiro Sassa
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | | | | |
Collapse
|
40
|
A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 2013; 152:806-17. [PMID: 23415228 DOI: 10.1016/j.cell.2013.01.020] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/23/2012] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
Both poikilotherms and homeotherms live longer at lower body temperatures, highlighting a general role of temperature reduction in lifespan extension. However, the underlying mechanisms remain unclear. One prominent model is that cold temperatures reduce the rate of chemical reactions, thereby slowing the rate of aging. This view suggests that cold-dependent lifespan extension is simply a passive thermodynamic process. Here, we challenge this view in C. elegans by showing that genetic programs actively promote longevity at cold temperatures. We find that TRPA-1, a cold-sensitive TRP channel, detects temperature drop in the environment to extend lifespan. This effect requires cold-induced, TRPA-1-mediated calcium influx and a calcium-sensitive PKC that signals to the transcription factor DAF-16/FOXO. Human TRPA1 can functionally substitute for worm TRPA-1 in promoting longevity. Our results reveal a previously unrecognized function for TRP channels, link calcium signaling to longevity, and, importantly, demonstrate that genetic programs contribute to lifespan extension at cold temperatures.
Collapse
|
41
|
Calcium signaling in glioma cells--the role of nucleotide receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:61-79. [PMID: 22879064 DOI: 10.1007/978-94-007-4719-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present Chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y(1) and P2Y(12) nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.
Collapse
|
42
|
Functional expression of TRPV4 channels in human collecting duct cells: implications for secondary hypertension in diabetic nephropathy. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:936518. [PMID: 23049542 PMCID: PMC3461299 DOI: 10.1155/2012/936518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022]
Abstract
Background. The Vanilloid subfamily of transient receptor potential (TRPV) ion channels has been widely implicated in detecting osmotic and mechanical stress. In the current study, we examine the functional expression of TRPV4 channels in cell volume regulation in cells of the human collecting duct. Methods. Western blot analysis, siRNA knockdown, and microfluorimetry were used to assess the expression and function of TRPV4 in mediating Ca2+-dependent mechanical stimulation within a novel system of the human collecting duct (HCD). Results. Native and siRNA knockdown of TRPV4 protein expression was confirmed by western blot analysis. Touch was used as a cell-directed surrogate for osmotic stress. Mechanical stimulation of HCD cells evoked a transient increase in [Ca2+]i that was dependent upon thapsigargin-sensitive store release and Ca2+ influx. At 48 hrs, high glucose and mannitol (25 mM) reduced TRPV4 expression by 54% and 24%, respectively. Similar treatment doubled SGK1 expression. Touch-evoked changes were negated following TRPV4 knockdown. Conclusion. Our data confirm expression of Ca2+-dependent TRPV4 channels in HCD cells and suggest that a loss of expression in response to high glucose attenuates the ability of the collecting duct to exhibit regulatory volume decreases, an effect that may contribute to the pathology of fluid and electrolyte imbalance as observed in diabetic nephropathy.
Collapse
|
43
|
When a TRP goes bad: transient receptor potential channels in addiction. Life Sci 2012; 92:410-4. [PMID: 22820171 DOI: 10.1016/j.lfs.2012.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 12/22/2022]
Abstract
Drug addiction is a psychiatric disease state, wherein a drug is impulsively and compulsively self-administered despite negative consequences. This repeated administration results in permanent changes to nervous system physiology and architecture. The molecular pathways affected by addictive drugs are complex and inter-dependent on each other. Recently, various new proteins and protein families have been discovered to play a role in drug abuse. Emerging players in this phenomenon include TRP (Transient Receptor Potential) family channels, which are primarily known to function in sensory systems. Several TRP family channels identified in both vertebrates and invertebrates are involved in psychostimulant-induced plasticity, suggesting their involvement in drug dependence. This review summarizes various observations, both from studies in humans and other organisms, which support a role for these channels in the development of drug-related behaviors.
Collapse
|
44
|
Are TRP channels involved in sperm development and function? Cell Tissue Res 2012; 349:749-64. [DOI: 10.1007/s00441-012-1397-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
|
45
|
Marshall KL, Lumpkin EA. The molecular basis of mechanosensory transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:142-55. [PMID: 22399400 PMCID: PMC4060607 DOI: 10.1007/978-1-4614-1704-0_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple senses, including hearing, touch and osmotic regulation, require the ability to convert force into an electrical signal: A process called mechanotransduction. Mechanotransduction occurs through specialized proteins that open an ion channel pore in response to a mechanical stimulus. Many of these proteins remain unidentified in vertebrates, but known mechanotransduction channels in lower organisms provide clues into their identity and mechanism. Bacteria, fruit flies and nematodes have all been used to elucidate the molecules necessary for force transduction. This chapter discusses many different mechanical senses and takes an evolutionary approach to review the proteins responsible for mechanotransduction in various biological kingdoms.
Collapse
Affiliation(s)
- Kara L. Marshall
- Integrated Graduate Program in Cellular, Molecular, Structural and Genetic Studies, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Ellen A. Lumpkin
- Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University College of Physicians & Surgeons, New York, NY 10032
| |
Collapse
|
46
|
Baylis HA, Vázquez-Manrique RP. Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochim Biophys Acta Gen Subj 2011; 1820:1253-68. [PMID: 22146231 DOI: 10.1016/j.bbagen.2011.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND The nematode, Caenorhabditis elegans is an established model system that is particularly well suited to genetic analysis. C. elegans is easily manipulated and we have an in depth knowledge of many aspects of its biology. Thus, it is an attractive system in which to pursue integrated studies of signalling pathways. C. elegans has a complement of calcium signalling molecules similar to that of other animals. SCOPE OF REVIEW We focus on IP3 signalling. We describe how forward and reverse genetic approaches, including RNAi, have resulted in a tool kit which enables the analysis of IP3/Ca2+ signalling pathways. The importance of cell and tissue specific manipulation of signalling pathways and the use of epistasis analysis are highlighted. We discuss how these tools have increased our understanding of IP3 signalling in specific developmental, physiological and behavioural roles. Approaches to imaging calcium signals in C. elegans are considered. MAJOR CONCLUSIONS A wide selection of tools is available for the analysis of IP3/Ca2+ signalling in C. elegans. This has resulted in detailed descriptions of the function of IP3/Ca2+ signalling in the animal's biology. Nevertheless many questions about how IP3 signalling regulates specific processes remain. GENERAL SIGNIFICANCE Many of the approaches described may be applied to other calcium signalling systems. C. elegans offers the opportunity to dissect pathways, perform integrated studies and to test the importance of the properties of calcium signalling molecules to whole animal function, thus illuminating the function of calcium signalling in animals. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Howard A Baylis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
47
|
Ezak MJ, Ferkey DM. A functional nuclear localization sequence in the C. elegans TRPV channel OCR-2. PLoS One 2011; 6:e25047. [PMID: 21957475 PMCID: PMC3177883 DOI: 10.1371/journal.pone.0025047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/23/2011] [Indexed: 01/31/2023] Open
Abstract
The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated.
Collapse
Affiliation(s)
- Meredith J. Ezak
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Li W, Kang L, Piggott BJ, Feng Z, Xu XZS. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans. Nat Commun 2011; 2:315. [PMID: 21587232 DOI: 10.1038/ncomms1308] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/13/2011] [Indexed: 11/09/2022] Open
Abstract
Most animals can distinguish two distinct types of touch stimuli: gentle (innocuous) and harsh (noxious/painful) touch, however, the underlying mechanisms are not well understood. Caenorhabditis elegans is a useful model for the study of gentle touch sensation. However, little is known about harsh touch sensation in this organism. Here we characterize harsh touch sensation in C. elegans. We show that C. elegans exhibits differential behavioural responses to harsh touch and gentle touch. Laser ablations identify distinct sets of sensory neurons and interneurons required for harsh touch sensation at different body segments. Optogenetic stimulation of the circuitry can drive behaviour. Patch-clamp recordings reveal that TRP family and amiloride-sensitive Na(+) channels mediate touch-evoked currents in different sensory neurons. Our work identifies the neural circuits and characterizes the sensory channels mediating harsh touch sensation in C. elegans, establishing it as a genetic model for studying this sensory modality.
Collapse
Affiliation(s)
- Wei Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
49
|
Xue Z, Bai J, Sun J, Wu Y, Yu SY, Guo RY, Liu X, Li QW. Novel neutrophil inhibitory factor homologue in the buccal gland secretion of Lampetra japonica. Biol Chem 2011; 392:609-16. [PMID: 21627537 DOI: 10.1515/bc.2011.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract To identify the functional gene fragment, a neutrophil inhibitory factor (NIF) like protein was found in the buccal gland of Lampetra japonica, suggesting that this related lamprey protein represents a novel class of integrin receptor antagonists. The recombinant Lampetra japonica-NIF like (rLj-NIF) was identified by SDS-PAGE and purified by using His·Bind affinity chromatography. Effect of rLj-NIF on neutrophil migration suggested that rLj-NIF can act as a neutrophil inhibitory factor. Besides that, oxidative burst activity of neutriphil was tested by flow cytometry using dihydrorhodamine (DHR123) as a fluorogenic substrate, and the data suggested that the mean fluorescence intensity significantly decreased compared with positive controls (p<0.01). All above results indicated that rLj-NIF could also prevent the binding of β2 integrins to the surface of PMN and its FITC-labeled monoclonal antibodies (p<0.05). These data suggest that Lampetra japonica-NIF like protein is secreted by the stage of the parasite at the site of attachment. rLj-NIF plays an essential role in physiological reaction of neutrophil by a novel class of β2 integrin receptor antagonists. The activity of immunosuppressant of L. japonica-NIF could have potential medicinal value in anti-inflammation and therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Zhuang Xue
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Stawicki TM, Zhou K, Yochem J, Chen L, Jin Y. TRPM channels modulate epileptic-like convulsions via systemic ion homeostasis. Curr Biol 2011; 21:883-8. [PMID: 21549603 PMCID: PMC4034270 DOI: 10.1016/j.cub.2011.03.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/28/2011] [Accepted: 03/29/2011] [Indexed: 11/24/2022]
Abstract
Neuronal networks operate over a wide range of activity levels, with both neuronal and nonneuronal cells contributing to the balance of excitation and inhibition. Activity imbalance within neuronal networks underlies many neurological diseases, such as epilepsy. The Caenorhabditis elegans locomotor circuit operates via coordinated activity of cholinergic excitatory and GABAergic inhibitory transmission. We have previously shown that a gain-of-function mutation in a neuronal acetylcholine receptor, acr-2(gf), causes an epileptic-like convulsion behavior. Here we report that the behavioral and physiological effects of acr-2(gf) require the activity of the TRPM channel GTL-2 in nonneuronal tissues. Loss of gtl-2 function does not affect baseline synaptic transmission but can compensate for the excitation-inhibition imbalance caused by acr-2(gf). The compensatory effects of removing gtl-2 are counterbalanced by another TRPM channel, GTL-1, and can be recapitulated by acute treatment with divalent cation chelators, including those specific for Zn(2+). Together, these data reveal an important role for ion homeostasis in the balance of neuronal network activity and a novel function of nonneuronal TRPM channels in the fine-tuning of this network activity.
Collapse
Affiliation(s)
- Tamara M. Stawicki
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, CA92093, USA
- Neurosciences graduate program, Univ. Calif. San Diego
| | - Keming Zhou
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, CA92093, USA
| | - John Yochem
- Department of Genetics, Cell Biology and Development, Developmental Biology Center, University of Minnesota, Minneapolis, MN55455, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology and Development, Developmental Biology Center, University of Minnesota, Minneapolis, MN55455, USA
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, CA92093, USA
- Neurosciences graduate program, Univ. Calif. San Diego
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA92093, USA
| |
Collapse
|