1
|
Mohammed D, Tavangar SM, Khodadoostan A, Mousavi SE, Dehpour AR, Jazaeri F. Effects of Gap 26, a Connexin 43 Inhibitor, on Cirrhotic Cardiomyopathy in Rats. Cureus 2024; 16:e59053. [PMID: 38680825 PMCID: PMC11055623 DOI: 10.7759/cureus.59053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Cirrhotic cardiomyopathy (CCM) is recognized by impaired cardiac responsiveness to stress, prolonged QT interval, and systolic and diastolic dysfunctions. Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Connexin 43 (Cx43) inhibition showed cardio-protective effects. Peptide drug Cx43 inhibitor, Gap 26, could inhibit gap junction 43. This study was designed to evaluate the effects of a connexin mimetic peptide, Gap 26, in the CCM model in rats. Methods The cirrhosis was induced through carbon tetrachloride (CCl4). On day 56, electrocardiography (ECG) was recorded, spleen weight was measured, and tissue and serum samples were collected. Further, Cx43 mRNA expression in heart tissue was checked. Results The chronotropic responses decreased in the CCl4/saline and increased in the CCl4/Gap. The spleen weight, QTc interval, and brain natriuretic peptide (BNP), tumor necrosis factor-alpha (TNF-α), aspartate aminotransferase (AST), alanine transaminase (ALT), and malondialdehyde (MDA) levels elevated in the CCl4/saline, and the spleen weight, QTc interval, and MDA and ALT levels were reduced by Gap 26 treatment. The level of nuclear factor (erythroid-derived 2) factor 2 (Nrf2) decreased in the CCl4/saline. The Cx43 expression was downregulated in the CCl4/saline and upregulated with the Gap 26 treatment. Conclusion Gap 26 not only alleviated the chronotropic hyporesponsiveness and the severity of liver damage and upregulated the atrial Cx43 expression, but it also had an antioxidant effect on the heart.
Collapse
Affiliation(s)
- Dlshad Mohammed
- Pharmacology, Tehran University of Medical Sciences, Tehran, IRN
| | | | - Arash Khodadoostan
- Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, IRN
| | | | | | - Farahnaz Jazaeri
- Pharmacology, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
2
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
3
|
Leybaert L, De Smet MA, Lissoni A, Allewaert R, Roderick HL, Bultynck G, Delmar M, Sipido KR, Witschas K. Connexin hemichannels as candidate targets for cardioprotective and anti-arrhythmic treatments. J Clin Invest 2023; 133:168117. [PMID: 36919695 PMCID: PMC10014111 DOI: 10.1172/jci168117] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Connexins are crucial cardiac proteins that form hemichannels and gap junctions. Gap junctions are responsible for the propagation of electrical and chemical signals between myocardial cells and cells of the specialized conduction system in order to synchronize the cardiac cycle and steer cardiac pump function. Gap junctions are normally open, while hemichannels are closed, but pathological circumstances may close gap junctions and open hemichannels, thereby perturbing cardiac function and homeostasis. Current evidence demonstrates an emerging role of hemichannels in myocardial ischemia and arrhythmia, and tools are now available to selectively inhibit hemichannels without inhibiting gap junctions as well as to stimulate hemichannel incorporation into gap junctions. We review available experimental evidence for hemichannel contributions to cellular pro-arrhythmic events in ventricular and atrial cardiomyocytes, and link these to insights at the level of molecular control of connexin-43-based hemichannel opening. We conclude that a double-edged approach of both preventing hemichannel opening and preserving gap junctional function will be key for further research and development of new connexin-based experimental approaches for treating heart disease.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Maarten Aj De Smet
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Alessio Lissoni
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Allewaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, and
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, USA
| | - Karin R Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, and
| | - Katja Witschas
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|
5
|
Mori D, Miyagawa S, Kawamura T, Yoshioka D, Hata H, Ueno T, Toda K, Kuratani T, Oota M, Kawai K, Kurata H, Nishida H, Harada A, Toyofuku T, Sawa Y. Mitochondrial Transfer Induced by Adipose-Derived Mesenchymal Stem Cell Transplantation Improves Cardiac Function in Rat Models of Ischemic Cardiomyopathy. Cell Transplant 2023; 32:9636897221148457. [PMID: 36624995 PMCID: PMC9834779 DOI: 10.1177/09636897221148457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although mesenchymal stem cell transplantation has been successful in the treatment of ischemic cardiomyopathy, the underlying mechanisms remain unclear. Herein, we investigated whether mitochondrial transfer could explain the success of cell therapy in ischemic cardiomyopathy. Mitochondrial transfer in co-cultures of human adipose-derived mesenchymal stem cells and rat cardiomyocytes maintained under hypoxic conditions was examined. Functional recovery was monitored in a rat model of myocardial infarction following human adipose-derived mesenchymal stem cell transplantation. We observed mitochondrial transfer in vitro, which required the formation of cell-to-cell contacts and synergistically enhanced energy metabolism. Rat cardiomyocytes exhibited mitochondrial transfer 3 days following human adipose-derived mesenchymal stem cell transplantation to the ischemic heart surface post-myocardial infarction. We detected donor mitochondrial DNA in the recipient myocardium concomitant with a significant improvement in cardiac function. Mitochondrial transfer is vital for successful cell transplantation therapies and improves treatment outcomes in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Daisuke Mori
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Hata
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Toru Kuratani
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Miwa Oota
- Institute of Advanced Stem Cell
Therapy, Osaka University, Osaka, Japan,ROHTO Pharmaceutical Co., Ltd., Osaka,
Japan
| | - Kotoe Kawai
- Institute of Advanced Stem Cell
Therapy, Osaka University, Osaka, Japan,ROHTO Pharmaceutical Co., Ltd., Osaka,
Japan
| | - Hayato Kurata
- Institute of Advanced Stem Cell
Therapy, Osaka University, Osaka, Japan,ROHTO Pharmaceutical Co., Ltd., Osaka,
Japan
| | - Hiroyuki Nishida
- Institute of Advanced Stem Cell
Therapy, Osaka University, Osaka, Japan,ROHTO Pharmaceutical Co., Ltd., Osaka,
Japan
| | - Akima Harada
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshihiko Toyofuku
- Institute of Immunology and
Regenerative Medicine, Osaka University, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery,
Osaka University Graduate School of Medicine, Suita, Japan,Medical Centre for Translational and
Clinical Research, Osaka University Hospital, Osaka, Japan,Yoshiki Sawa, Department of Cardiovascular
Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.
| |
Collapse
|
6
|
Falck AT, Lund BA, Johansen D, Lund T, Ytrehus K. The Ambivalence of Connexin43 Gap Peptides in Cardioprotection of the Isolated Heart against Ischemic Injury. Int J Mol Sci 2022; 23:ijms231710197. [PMID: 36077595 PMCID: PMC9456187 DOI: 10.3390/ijms231710197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The present study investigates infarct-reducing effects of blocking ischemia-induced opening of connexin43 hemichannels using peptides Gap19, Gap26 or Gap27. Cardioprotection by ischemic preconditioning (IPC) and Gap peptides was compared, and combined treatment was tested in isolated, perfused male rat hearts using function and infarct size after global ischemia, high-resolution respirometry of isolated mitochondrial and peptide binding kinetics as endpoints. The Gap peptides reduced infarct size significantly when given prior to ischemia plus at reperfusion (Gap19 76.2 ± 2.7, Gap26 72.9 ± 5.8 and Gap27 71.9 ± 5.8% of untreated control infarcts, mean ± SEM). Cardioprotection was lost when Gap26, but not Gap27 or Gap19, was combined with triggering IPC (IPC 73.4 ± 5.5, Gap19-IPC 60.9 ± 5.1, Gap26-IPC 109.6 ± 7.8, Gap27-IPC 56.3 ± 8.0% of untreated control infarct). Binding stability of peptide Gap26 to its specific extracellular loop sequence (EL2) of connexin43 was stronger than Gap27 to its corresponding loop EL1 (dissociation rate constant Kd 0.061 ± 0.004 vs. 0.0043 ± 0.0001 s-1, mean ± SD). Mitochondria from IPC hearts showed slightly but significantly reduced respiratory control ratio (RCR). In vitro addition of Gap peptides did not significantly alter respiration. If transient hemichannel activity is part of the IPC triggering event, inhibition of IPC triggering stimuli might limit the use of cardioprotective Gap peptides.
Collapse
Affiliation(s)
- Aleksander Tank Falck
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bjarte Aarmo Lund
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - David Johansen
- Department of Internal Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Trine Lund
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence:
| |
Collapse
|
7
|
Boengler K, Leybaert L, Ruiz-Meana M, Schulz R. Connexin 43 in Mitochondria: What Do We Really Know About Its Function? Front Physiol 2022; 13:928934. [PMID: 35860665 PMCID: PMC9289461 DOI: 10.3389/fphys.2022.928934] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 01/04/2023] Open
Abstract
Connexins are known for their ability to mediate cell-cell communication via gap junctions and also form hemichannels that pass ions and molecules over the plasma membrane when open. Connexins have also been detected within mitochondria, with mitochondrial connexin 43 (Cx43) being the best studied to date. In this review, we discuss evidence for Cx43 presence in mitochondria of cell lines, primary cells and organs and summarize data on its localization, import and phosphorylation status. We further highlight the influence of Cx43 on mitochondrial function in terms of respiration, opening of the mitochondrial permeability transition pore and formation of reactive oxygen species, and also address the presence of a truncated form of Cx43 termed Gja1-20k. Finally, the role of mitochondrial Cx43 in pathological conditions, particularly in the heart, is discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences—Physiology Group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
- *Correspondence: Rainer Schulz,
| |
Collapse
|
8
|
Peng B, Xu C, Wang S, Zhang Y, Li W. The Role of Connexin Hemichannels in Inflammatory Diseases. BIOLOGY 2022; 11:biology11020237. [PMID: 35205103 PMCID: PMC8869213 DOI: 10.3390/biology11020237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
The connexin protein family consists of approximately 20 members, and is well recognized as the structural unit of the gap junction channels that perforate the plasma membranes of coupled cells and, thereby, mediate intercellular communication. Gap junctions are assembled by two preexisting hemichannels on the membranes of apposing cells. Non-junctional connexin hemichannels (CxHC) provide a conduit between the cell interior and the extracellular milieu, and are believed to be in a protectively closed state under physiological conditions. The development and characterization of the peptide mimetics of the amino acid sequences of connexins have resulted in the development of a panel of blockers with a higher selectivity for CxHC, which have become important tools for defining the role of CxHC in various biological processes. It is increasingly clear that CxHC can be induced to open by pathogen-associated molecular patterns. The opening of CxHC facilitates the release of damage-associated molecular patterns, a class of endogenous molecules that are critical for the pathogenesis of inflammatory diseases. The blockade of CxHC leads to attenuated inflammation, reduced tissue injury and improved organ function in human and animal models of about thirty inflammatory diseases and disorders. These findings demonstrate that CxHC may contribute to the intensification of inflammation, and serve as a common target in the treatments of various inflammatory diseases. In this review, we provide an update on the progress in the understanding of CxHC, with a focus on the role of these channels in inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Yijie Zhang
- Correspondence: (Y.Z.); (W.L.); Tel.: +86-13903782431 (Y.Z.); +86-17839250252 (W.L.)
| | - Wei Li
- Correspondence: (Y.Z.); (W.L.); Tel.: +86-13903782431 (Y.Z.); +86-17839250252 (W.L.)
| |
Collapse
|
9
|
Zhang K, Chai B, Ji H, Chen L, Ma Y, Zhu L, Xu J, Wu Y, Lan Y, Li H, Feng Z, Xiao J, Zhang H, Xu K. Bioglass promotes wound healing by inhibiting endothelial cell pyroptosis through regulation of the connexin 43/reactive oxygen species (ROS) signaling pathway. J Transl Med 2022; 102:90-101. [PMID: 34521991 DOI: 10.1038/s41374-021-00675-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022] Open
Abstract
Bioactive glass (BG) has recently shown great promise in soft tissue repair, especially in wound healing; however, the underlying mechanism remains unclear. Pyroptosis is a novel type of programmed cell death that is involved in various traumatic injury diseases. Here, we hypothesized that BG may promote wound healing through suppression of pyroptosis. To test this scenario, we investigated the possible effect of BG on pyroptosis in wound healing both in vivo and in vitro. This study showed that BG can accelerate wound closure, granulation formation, collagen deposition, and angiogenesis. Moreover, western blot analysis and immunofluorescence staining revealed that BG inhibited the expression of pyroptosis-related proteins in vivo and in vitro. In addition, while BG regulated the expression of connexin43 (Cx43), it inhibited reactive oxygen species (ROS) production. Cx43 activation and inhibition experiments further indicate that BG inhibited pyroptosis in endothelial cells by decreasing Cx43 expression and ROS levels. Taken together, these studies suggest that BG promotes wound healing by inhibiting pyroptosis via Cx43/ROS signaling pathway.
Collapse
Affiliation(s)
- Kailun Zhang
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Bo Chai
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Hao Ji
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Liuqing Chen
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yanbing Ma
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Lifei Zhu
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jingyu Xu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yanqing Wu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yinan Lan
- Department of Orthopedic Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hao Li
- Department of Orthopedics Surgery, Lishui People's Hospital, The sixth affiliated hospital of Wenzhou medical university, Lishui, Zhejiang, China
| | - Zhiguo Feng
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Ke Xu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China.
| |
Collapse
|
10
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
11
|
Retamal MA, Fernandez-Olivares A, Stehberg J. Over-activated hemichannels: A possible therapeutic target for human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166232. [PMID: 34363932 DOI: 10.1016/j.bbadis.2021.166232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
In our body, all the cells are constantly sharing chemical and electrical information with other cells. This intercellular communication allows them to respond in a concerted way to changes in the extracellular milieu. Connexins are transmembrane proteins that have the particularity of forming two types of channels; hemichannels and gap junction channels. Under normal conditions, hemichannels allow the controlled release of signaling molecules to the extracellular milieu. However, under certain pathological conditions, over-activated hemichannels can induce and/or exacerbate symptoms. In the last decade, great efforts have been put into developing new tools that can modulate these over-activated hemichannels. Small molecules, antibodies and mimetic peptides have shown a potential for the treatment of human diseases. In this review, we summarize recent findings in the field of hemichannel modulation via specific tools, and how these tools could improve patient outcome in certain pathological conditions.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Santiago, Chile; Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Santiago, Chile.
| | | | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
12
|
Boal AM, Risner ML, Cooper ML, Wareham LK, Calkins DJ. Astrocyte Networks as Therapeutic Targets in Glaucomatous Neurodegeneration. Cells 2021; 10:1368. [PMID: 34199470 PMCID: PMC8228804 DOI: 10.3390/cells10061368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are intimately involved in the response to neurodegenerative stress and have become an attractive target for the development of neuroprotective therapies. However, studies often focus on astrocytes as single-cell units. Astrocytes are densely interconnected by gap junctions that are composed primarily of the protein connexin-43 (Cx43) and can function as a broader network of cells. Such networks contribute to a number of important processes, including metabolite distribution and extracellular ionic buffering, and are likely to play an important role in the progression of neurodegenerative disease. This review will focus on the pro-degenerative and pro-survival influence of astrocyte Cx43 in disease progression, with a focus on the roles of gap junctions and hemichannels in the spread of degenerative stress. Finally, we will highlight the specific evidence for targeting these networks in the treatment of glaucomatous neurodegeneration and other optic neuropathies.
Collapse
Affiliation(s)
- Andrew M. Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Melissa L. Cooper
- Skirball Institute for Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016, USA;
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| |
Collapse
|
13
|
Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J Cardiovasc Dev Dis 2021; 8:52. [PMID: 34063001 PMCID: PMC8147937 DOI: 10.3390/jcdd8050052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Connexin (Cx43)-formed channels have been linked to cardiac arrhythmias and diseases of the heart associated with myocardial tissue loss and fibrosis. These pathologies include ischemic heart disease, ischemia-reperfusion injury, heart failure, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and Duchenne muscular dystrophy. A number of Cx43 mimetic peptides have been reported as therapeutic candidates for targeting disease processes linked to Cx43, including some that have advanced to clinical testing in humans. These peptides include Cx43 sequences based on the extracellular loop domains (e.g., Gap26, Gap 27, and Peptide5), cytoplasmic-loop domain (Gap19 and L2), and cytoplasmic carboxyl-terminal domain (e.g., JM2, Cx43tat, CycliCX, and the alphaCT family of peptides) of this transmembrane protein. Additionally, RYYN peptides binding to the Cx43 carboxyl-terminus have been described. In this review, we survey preclinical and clinical data available on short mimetic peptides based on, or directly targeting, Cx43, with focus on their potential for treating heart disease. We also discuss problems that have caused reluctance within the pharmaceutical industry to translate peptidic therapeutics to the clinic, even when supporting preclinical data is strong. These issues include those associated with the administration, stability in vivo, and tissue penetration of peptide-based therapeutics. Finally, we discuss novel drug delivery technologies including nanoparticles, exosomes, and other nanovesicular carriers that could transform the clinical and commercial viability of Cx43-targeting peptides in treatment of heart disease, stroke, cancer, and other indications requiring oral or parenteral administration. Some of these newly emerging approaches to drug delivery may provide a path to overcoming pitfalls associated with the drugging of peptide therapeutics.
Collapse
Affiliation(s)
- Spencer R. Marsh
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Zachary J. Williams
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
| |
Collapse
|
14
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
15
|
Martins-Marques T, Hausenloy DJ, Sluijter JPG, Leybaert L, Girao H. Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends Mol Med 2021; 27:248-262. [PMID: 33139169 DOI: 10.1016/j.molmed.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The maintenance of tissue, organ, and organism homeostasis relies on an intricate network of players and mechanisms that assist in the different forms of cell-cell communication. Myocardial infarction, following heart ischemia and reperfusion, is associated with profound changes in key processes of intercellular communication, involving gap junctions, extracellular vesicles, and tunneling nanotubes, some of which have been implicated in communication defects associated with cardiac injury, namely arrhythmogenesis and progression into heart failure. Therefore, intercellular communication players have emerged as attractive powerful therapeutic targets aimed at preserving a fine-tuned crosstalk between the different cardiac cells in order to prevent or repair some of harmful consequences of heart ischemia and reperfusion, re-establishing myocardial function.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
16
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
17
|
Szymanska KJ, Göker M, Bol M, Van Dorpe J, Weyers S, Leybaert L. Targeting connexins with Gap27 during cold storage of the human donor uterus protects against cell death. PLoS One 2020; 15:e0243663. [PMID: 33301511 PMCID: PMC7728185 DOI: 10.1371/journal.pone.0243663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Uterus transplantation is an experimental infertility treatment for women with uterine factor infertility. During donor uterus retrieval and subsequent storage, ischemia and other stressors are likely to occur, resulting in the delayed restoration of organ function and increased graft rejection. The uterus expresses connexin-based hemichannels, the opening of which can promote ischemic cell death, as well as gap junctions that may expand cell death by bystander signaling. We investigated if connexin channel inhibition with connexin channel inhibitor Gap27 could protect the uterus against cell death during the storage period. The study involved 9 female patients undergoing gender-change surgery. Before uterus removal, it was exposed to in situ warm ischemia with or without reperfusion. Uterus biopsies were taken before, during, and after ischemia, with or without reperfusion, and were subsequently stored under cold (4ᵒC) or warm (37ᵒC) conditions. TUNEL cell death assay was done at various time points along the combined in vivo/ex vivo experimental timeline. We found that Gap27 protected against storage-related cell death under cold but not warm conditions when the uterus had experienced in situ ischemia/reperfusion. For in situ brief ischemia without reperfusion, Gap27 reduction of cell death was delayed and significantly less, suggesting that protection critically depends on processes initiated when the organ was still in the donor. Thus, the inclusion of the connexin channel inhibitor Gap27 during cold storage protects the uterus against cell death, and the degree of protection depends on the history of exposure to warm ischemia. Gap27 protection may be indicated for uteri from deceased donors, in which ischemia is likely because life-saving organs have retrieval priority.
Collapse
Affiliation(s)
| | - Menekse Göker
- Department of Obstetrics and Gynecology, Ghent University, Ghent, Belgium
| | - Melissa Bol
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent, Belgium
| | - Steven Weyers
- Department of Obstetrics and Gynecology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Alonzo M, Delgado M, Cleetus C, Kumar SA, Thakur V, Chattopadhyay M, Joddar B. Methods for histological characterization of cryo-induced myocardial infarction in a rat model. Acta Histochem 2020; 122:151624. [PMID: 33066844 PMCID: PMC7573203 DOI: 10.1016/j.acthis.2020.151624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Ligation of the left anterior descending (LAD) coronary artery has been commonly employed to induce myocardial infarction (MI) in animals; however, it is known to pose setbacks in the form of cardiac arrhythmias and unpredictable areas of necrotic damage. Cryo-infarction is an alternate method that has been adopted to create a reproducible model of a myocardial injury. In this study, Sprague-Dawley rats were subjected to thoracotomy followed by cryo-induced infarction of the heart, while the control-sham group was only subjected to thoracotomy following which the heart was collected from all animals. Tissue sections were stained with hematoxylin and eosin and analyzed to determine cardiac muscle density, fiber length, and fiber curvature. Observations revealed reduced muscle density, cardiac fiber length, and distorted fibers in infarcted tissue sections. Gomori's Trichrome staining was performed on tissue sections to study the effects of post MI on collagen, which showed enhanced intensity of collagen staining indicating fibrosis for the experimental models as compared to the sham models, an established consequence to myocardial injury. Immunohistochemical staining of the tissue sections with DAPI and connexin-43 (Cx-43) revealed that there was reduced DAPI staining and a less pronounced expression of Cx-43 in the experimental samples as compared to the sham samples. Results implied significant cell damage resulting from the cryo-infarction, subsequently disrupting and disaggregating the functional Cx-43 junction in cardiac myocytes, which is essential for normal and healthy cardiac physiology and function. This quantitative histological study of cryo-induced MI in a rat model can aid others attempting to optimize MI models in rats via cryo-injury, to study cardiac disease progression, and to aid in the construction of engineered cardiac tissues.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Monica Delgado
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Carol Cleetus
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX, 79968, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX, 79968, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA; Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
19
|
Choi EJ, Palacios-Prado N, Sáez JC, Lee J. Identification of Cx45 as a Major Component of GJs in HeLa Cells. Biomolecules 2020; 10:biom10101389. [PMID: 33003547 PMCID: PMC7650549 DOI: 10.3390/biom10101389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023] Open
Abstract
Gap junctions (GJs) are intercellular channels that connect adjacent cells electrically and metabolically. The iodide-yellow fluorescent protein (I-YFP) gap junctional intercellular communication (GJIC) assay is a recently developed method with high sensitivity. HeLa cells have been widely used as GJ-deficient cells for GJ-related research. Herein, we present evidence showing that HeLa cells have functional GJs comprising connexin (Cx) 45 using the I-YFP GJ assay and CRISPR/Cas9 system. We conducted the I-YFP GJIC assay in HeLa cells, which revealed a weak level of GJIC that could not be detected by the Lucifer yellow scrape-loading assay. The mRNA expression of GJB5 (Cx31.1), GJA1 (Cx43), and GJC1 (Cx45) was detected in HeLa cells by RT-PCR analysis. Knocking out GJC1 (Cx45) abolished GJIC, as analyzed by the I-YFP assay and dual whole-cell patch-clamp assay. These results suggest that HeLa cells express Cx45-based GJs and that the I-YFP GJIC assay can be used for cells with weak GJIC, such as Cx45-expressing HeLa cells. Further, GJC1 (Cx45)-knockout HeLa cells are more suitable as a GJ-null cell model for transfection experiments than wild-type HeLa cells. This experimental design was successfully applied to knock out Cx43 expression and GJIC in A549 lung cancer cells and can thus be used to identify major Cxs in other cell types and to establish GJ assay systems for different Cxs.
Collapse
Affiliation(s)
- Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Nicolás Palacios-Prado
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile; (N.P.-P.); (J.C.S.)
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile; (N.P.-P.); (J.C.S.)
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Correspondence: ; Tel.: +82-32-749-4161
| |
Collapse
|
20
|
Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020; 10:biom10091225. [PMID: 32842488 PMCID: PMC7563275 DOI: 10.3390/biom10091225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since the mid-20th century, ischemic heart disease has been the world’s leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Jade Montgomery
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Daniela Batista-Almeida
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Henrique Girao
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
- Correspondence:
| |
Collapse
|
21
|
Liang Z, Wang X, Hao Y, Qiu L, Lou Y, Zhang Y, Ma D, Feng J. The Multifaceted Role of Astrocyte Connexin 43 in Ischemic Stroke Through Forming Hemichannels and Gap Junctions. Front Neurol 2020; 11:703. [PMID: 32849190 PMCID: PMC7411525 DOI: 10.3389/fneur.2020.00703] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is a multi-factorial cerebrovascular disease with high worldwide morbidity and mortality. In the past few years, multiple studies have revealed the underlying mechanism of ischemia/reperfusion injury, including calcium overload, amino acid toxicity, oxidative stress, and inflammation. Connexin 43 (Cx43), the predominant connexin protein in astrocytes, has been recently proven to display non-substitutable roles in the pathology of ischemic stroke development and progression through forming gap junctions and hemichannels. Under normal conditions, astrocytic Cx43 could be found in hemichannels or in the coupling with other hemichannels on astrocytes, neurons, or oligodendrocytes to form the neuro-glial syncytium, which is involved in metabolites exchange between communicated cells, thus maintaining the homeostasis of the CNS environment. In ischemic stroke, the phosphorylation of Cx43 might cause the degradation of gap junctions and the opening of hemichannels, contributing to the release of inflammatory mediators. However, the remaining gap junctions could facilitate the exchange of protective and harmful metabolites between healthy and injured cells, protecting the injured cells to some extent or damaging the healthy cells depending on the balance of the exchange of protective and harmful metabolites. In this study, we review the changes in astrocytic Cx43 expression and distribution as well as the influence of these changes on the function of astrocytes and other cells in the CNS, providing new insight into the pathology of ischemic stroke injury; we also discuss the potential of astrocytic Cx43 as a target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lin Qiu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yaoting Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Angiotensin II induces RAW264.7 macrophage polarization to the M1‑type through the connexin 43/NF‑κB pathway. Mol Med Rep 2020; 21:2103-2112. [PMID: 32186758 PMCID: PMC7115186 DOI: 10.3892/mmr.2020.11023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (AngII) serves an important inflammatory role in cardiovascular disease; it can induce macrophages to differentiate into the M1-type, produce inflammatory cytokines and resist pathogen invasion, and can cause a certain degree of damage to the body. Previous studies have reported that connexin 43 (Cx43) and NF-κB (p65) are involved in the AngII-induced inflammatory pathways of macrophages; however, the mechanisms underlying the effects of Cx43 and NF-κB (p65) on AngII-induced macrophage polarization have not been determined. Thus, the present study aimed to investigate the effects of Cx43 and NF-κB (p65) on the polarization process of AngII-induced macrophages. The macrophage polarization-related proteins and mRNAs were examined by flow cytometry, western blotting, immunofluorescence, ELISA and reverse transcription-quantitative PCR analyses. RAW264.7 macrophages were treated with AngII to simulate chronic inflammation and it was subsequently found that AngII promoted RAW 264.7 macrophage polarization towards the M1-type by such effects as the release of inducible nitric oxide synthase (iNOS), tumour necrosis factor (TNF)-α, IL-1β, the secretion of IL-6, and the expression of M1-type indicators, such as CD86. Simultaneously, compared with the control group, the protein expression levels of Cx43 and phosphorylated (p)-p65 were significantly increased following AngII treatment. The M1-related phenotypic indicators, iNOS, TNF-α, IL-1β, IL-6 and CD86, were inhibited by the NF-κB (p65) signalling pathway inhibitor BAY117082. Similarly, the Cx43 inhibitors, Gap26 and Gap19, also inhibited the expression of M1-related factors, and the protein expression levels of p-p65 in the Gap26/Gap19 groups were significantly decreased compared with the AngII group. Altogether, these findings suggested that AngII may induce the polarization of RAW264.7 macrophages to the M1-type through the Cx43/NF-κB (p65) signalling pathway.
Collapse
|
23
|
Anil Kumar S, Alonzo M, Allen SC, Abelseth L, Thakur V, Akimoto J, Ito Y, Willerth SM, Suggs L, Chattopadhyay M, Joddar B. A Visible Light-Cross-Linkable, Fibrin-Gelatin-Based Bioprinted Construct with Human Cardiomyocytes and Fibroblasts. ACS Biomater Sci Eng 2019; 5:4551-4563. [PMID: 32258387 PMCID: PMC7117097 DOI: 10.1021/acsbiomaterials.9b00505] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, fibrin was added to a photo-polymerizable gelatin-based bioink mixture to fabricate cardiac cell-laden constructs seeded with human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) or CM cell lines with cardiac fibroblasts (CF). The extensive use of platelet-rich fibrin, its capacity to offer patient specificity, and the similarity in composition to surgical glue prompted us to include fibrin in the existing bioink composition. The cell-laden bioprinted constructs were cross-linked to retain a herringbone pattern via a two-step procedure including the visible light cross-linking of furfuryl-gelatin followed by the chemical cross-linking of fibrinogen via thrombin and calcium chloride. The printed constructs revealed an extremely porous, networked structure that afforded long-term in vitro stability. Cardiomyocytes printed within the sheet structure showed excellent viability, proliferation, and expression of the troponin I cardiac marker. We extended the utility of this fibrin-gelatin bioink toward coculturing and coupling of CM and cardiac fibroblasts (CF), the interaction of which is extremely important for maintenance of normal physiology of the cardiac wall in vivo. This enhanced "cardiac construct" can be used for drug cytotoxicity screening or unraveling triggers for heart diseases in vitro.
Collapse
Affiliation(s)
- Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
| | - Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
| | - Shane C. Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 110 Inner Campus Drive, Austin, Texas 78712, United States
| | - Laila Abelseth
- Department of Mechanical Engineering, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Biomedical Engineering Program, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Jun Akimoto
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Biomedical Engineering Program, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Laura Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 110 Inner Campus Drive, Austin, Texas 78712, United States
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Prakoura N, Hadchouel J, Chatziantoniou C. Novel Targets for Therapy of Renal Fibrosis. J Histochem Cytochem 2019; 67:701-715. [PMID: 31116064 PMCID: PMC6713972 DOI: 10.1369/0022155419849386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis is an important component of chronic kidney disease, an incurable pathology with increasing prevalence worldwide. With a lack of available therapeutic options, end-stage renal disease is currently treated with renal replacement therapy through dialysis or transplantation. In recent years, many efforts have been made to identify novel targets for therapy of renal diseases, with special focus on the characterization of unknown mediators and pathways participating in renal fibrosis development. Using experimental models of renal disease and patient biopsies, we identified four novel mediators of renal fibrosis with potential to constitute future therapeutic targets against kidney disease: discoidin domain receptor 1, periostin, connexin 43, and cannabinoid receptor 1. The four candidates were highly upregulated in different models of renal disease and were localized at the sites of injury. Subsequent studies showed that they are centrally involved in the underlying mechanisms of renal fibrosis progression. Interestingly, inhibition of either of these proteins by different strategies, including gene deletion, antisense administration, or specific blockers, delayed the progression of renal disease and preserved renal structure and function, even when the inhibition started after initiation of the disease. This review will summarize the current findings on these candidates emphasizing on their potential to constitute future targets of therapy.
Collapse
Affiliation(s)
- Niki Prakoura
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| | - Christos Chatziantoniou
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
25
|
Xing L, Yang T, Cui S, Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front Mol Neurosci 2019; 12:23. [PMID: 30787868 PMCID: PMC6372977 DOI: 10.3389/fnmol.2019.00023] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system (CNS), astrocytes form networks interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. When unopposed by an adjoining hemichannel, astrocytic connexins can act as hemichannels to control the release of small molecules such as ATP and glutamate into the extracellular space. Accruing evidence indicates that astrocytic connexins are crucial for the coordination and maintenance of physiologic CNS activity. Here we provide an update on the role of astrocytic connexins in neurodegenerative disorders, glioma, and ischemia. In addition, we address the regulation of Cx43 in chronic pain.
Collapse
Affiliation(s)
- LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
26
|
Involvement of sphingosine-1-phosphate receptors 2/3 in IR-induced sudden cardiac death. Heart Vessels 2019; 34:1052-1063. [DOI: 10.1007/s00380-018-01323-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
|
27
|
Chen Y, Wang L, Zhang L, Chen B, Yang L, Li X, Li Y, Yu H. Inhibition of Connexin 43 Hemichannels Alleviates Cerebral Ischemia/Reperfusion Injury via the TLR4 Signaling Pathway. Front Cell Neurosci 2018; 12:372. [PMID: 30386214 PMCID: PMC6199357 DOI: 10.3389/fncel.2018.00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
Connexin 43 (Cx43) widely exists in all components of the neurovascular unit (NVU) and is a constituent of gap junctions and hemichannels. In physiological states, gap junctions are open for regular intercellular communication, and the hemichannels present low open probability in astrocytes. After cerebral ischemia, a large number of hemichannels are unusually opened, leading to cell swelling and even death. Most known hemichannel blockers also inhibit gap junctions and sequentially obstruct normal electrical cell-cell communication. In this study, we tested the hypothesis that Gap19, a selective Cx43-hemichannel inhibitor, exhibited neuroprotective effects on cerebral ischemia/reperfusion (I/R). An obvious improvement in neurological scores and infarct volume reduction were observed in Gap19-treated mice after brain ischemia induced by middle cerebral artery occlusion (MCAO). Gap19 treatment attenuated white matter damage. Moreover, Gap19 treatment suppressed the expression of Cx43 and Toll-like receptor 4 (TLR4) pathway-relevant proteins and prevented the overexpression of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). To further explore downstream signaling, we established an in vitro model-oxygen glucose deprivation (OGD) to simulate ischemic conditions. Immunofluorescence staining showed that Cx43 co-existed with TLR4 in astrocytes. The hemichannel activity was increased after OGD and Gap19 could inhibit this effect on astrocytes. Gap19 substantially improved relative cell vitality and decreased the expression of Cx43, TLR4 and inflammatory cytokines in vitro. In addition, in the lipopolysaccharide (LPS) stimulation OGD model, Gap19 also exhibited a protective effect via inhibiting TLR4 pathway activation. In summary, our results showed that Gap19 exerted a neuroprotective effect after stroke via inhibition of the TLR4-mediated signaling pathway.
Collapse
Affiliation(s)
- Yingzhu Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Liangzhu Wang
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Lingling Zhang
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Beilei Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Liu Yang
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Xiaobo Li
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yuping Li
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hailong Yu
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou, China.,Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Ek-Vitorín JF, Pontifex TK, Burt JM. Cx43 Channel Gating and Permeation: Multiple Phosphorylation-Dependent Roles of the Carboxyl Terminus. Int J Mol Sci 2018; 19:E1659. [PMID: 29867029 PMCID: PMC6032060 DOI: 10.3390/ijms19061659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Connexin 43 (Cx43), a gap junction protein seemingly fit to support cardiac impulse propagation and synchronic contraction, is phosphorylated in normoxia by casein kinase 1 (CK1). However, during cardiac ischemia or pressure overload hypertrophy, this phosphorylation fades, Cx43 abundance decreases at intercalated disks and increases at myocytes' lateral borders, and the risk of arrhythmia rises. Studies in wild-type and transgenic mice indicate that enhanced CK1-phosphorylation of Cx43 protects from arrhythmia, while dephosphorylation precedes arrhythmia vulnerability. The mechanistic bases of these Cx43 (de)phosphoform-linked cardiac phenotypes are unknown. We used patch-clamp and dye injection techniques to study the channel function (gating, permeability) of Cx43 mutants wherein CK1-targeted serines were replaced by aspartate (Cx43-CK1-D) or alanine (Cx43-CK1-A) to emulate phosphorylation and dephosphorylation, respectively. Cx43-CK1-D, but not Cx43-CK1-A, displayed high Voltage-sensitivity and variable permselectivity. Both mutants showed multiple channel open states with overall increased conductivity, resistance to acidification-induced junctional uncoupling, and hemichannel openings in normal external calcium. Modest differences in the mutant channels' function and regulation imply the involvement of dissimilar structural conformations of the interacting domains of Cx43 in electrical and chemical gating that may contribute to the divergent phenotypes of CK1-(de)phospho-mimicking Cx43 transgenic mice and that may bear significance in arrhythmogenesis.
Collapse
Affiliation(s)
- José F Ek-Vitorín
- Department of Physiology, University of Arizona, P.O. Box 245051, Tucson, AZ 85724, USA.
| | - Tasha K Pontifex
- Department of Physiology, University of Arizona, P.O. Box 245051, Tucson, AZ 85724, USA.
| | - Janis M Burt
- Department of Physiology, University of Arizona, P.O. Box 245051, Tucson, AZ 85724, USA.
| |
Collapse
|
29
|
|
30
|
Johnson RD, Camelliti P. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets? Int J Mol Sci 2018; 19:ijms19030866. [PMID: 29543751 PMCID: PMC5877727 DOI: 10.3390/ijms19030866] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.
Collapse
Affiliation(s)
- Robert D Johnson
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
31
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
32
|
Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress. Cell Tissue Res 2017; 371:213-222. [PMID: 29185069 DOI: 10.1007/s00441-017-2736-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (KATP) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and KATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and KATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.
Collapse
|
33
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
34
|
Mao Y, Nguyen T, Tonkin RS, Lees JG, Warren C, O'Carroll SJ, Nicholson LFB, Green CR, Moalem-Taylor G, Gorrie CA. Characterisation of Peptide5 systemic administration for treating traumatic spinal cord injured rats. Exp Brain Res 2017; 235:3033-3048. [PMID: 28725925 DOI: 10.1007/s00221-017-5023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022]
Abstract
Systemic administration of a Connexin43 mimetic peptide, Peptide5, has been shown to reduce secondary tissue damage and improve functional recovery after spinal cord injury (SCI). This study investigated safety measures and potential off-target effects of Peptide5 systemic administration. Rats were subjected to a mild contusion SCI using the New York University impactor. One cohort was injected intraperitoneally with a single dose of fluorescently labelled Peptide5 and euthanised at 2 or 4 h post-injury for peptide distribution analysis. A second cohort received intraperitoneal injections of Peptide5 or a scrambled peptide and was culled at 8 or 24 h post-injury for the analysis of connexin proteins and systemic cytokine profile. We found that Peptide5 did not cross the blood-spinal cord barrier in control animals, but reached the lesion area in the spinal cord-injured animals without entering non-injured tissue. There was no evidence that the systemic administration of Peptide5 modulates Connexin43 protein expression or hemichannel closure in the heart and lung tissue of SCI animals. The expression levels of other major connexin proteins including Connexin30 in astrocytes, Connexin36 in neurons and Connexin47 in oligodendrocytes were also unaltered by systemic delivery of Peptide5 in either the injured or non-injured spinal cords. In addition, systemic delivery of Peptide5 had no significant effect on the plasma levels of cytokines, chemokines or growth factors. These data indicate that the systemic delivery of Peptide5 is unlikely to cause any off-target or adverse effects and may thus be a safe treatment option for traumatic SCI.
Collapse
Affiliation(s)
- Yilin Mao
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Tara Nguyen
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Ryan S Tonkin
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Justin G Lees
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Caitlyn Warren
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Louise F B Nicholson
- Department of Anatomy and Medical Imaging and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Colin R Green
- Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Gila Moalem-Taylor
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
35
|
Roy S, Jiang JX, Li AF, Kim D. Connexin channel and its role in diabetic retinopathy. Prog Retin Eye Res 2017; 61:35-59. [PMID: 28602949 DOI: 10.1016/j.preteyeres.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness in the working age population. Unfortunately, there is no cure for this devastating ocular complication. The early stage of diabetic retinopathy is characterized by the loss of various cell types in the retina, namely endothelial cells and pericytes. As the disease progresses, vascular leakage, a clinical hallmark of diabetic retinopathy, becomes evident and may eventually lead to diabetic macular edema, the most common cause of vision loss in diabetic retinopathy. Substantial evidence indicates that the disruption of connexin-mediated cellular communication plays a critical role in the pathogenesis of diabetic retinopathy. Yet, it is unclear how altered communication via connexin channel mediated cell-to-cell and cell-to-extracellular microenvironment is linked to the development of diabetic retinopathy. Recent observations suggest the possibility that connexin hemichannels may play a role in the pathogenesis of diabetic retinopathy by allowing communication between cells and the microenvironment. Interestingly, recent studies suggest that connexin channels may be involved in regulating retinal vascular permeability. These cellular events are coordinated at least in part via connexin-mediated intercellular communication and the maintenance of retinal vascular homeostasis. This review highlights the effect of high glucose and diabetic condition on connexin channels and their impact on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - An-Fei Li
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Dongjoon Kim
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
36
|
Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol 2017; 112:27. [PMID: 28364353 DOI: 10.1007/s00395-017-0618-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Mitochondrial connexin 43 (Cx43) plays a key role in cardiac cytoprotection caused by repeated exposure to short periods of non-lethal ischemia/reperfusion, a condition known as ischemic preconditioning. Cx43 also forms calcium (Ca2+)-permeable hemichannels that may potentially lead to mitochondrial Ca2+ overload and cell death. Here, we studied the role of Cx43 in facilitating mitochondrial Ca2+ entry and investigated its downstream consequences. To that purpose, we used various connexin-targeting peptides interacting with extracellular (Gap26) and intracellular (Gap19, RRNYRRNY) Cx43 domains, and tested their effect on mitochondrial dye- and Ca2+-uptake, electrophysiological properties of plasmalemmal and mitochondrial Cx43 channels, and cell injury/cell death. Our results in isolated mice cardiac subsarcolemmal mitochondria indicate that Cx43 forms hemichannels that contribute to Ca2+ entry and may trigger permeability transition and cell injury/death. RRNYRRNY displayed the strongest effects in all assays and inhibited plasma membrane as well as mitochondrial Cx43 hemichannels. RRNYRRNY also strongly reduced the infarct size in ex vivo cardiac ischemia-reperfusion studies. These results indicate that Cx43 contributes to mitochondrial Ca2+ homeostasis and is involved in triggering cell injury/death pathways that can be inhibited by RRNYRRNY peptide.
Collapse
|
37
|
Mao Y, Tonkin RS, Nguyen T, O'Carroll SJ, Nicholson LFB, Green CR, Moalem-Taylor G, Gorrie CA. Systemic Administration of Connexin43 Mimetic Peptide Improves Functional Recovery after Traumatic Spinal Cord Injury in Adult Rats. J Neurotrauma 2017; 34:707-719. [DOI: 10.1089/neu.2016.4625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yilin Mao
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ryan S. Tonkin
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Tara Nguyen
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Simon J. O'Carroll
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, University of Auckland, Grafton, Auckland, New Zealand
| | - Louise F. B. Nicholson
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, University of Auckland, Grafton, Auckland, New Zealand
| | - Colin R. Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | - Gila Moalem-Taylor
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Catherine A. Gorrie
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Connexin 43 and Mitochondria in Cardiovascular Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:227-246. [PMID: 28551790 DOI: 10.1007/978-3-319-55330-6_12] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Connexin 43 (Cx43) is the major connexin protein in ventricular cardiomyocytes. Six Cx43 proteins assemble into so-called hemichannels at the sarcolemma and opposing hemichannels form gap junctions, which allow the passage of small molecules and electrical current flow between adjacent cells. Apart from its localization at the plasma membrane, Cx43 is also present in cardiomyocyte mitochondria, where it is important for mitochondrial function in terms of oxygen consumption and potassium fluxes. The expression of gap junctional and mitochondrial Cx43 is altered under several pathophysiological conditions among them are hypertension, hypertrophy, hypercholesterolemia, ischemia/reperfusion injury, post-infarction remodeling, and heart failure. The present review will focus on the role of Cx43 in cardiovascular diseases and will highlight the importance of mitochondrial Cx43 in cardioprotection.
Collapse
|
39
|
Kim Y, Griffin JM, Harris PWR, Chan SHC, Nicholson LFB, Brimble MA, O'Carroll SJ, Green CR. Characterizing the mode of action of extracellular Connexin43 channel blocking mimetic peptides in an in vitro ischemia injury model. Biochim Biophys Acta Gen Subj 2016; 1861:68-78. [PMID: 27816754 DOI: 10.1016/j.bbagen.2016.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Non-selective Connexin43 hemichannels contribute to secondary lesion spread. The hemichannel blocking peptidomimetic Peptide5, derived from the second extracellular loop of the human Connexin43 protein, prevents lesion spread and reduces vascular permeability in preclinical models of central nervous system injury. The molecular mode of action of Peptide5, however, was unknown and is described here. METHODS Human cerebral microvascular endothelial cells and APRE-19 cells were used. Scrape loading was used to assess gap junction function and hypoxic, acidic ion-shifted Ringer solution induced ATP release used to assess hemichannel function. Peptide modifications, including amino acid substitutions and truncations, and competition assays were used to demonstrate Peptide5 functional specificity and site of action respectively. RESULTS Peptide5 inhibits Connexin43 hemichannel-mediated ATP release by acting on extracellular loop two of Connexin43, adjacent to its matching sequence within the protein. Precise sequence specificity is important for hemichannel block, but less so for uncoupling of gap junction channels (seen only at high concentrations). The SRPTEKT motif is central to Peptide5 function but on its own is not sufficient to inhibit hemichannels. Both the SRPTEKT motif and Peptide5 reduce gap junction communication, but neither uncoupling below 50%. CONCLUSIONS Reduced gap junction coupling at high peptide concentrations appears to be relatively non-specific. However, Peptide5 at low concentrations acts upon extracellular loop two of Connexin43 to block hemichannels in a precise, sequence specific manner. GENERAL SIGNIFICANCE The concentration dependent and sequence specific action of Peptide5 supports its development for the treatment of retinal injury and chronic disease, as well as other central nervous system injury and disease conditions.
Collapse
Affiliation(s)
- Yeri Kim
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jarred M Griffin
- Centre for Brain Research, Department of Anatomy Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, New Zealand; School of Biological Sciences, New Zealand
| | - Sin Hang Crystal Chan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Louise F B Nicholson
- Centre for Brain Research, Department of Anatomy Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, New Zealand; School of Biological Sciences, New Zealand
| | - Simon J O'Carroll
- Centre for Brain Research, Department of Anatomy Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
40
|
Martins-Marques T, Pinho MJ, Zuzarte M, Oliveira C, Pereira P, Sluijter JPG, Gomes C, Girao H. Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin. J Extracell Vesicles 2016; 5:32538. [PMID: 27702427 PMCID: PMC5045474 DOI: 10.3402/jev.v5.32538] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are major conveyors of biological information, mediating local and systemic cell-to-cell communication under physiological and pathological conditions. These endogenous vesicles have been recognized as prominent drug delivery vehicles of several therapeutic cargoes, including doxorubicin (dox), presenting major advantages over the classical approaches. Although dox is one of the most effective anti-tumour agents in the clinical practice, its use is very often hindered by its consequent dramatic cardiotoxicity. Despite significant advances witnessed in the past few years, more comprehensive studies, supporting the therapeutic efficacy of EVs, with decreased side effects, are still scarce. The main objective of this study was to evaluate the role of the gap junction protein connexin43 (Cx43) in mediating the release of EV content into tumour cells. Moreover, we investigated whether Cx43 improves the efficiency of dox-based anti-tumour treatment, with a concomitant decrease of cardiotoxicity. In the present report, we demonstrate that the presence of Cx43 in EVs increases the release of luciferin from EVs into tumour cells in vitro and in vivo. In addition, using cell-based approaches and a subcutaneous mouse tumour model, we show that the anti-tumour effect of dox incorporated into EVs is similar to the administration of the free drug, regardless the presence of Cx43. Strikingly, we demonstrate that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug. Altogether, these results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria Joao Pinho
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Monica Zuzarte
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer Group, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo Pereira
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Joost P G Sluijter
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute Netherlands (ICIN), Utrecht, The Netherlands
| | - Celia Gomes
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Henrique Girao
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal;
| |
Collapse
|
41
|
Lee JY, Yoon SM, Choi EJ, Lee J. Terbinafine inhibits gap junctional intercellular communication. Toxicol Appl Pharmacol 2016; 307:102-107. [DOI: 10.1016/j.taap.2016.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 07/30/2016] [Indexed: 11/28/2022]
|
42
|
Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51:41-68. [DOI: 10.1016/j.preteyeres.2015.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|
43
|
Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 2016; 43:450-9. [PMID: 26009190 DOI: 10.1042/bst20150056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collaborative communication lies at the centre of multicellular life. Gap junctions (GJs) are surface membrane structures that allow direct communication between cells. They were discovered in the 1960s following the convergence of the detection of low-resistance electrical interactions between cells and anatomical studies of intercellular contact points. GJs purified from liver plasma membranes contained a 27 kDa protein constituent; it was later named Cx32 (connexin 32) after its full sequence was determined by recombinant technology. Identification of Cx43 in heart and later by a further GJ protein, Cx26 followed. Cxs have a tetraspan organization in the membrane and oligomerize during intracellular transit to the plasma membrane; these were shown to be hexameric hemichannels (connexons) that could interact end-to-end to generate GJs at areas of cell-to-cell contact. The structure of the GJ was confirmed and refined by a combination of biochemical and structural approaches. Progress continues towards obtaining higher atomic 3D resolution of the GJ channel. Today, there are 20 and 21 highly conserved members of the Cx family in the human and mouse genomes respectively. Model organisms such as Xenopus oocytes and zebra fish are increasingly used to relate structure to function. Proteins that form similar large pore membrane channels in cells called pannexins have also been identified in chordates. Innexins form GJs in prechordates; these two other proteins, although functionally similar, are very different in amino acid sequence to the Cxs. A time line tracing the historical progression of wide ranging research in GJ biology over 60 years is mapped out. The molecular basis of channel dysfunctions in disease is becoming evident and progress towards addressing Cx channel-dependent pathologies, especially in ischaemia and tissue repair, continues.
Collapse
|
44
|
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:1-37. [DOI: 10.1016/bs.apcsb.2015.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 2015; 768:71-6. [PMID: 26499977 DOI: 10.1016/j.ejphar.2015.10.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.
Collapse
Affiliation(s)
| | | | - Pinto Aldo
- Department of Pharmacy, University of Salerno, Italy
| | - Popolo Ada
- Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|
46
|
Lee JY, Choi EJ, Lee J. A new high-throughput screening-compatible gap junctional intercellular communication assay. BMC Biotechnol 2015; 15:90. [PMID: 26444544 PMCID: PMC4596302 DOI: 10.1186/s12896-015-0211-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gap junctions (GJs) are intercellular channels through which molecules smaller than 1 kDa can diffuse, and they have been suggested as drug targets. To develop chemical drugs acting on this target, a high-throughput screening (HTS) system for GJ modulators is necessary. RESULTS We designed a new, high-throughput GJ intercellular communication (GJIC) assay. This assay system consisted of donor and acceptor cells from LN215 glioma cells that expressed SLC26A4 and yellow fluorescent protein-H148Q/I152L (YFP(QL)), respectively. The fluorescence of LN215-YFP(QL) acceptor cells, when cultured alone, was not quenched by iodide. However when donor and acceptor cells, or LN215-YFP(QL) and LN215-I(-) cells, were mixed and plated, they formed GJs. When iodide was added, it was transported into donor cells by SLC26A4, diffused through the GJs to acceptor cells, and quenched the YFP(QL) fluorescence. The quenching rate was optimal at a 2:1 mixture of donor and acceptor cells. The assay quality parameter, Z' factor, was calculated from data collected with vehicle and carbenoxolone. For each assay, the Z' factor increased with time. The Z' factor of a 10-s assay was 0.72 indicating that the assay quality was high enough for use in HTS. This assay system also worked well in HOS osteosarcoma cells with a Z' factor at 10 s of 0.70. CONCLUSIONS We developed a new HTS system for GJ modulators. The system had a high assay quality with a Z' factor ≥ 0.70, was rapid and required only 10 s per well, was inexpensive in requiring no additional reagents, and was predicted to have a low rate of false-positive hits.
Collapse
Affiliation(s)
- Ju Yeon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 406-840, South Korea.
| | - Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 406-840, South Korea.
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 406-840, South Korea.
| |
Collapse
|
47
|
Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther 2015; 153:90-106. [PMID: 26073311 DOI: 10.1016/j.pharmthera.2015.06.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Connexins are widely distributed proteins in the body that are crucially important for heart and brain functions. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localization at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in the mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodeling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injuries as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissues following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection.
Collapse
Affiliation(s)
- Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Gießen, Germany.
| | | | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Luc Leybaert
- Physiology Group, Department Basic Medical Sciences, Ghent University, Belgium
| |
Collapse
|
48
|
Retamal MA, León-Paravic CG, Ezquer M, Ezquer F, Rio RD, Pupo A, Martínez AD, González C. Carbon monoxide: A new player in the redox regulation of connexin hemichannels. IUBMB Life 2015; 67:428-37. [DOI: 10.1002/iub.1388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Carmen G. León-Paravic
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Rodrigo Del Rio
- Centro de Investigación Biomédica; Universidad Autónoma de Chile; Santiago Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias; Instituto de Neurociencia; Universidad de Valparaíso; Valparaíso Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias; Instituto de Neurociencia; Universidad de Valparaíso; Valparaíso Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias; Instituto de Neurociencia; Universidad de Valparaíso; Valparaíso Chile
| |
Collapse
|
49
|
Tarzemany R, Jiang G, Larjava H, Häkkinen L. Expression and function of connexin 43 in human gingival wound healing and fibroblasts. PLoS One 2015; 10:e0115524. [PMID: 25584940 PMCID: PMC4293150 DOI: 10.1371/journal.pone.0115524] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing-associated genes via AP1, SP1, MAPK, GSK3α/β and TGF-β signaling pathways, and may promote fast and scarless wound healing in human gingiva.
Collapse
Affiliation(s)
- Rana Tarzemany
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
50
|
Seki A, Nishii K, Hagiwara N. Gap junctional regulation of pressure, fluid force, and electrical fields in the epigenetics of cardiac morphogenesis and remodeling. Life Sci 2014; 129:27-34. [PMID: 25447447 DOI: 10.1016/j.lfs.2014.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/29/2014] [Indexed: 01/25/2023]
Abstract
Epigenetic factors of pressure load, fluid force, and electrical fields that occur during cardiac contraction affect cardiac development, morphology, function, and pathogenesis. These factors are orchestrated by intercellular communication mediated by gap junctions, which synchronize action potentials and second messengers. Misregulation of the gap junction protein connexin (Cx) alters cardiogenesis, and can be a pathogenic factor causing cardiac conduction disturbance, fatal arrhythmia, and cardiac remodeling in disease states such as hypertension and ischemia. Changes in Cx expression can occur even when the DNA sequence of the Cx gene itself is unaltered. Posttranslational modifications might reduce arrhythmogenic substrates, improve cardiac function, and promote remodeling in a diseased heart. In this review, we discuss the epigenetic features of gap junctions that regulate cardiac morphology and remodeling. We further discuss potential clinical applications of current knowledge of the structure and function of gap junctions.
Collapse
Affiliation(s)
- Akiko Seki
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Support Center for Women Health Care Professionals and Researchers, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Kiyomasa Nishii
- Department of Anatomy and Neurobiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|