1
|
Lu TL, Wu SN. Investigating the Impact of Selective Modulators on the Renin-Angiotensin-Aldosterone System: Unraveling Their Off-Target Perturbations of Transmembrane Ionic Currents. Int J Mol Sci 2023; 24:14007. [PMID: 37762309 PMCID: PMC10530685 DOI: 10.3390/ijms241814007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a crucial role in maintaining various physiological processes in the body, including blood pressure regulation, electrolyte balance, and overall cardiovascular health. However, any compounds or drugs known to perturb the RAAS might have an additional impact on transmembrane ionic currents. In this retrospective review article, we aimed to present a selection of chemical compounds or medications that have long been recognized as interfering with the RAAS. It is noteworthy that these substances may also exhibit regulatory effects in different types of ionic currents. Apocynin, known to attenuate the angiotensin II-induced activation of epithelial Na+ channels, was shown to stimulate peak and late components of voltage-gated Na+ current (INa). Esaxerenone, an antagonist of the mineralocorticoid receptor, can exert an inhibitory effect on peak and late INa directly. Dexamethasone, a synthetic glucocorticoid, can directly enhance the open probability of large-conductance Ca2+-activated K+ channels. Sparsentan, a dual-acting antagonist of the angiotensin II receptor and endothelin type A receptors, was found to suppress the amplitude of peak and late INa effectively. However, telmisartan, a blocker of the angiotensin II receptor, was effective in stimulating the peak and late INa along with a slowing of the inactivation time course of the current. However, telmisartan's presence can also suppress the erg-mediated K+ current. Moreover, tolvaptan, recognized as an aquaretic agent that can block the vasopressin receptor, was noted to suppress the amplitude of the delayed-rectifier K+ current and the M-type K+ current directly. The above results indicate that these substances not only have an interference effect on the RAAS but also exert regulatory effects on different types of ionic currents. Therefore, to determine their mechanisms of action, it is necessary to gain a deeper understanding.
Collapse
Affiliation(s)
- Te-Ling Lu
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan;
| | - Sheng-Nan Wu
- Department of Research and Education, An Nan Hospital, China Medical University, Tainan 709040, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
2
|
Palmer JA, Smith AM, Gryshkova V, Donley ELR, Valentin JP, Burrier RE. A Targeted Metabolomics-Based Assay Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Identifies Structural and Functional Cardiotoxicity Potential. Toxicol Sci 2021; 174:218-240. [PMID: 32040181 DOI: 10.1093/toxsci/kfaa015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.
Collapse
Affiliation(s)
| | - Alan M Smith
- Stemina Biomarker Discovery, Inc, Madison, Wisconsin
| | - Vitalina Gryshkova
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | | - Jean-Pierre Valentin
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
3
|
Sigma-2 Receptor-A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules 2020; 25:molecules25225439. [PMID: 33233619 PMCID: PMC7699687 DOI: 10.3390/molecules25225439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma receptors were classified into sigma-1 and sigma-2 receptor based on their different pharmacological profiles. In the past two decades, our understanding of the biological and pharmacological properties of the sigma-1 receptor is increasing; however, little is known about the sigma-2 receptor. Recently, the molecular identity of the sigma-2 receptor has been identified as TMEM97. Although more and more evidence has showed that sigma-2 ligands have the ability to treat cancer and Alzheimer’s disease (AD), the mechanisms connecting these two diseases are unknown. Data obtained over the past few years from human and animal models indicate that cholesterol homeostasis is altered in AD and cancer, underscoring the importance of cholesterol homeostasis in AD and cancer. In this review, based on accumulated evidence, we proposed that the beneficial roles of sigma-2 ligands in cancer and AD might be mediated by their regulation of cholesterol homeostasis.
Collapse
|
4
|
Lai MC, Wu SN, Huang CW. Telmisartan, an Antagonist of Angiotensin II Receptors, Accentuates Voltage-Gated Na + Currents and Hippocampal Neuronal Excitability. Front Neurosci 2020; 14:902. [PMID: 33013297 PMCID: PMC7499822 DOI: 10.3389/fnins.2020.00902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Telmisartan (TEL), a non-peptide blocker of the angiotensin II type 1 receptor, is a widely used antihypertensive agent. Nevertheless, its neuronal ionic effects and how they potentially affect neuronal network excitability remain largely unclear. With the aid of patch-clamp technology, the effects of TEL on membrane ion currents present in hippocampal neurons (mHippoE-14 cells) were investigated. For additional characterization of the effects of TEL on hippocampal neuronal excitability, we undertook in vivo studies on Sprague Dawley (SD) rats using pilocarpine-induced seizure modeling, a hippocampal histopathological analysis, and inhibitory avoidance testing. In these hippocampal neurons, TEL increased the peak amplitude of I Na , with a concomitant decline in the current inactivation rate. The TEL concentration dependently enhanced the peak amplitude of depolarization-elicited I Na and lessened the inactivation rate of I Na . By comparison, TEL was more efficacious in stimulating the peak I Na and in prolonging the inactivation time course of this current than tefluthrin or (-)-epicatechin-3-gallate. In the continued presence of pioglitazone, the TEL-perturbed stimulation of I Na remained effective. In addition, cell exposure to TEL shifted the steady-state inactivation I Na curve to fewer negative potentials with no perturbations of the slope factor. Unlike chlorotoxin, either ranolazine, eugenol, or KMUP-1 reversed TEL-mediated increases in the strength of non-inactivating I Na . In the cell-attached voltage-clamp recordings, TEL shortened the latency in the generation of action currents. Meanwhile, TEL increased the peak I Na , with a concurrent decrease in current inactivation in HEKT293T cells expressing SCN5A. Furthermore, although TEL did not aggravate pilocarpine-induced chronic seizures and tended to preserve cognitive performance, it significantly accentuated hippocampal mossy fiber sprouting. Collectively, TEL stimulation of peak I Na in combination with an apparent retardation in current inactivation could be an important mechanism through which hippocampal neuronal excitability is increased, and hippocampal network excitability is accentuated following status epilepticus, suggesting further attention to this finding.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Jang SA, Park DW, Sohn EH, Lee SR, Kang SC. Hyperoside suppresses tumor necrosis factor α-mediated vascular inflammatory responses by downregulating mitogen-activated protein kinases and nuclear factor-κB signaling. Chem Biol Interact 2018; 294:48-55. [DOI: 10.1016/j.cbi.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023]
|
6
|
Wang X, Li G. Irbesartan prevents sodium channel remodeling in a canine model of atrial fibrillation. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318755269. [PMID: 29378480 PMCID: PMC5843850 DOI: 10.1177/1470320318755269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: Activation of the renin-angiotensin system (RAS) plays an important role in atrial electrical remodeling (AER). The purpose of the present study was to evaluate the effects of irbesartan on cardiac sodium current (INa) in a canine model of atrial fibrillation. Materials and methods: Eighteen dogs were randomized into sham, pacing or pacing+irbesartan groups (n = 6 in each group). The dogs in the pacing and irbesartan group were paced at 500 bpm for two weeks. Irbesartan (60 mg·kg−1·d−1) was administered orally in the pacing+irbesartan groups. INa was recorded using the whole-cell patch clamp technique from canine atrial myocytes. The expressions of cardiac Na+ channels (Nav1.5) mRNA were semi-quantified by reverse transcription-polymerase chain reaction. Results: Our results showed that INa density and Nav1.5 mRNA expression in the pacing group decreased significantly (p < 0.05 vs. sham). However, rapid atrial pacing had no effects on the half-activation voltage (V1/2act) and half-inactivation voltage (V1/2inact) of INa (p > 0.05 vs. sham). Irbesartan significantly increased INa densities and gene expression and hyperpolarized V1/2act without concomitant changes in V1/2inact. Conclusions: Irbesartan significantly increased INa densities, which contributed to improving intra-atrial conduction and prevented the induction and promotion of AF in atrial pacing dogs.
Collapse
Affiliation(s)
- Xuewen Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| |
Collapse
|
7
|
Chang WT, Wu SN. Activation of voltage-gated sodium current and inhibition of erg-mediated potassium current caused by telmisartan, an antagonist of angiotensin II type-1 receptor, in HL-1 atrial cardiomyocytes. Clin Exp Pharmacol Physiol 2018; 45:797-807. [PMID: 29617054 DOI: 10.1111/1440-1681.12943] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
Telmisartan (TEL) is a non-peptide blocker of angiotensin II type-1 (AT1 ) receptor. However, the mechanisms through which this drug interacts directly with ion currents in hearts remain largely unclear. Herein, we aim to investigate the effects of TEL the on ionic currents and membrane potential of murine HL-1 cardiomyocytes. In whole-cell recordings, addition of TEL stimulated the peak and late components of voltage-gated Na+ currents (INa ) with different potencies. The EC50 values required to achieve the stimulatory effect of this drug on peak and late INa were 0.2 and 1.2 μmol/L, respectively, and the current-voltage relationship of peak INa shifted toward less-depolarized potentials during exposure to TEL. Telmisartan not only increased peak INa but also prolonged the inactivation time course of late INa . Amiodarone (Amio) or ranolazine (Ran), but not angiotensin II, could reverse TEL-mediated effects. The drug enhanced the recovery rate of INa inactivation and exerted an inhibitory effect on erg-mediated K+ and L-type Ca2+ currents. In whole-cell current-clamp recordings, addition of the drug resulted in prolongation of the duration of action potentials (APs) in a dose-dependent manner in HL-1 cells; Amio or Ran could reverse this increase in AP durations. Telmisartan-mediated prolongation of AP was attenuated in KCNH2 siRNA-transfected HL-1 cells. In cultured smooth muscle cells of the human coronary artery, TEL enhanced INa amplitudes and slowed current inactivation. Stimulation by TEL of INa in HL-1 cells did not simply increase current magnitude but altered current kinetics, thereby suggesting state-dependent activation. Telmisartan may have greater affinity to the open/inactivated state than to the resting state residing in NaV channels. Collectively, TEL-mediated stimulation of INa and inhibition of IK(erg) could be an important ionic mechanism underlying the increased cell excitability of HL-1 cells; these actions, however, cannot be entirely explained by its blockade of AT1 receptor.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| |
Collapse
|
8
|
So EC, Wu SN, Lo YC, Su K. Differential regulation of tefluthrin and telmisartan on the gating charges of I Na activation and inactivation as well as on resurgent and persistent I Na in a pituitary cell line (GH 3). Toxicol Lett 2018; 285:104-112. [PMID: 29306026 DOI: 10.1016/j.toxlet.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na+ currents (INa), known to contain many components (e.g., transient, resurgent and persistent INa) with unique gating properties, are involved in the generation and propagation of action potentials in excitable cells. In this study, how tefluthrin (Tef), a synthetic pyrethoid, and telmisartan (TEL), blocker of angiotensin II receptors can perturb those components of INa was investigated. The presence of either Tef or TEL increased the values of the gating charges of INa involved in the activation (za) and inactivation (zi). Tef also increased the amplitude of resurgent INa (INa(R)) or persistent INa (INa(P)) in a pituitary cell line (GH3), while TEL produced minimal effects on them. Subsequent addition of either ranolazine (a blocker of late INa) or d-limonene (a monoterpene), could reverse the changes by TEL or Tef on za or zi. In SCN5A-expressing HEK293T cells, addition of Tef or TEL also increased the peak amplitude and the inactivation time constant of INa which was accompanied by the increased za value of INa. Taken together, the results indicated that Tef- or TEL-mediated changes in the gating kinetics of INa are linked to their actions on functional activity of neurons, neuroendocrine or endocrine cells.
Collapse
Affiliation(s)
- Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, 70965, Tainan City, Taiwan; Department of Anesthesia, China Medical University, 40447 Taichung City, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, 70101 Tainan City, Taiwan.
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, 80756 Kaohsiung City, Taiwan.
| | - Kevin Su
- Department of Medicine, Shanghai Medical College, Fudan University, Shanghai City, China.
| |
Collapse
|
9
|
Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts. Pflugers Arch 2017; 470:263-275. [PMID: 29032504 DOI: 10.1007/s00424-017-2076-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Metabolic disturbance and mitochondrial dysfunction are a hallmark of diabetic cardiomyopathy (DC). Resistance exercise (RE) not only enhances the condition of healthy individuals but could also improve the status of those with disease. However, the beneficial effects of RE in the prevention of DC and mitochondrial dysfunction are uncertain. Therefore, this study investigated whether RE attenuates DC by improving mitochondrial function using an in vivo rat model of diabetes. Fourteen Otsuka Long-Evans Tokushima Fatty rats were assigned to sedentary control (SC, n = 7) and RE (n = 7) groups at 28 weeks of age. Long-Evans Tokushima Otsuka rats were used as the non-diabetic control. The RE rats were trained by 20 repetitions of climbing a ladder 5 days per week. RE rats exhibited higher glucose uptake and lower lipid profiles, indicating changes in energy metabolism. RE rats significantly increased the ejection fraction and fractional shortening compared with the SC rats. Isolated mitochondria in RE rats showed increase in mitochondrial numbers, which were accompanied by higher expression of mitochondrial biogenesis proteins such as proliferator-activated receptor-γ coactivator-1α and TFAM. Moreover, RE rats reduced proton leakage and reactive oxygen species production, with higher membrane potential. These results were accompanied by higher superoxide dismutase 2 and lower uncoupling protein 2 (UCP2) and UCP3 levels in RE rats. These data suggest that RE is effective at ameliorating DC by improving mitochondrial function, which may contribute to the maintenance of diabetic cardiac contractility.
Collapse
|
10
|
Duncan G, Firth K, George V, Hoang MD, Staniforth A, Smith G, Denning C. Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2017; 26:1695-1705. [PMID: 28992755 PMCID: PMC5706629 DOI: 10.1089/scd.2017.0172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) are now a well-established modality for modeling genetic disorders of the heart. This is especially so for long QT syndrome (LQTS), which is caused by perturbation of ion channel function, and can lead to fainting, malignant arrhythmias and sudden cardiac death. LQTS2 is caused by mutations in KCNH2, a gene whose protein product contributes to IKr (also known as HERG), which is the predominant repolarizing potassium current in CMs. β-blockers are the mainstay treatment for patients with LQTS, functioning by reducing heart rate and arrhythmogenesis. However, they are not effective in around a quarter of LQTS2 patients, in part, because they do not correct the defining feature of the condition, which is excessively prolonged QT interval. Since new therapeutics are needed, in this report, we biopsied skin fibroblasts from a patient who was both genetically and clinically diagnosed with LQTS2. By producing LQTS-hiPSC-CMs, we assessed the impact of different drugs on action potential duration (APD), which is used as an in vitro surrogate for QT interval. Not surprisingly, the patient's own β-blocker medication, propranolol, had a marginal effect on APD in the LQTS-hiPSC-CMs. However, APD could be significantly reduced by up to 19% with compounds that enhanced the IKr current by direct channel binding or by indirect mediation through the PPARδ/protein 14-3-3 epsilon/HERG pathway. Drug-induced enhancement of an alternative potassium current, IKATP, also reduced APD by up to 21%. This study demonstrates the utility of LQTS-hiPSC-CMs in evaluating whether drugs can shorten APD and, importantly, shows that PPARδ agonists may form a new class of therapeutics for this condition.
Collapse
Affiliation(s)
- Gary Duncan
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Karl Firth
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Vinoj George
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom .,2 Guy Hilton Research Centre, Institute for Science and Technology in Medicine (ISTM), Keele University , Staffordshire, United Kingdom
| | - Minh Duc Hoang
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom .,2 Guy Hilton Research Centre, Institute for Science and Technology in Medicine (ISTM), Keele University , Staffordshire, United Kingdom
| | - Andrew Staniforth
- 3 Department of Cardiovascular Medicine, Queen's Medical Centre , Nottingham, United Kingdom
| | - Godfrey Smith
- 4 Institute of Cardiovascular and Medical Sciences, University of Glasgow , Glasgow, United Kingdom
| | - Chris Denning
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
11
|
Puri R, Kaur Bhatia R, Shankar Pandey R, Kumar Jain U, Katare OP, Madan J. Sigma-2 receptor ligand anchored telmisartan loaded nanostructured lipid particles augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in prostate cancer cells. Drug Dev Ind Pharm 2016; 42:2020-2030. [DOI: 10.1080/03639045.2016.1190741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Richa Puri
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Panjab, India
| | - Richa Kaur Bhatia
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Panjab, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Upendra Kumar Jain
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Panjab, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jitender Madan
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Panjab, India
| |
Collapse
|
12
|
Peymani M, Ghaedi K, Irani S, Nasr-Esfahani MH. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation. CELL JOURNAL 2016; 18:221-8. [PMID: 27540527 PMCID: PMC4988421 DOI: 10.22074/cellj.2016.4317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
Objective Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the
PPAR nuclear receptor superfamily. Although PPARγ acts as a master transcription factor
in adipocyte differentiation, it is also associated with a variety of cell functions including
carbohydrate and lipid metabolism, glucose homeostasis, cell proliferation and cell differentiation. This study aimed to assess the expression level of PPARγ in order to address its
role in cardiac cell differentiation of mouse embryonic stem cells (mESCs).
Materials and Methods In this an intervening study, mESCs were subjected to cardiac differentiation. Total RNA was extracted from the cells and quantitative real time polymerase chain
reaction (qPCR) was carried out to estimate level of gene expression. Furthermore, the requirement of PPARγ in cardiac differentiation of mESCs, during cardiac progenitor cells (CPCs)
formation, was examined by applying the respective agonist and antagonist.
Results The obtained data revealed an elevation in the expression level of PPARγ during
spontaneous formation of CPCs and cardiomyocytes. Our results indicated that during
CPC formation, PPARγ inactivation via treatment with GW9662 (GW) reduced expression
of CPC and cardiac markers.
Conclusion We conclude that PPARγ modulation has an effective role on cardiac differentiation of mESCs at the early stage of cardiomyogenesis.
Collapse
Affiliation(s)
- Maryam Peymani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
13
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
14
|
Echinochrome A regulates phosphorylation of phospholamban Ser16 and Thr17 suppressing cardiac SERCA2A Ca²⁺ reuptake. Pflugers Arch 2014; 467:2151-63. [PMID: 25410495 DOI: 10.1007/s00424-014-1648-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023]
Abstract
Echinochrome A (Ech A), a marine bio-product isolated from sea urchin eggs, is known to have cardioprotective effects through its strong antioxidant and ATP-sparing capabilities. However, the effects of Ech A on cardiac excitation-contraction (E-C) are not known. In this study, we investigated the effects of Ech A on cardiac contractility and Ca(2+) handling in the rat heart. In ex vivo Langendorff hearts, Ech A (3 μM) decreased left ventricular developing pressure to 77.7 ± 6.5 % of basal level. In isolated ventricular myocytes, Ech A reduced the fractional cell shortening from 3.4 % at baseline to 2.1 %. Ech A increased both diastolic and peak systolic intracellular Ca(2+) ([Ca(2+)]i). However, the ratio of peak [Ca]i to resting [Ca]i was significantly decreased. Ech A did not affect the L-type Ca(2+) current. Inhibiting the Na(+)/Ca(2+) exchanger with either NiCl2 or SEA400 did not affect the Ech A-dependent changes in Ca(2+) handling. Our data demonstrate that treatment with Ech A results in a significant reduction in the phosphorylation of phospholamban at both serine 16 and threonine 17 leading to a significant inhibition of SR Ca(2+)-ATPase 2A (SERCA2A) and subsequent reduced Ca(2+) uptake into the intracellular Ca(2+) store. Taken together, our data show that Ech A negatively regulates cardiac contractility by inhibiting SERCA2A activity, which leads to a reduction in internal Ca(2+) stores.
Collapse
|
15
|
Łukawski K, Janowska A, Jakubus T, Czuczwar SJ. Interactions between angiotensin AT1receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock. Fundam Clin Pharmacol 2013; 28:277-83. [DOI: 10.1111/fcp.12023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/03/2012] [Accepted: 01/28/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology; Institute of Agricultural Medicine; Jaczewskiego 2 20-090 Lublin Poland
| | - Agnieszka Janowska
- Department of Physiopathology; Institute of Agricultural Medicine; Jaczewskiego 2 20-090 Lublin Poland
| | - Tomasz Jakubus
- Department of Physiopathology; Institute of Agricultural Medicine; Jaczewskiego 2 20-090 Lublin Poland
| | - Stanisław J. Czuczwar
- Department of Physiopathology; Institute of Agricultural Medicine; Jaczewskiego 2 20-090 Lublin Poland
- Department of Pathophysiology; Medical University of Lublin; Jaczewskiego 8 20-090 Lublin Poland
| |
Collapse
|