1
|
Autler AS, Darling AM, Skow RJ, Young BE, Fadel PJ, Saunders EFH, Greaney JL. Sympathetic reactivity to emotional stress in women with major depressive disorder. Auton Neurosci 2025; 259:103257. [PMID: 40058187 DOI: 10.1016/j.autneu.2025.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 03/01/2025] [Indexed: 06/01/2025]
Abstract
Young women, who suffer from major depressive disorder (MDD) at twice the rate as young men, are particularly vulnerable to cardiovascular events triggered by emotional stress, an association that may be partially explained by excessive sympathetic activation. However, no studies have directly measured sympathetic activity during acute emotional stress in young women with MDD. We hypothesized that the muscle sympathetic nerve activity (MSNA) response to acute emotional stress would be greater in young women with MDD (18-30 yrs) compared to healthy non-depressed young women. MSNA (peroneal microneurography) and beat-to-beat blood pressure (BP; finger photoplethysmography) were measured at rest and during acute emotional stress evoked by viewing negative images selected from the International Affective Picture System in 17 healthy young women and in 30 young women with MDD of mild-to-moderate severity (unmedicated). There were no group differences in either the peak increase in MSNA (Δ0.1 ± 2.9 healthy vs. Δ2.0 ± 4.9 bursts/min MDD; p = 0.45) or the peak increase in mean arterial pressure (Δ0.6 ± 3.5 healthy vs. Δ1.4 ± 2.1 mmHg MDD; p = 0.67) in response to viewing negative images. However, in young women with MDD, MSNA reactivity to viewing negative images was positively related to current depressive symptom severity (r = 0.49; p = 0.04). Although these data indicate only minor MSNA responses to viewing negative images, they also highlight that sympathetic-cardiovascular reactivity to an acute, passive emotional stress stimulus is not exaggerated in young women with MDD. However, more severe current depressive symptoms may amplify emotional stress-induced sympathetic activation, thereby increasing cardiovascular risk.
Collapse
Affiliation(s)
- Aaron S Autler
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, United States of America
| | - Ashley M Darling
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, United States of America; Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America
| | - Benjamin E Young
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America; Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Paul J Fadel
- Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Erika F H Saunders
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA, United States of America
| | - Jody L Greaney
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, United States of America; Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America; Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, PA, United States of America.
| |
Collapse
|
2
|
Sheng JA, Tobet SA. Maternal immune activation with toll-like receptor 7 agonist during mid-gestation alters juvenile and adult developmental milestones and behavior. J Neuroendocrinol 2024; 36:e13417. [PMID: 38822791 PMCID: PMC11296912 DOI: 10.1111/jne.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Infections during pregnancy are associated with increased risk for adult neuropsychiatric disease, such as major depressive disorder, schizophrenia, and autism spectrum disorder. In mouse models of maternal immune activation (MIA), different toll-like receptors (TLRs) are stimulated to initiate inflammatory responses in mother and fetus. The goal of this study was to determine sex-dependent aspects of MIA using a TLR7/8 agonist, Resiquimod (RQ), on neurodevelopment. RQ was administered to timed-pregnant mice on embryonic day (E) 12.5. At E15, maternal/fetal plasma cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Maternal cytokines interleukin (IL)-6 and IL-10 were higher while tumor necrosis factor (TNF)-α and IL-17 were lower in pregnant dams exposed to RQ. Fetal cytokines (E15) were altered at the same timepoint with fetal plasma IL-6 and IL-17 greater after RQ compared to vehicle, while IL-10 and TNF-α were higher in male fetuses but not female. Other timed-pregnant dams were allowed to give birth. MIA with RQ did not alter the female to male ratio of offspring born per litter. Body weights were reduced significantly in both sexes at birth, and over the next 5 weeks. Offspring from RQ-injected mothers opened their eyes 5 days later than controls. Similarly, female offspring from RQ-injected mothers exhibited pubertal delay based on vaginal opening 2-3 days later than control females. On the behavioral side, juvenile and adult male and female MIA offspring exhibited less social-like behavior in a social interaction test. Anhedonia-like behavior was greater in MIA adult female mice. This study provides support for sex-dependent influences of fetal antecedents for altered brain development and behavioral outputs that could be indicative of increased susceptibility for adult disorders through immune mechanisms. Future studies are needed to determine neural cellular and molecular mechanisms for such programming effects.
Collapse
Affiliation(s)
| | - Stuart A. Tobet
- Biomedical Sciences, Colorado State University, Fort Collins, CO
- Department of Psychiatry, Mass General Hospital, Harvard Medical School, Boston, MA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO
- Innovation Center on Sex Differences in Medicine, Mass General Hospital
| |
Collapse
|
3
|
Impact of sex and depressed mood on the central regulation of cardiac autonomic function. Neuropsychopharmacology 2020; 45:1280-1288. [PMID: 32152473 PMCID: PMC7298013 DOI: 10.1038/s41386-020-0651-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Cardiac autonomic dysregulation has been implicated in the comorbidity of major psychiatric disorders and cardiovascular disease, potentially through dysregulation of physiological responses to negative stressful stimuli (here, shortened to stress response). Further, sex differences in these comorbidities are substantial. Here, we tested the hypothesis that mood- and sex-dependent alterations in brain circuitry implicated in the regulation of the stress response are associated with reduced peripheral parasympathetic activity during negative emotional arousal. Fifty subjects (28 females) including healthy controls and individuals with major depression, bipolar psychosis and schizophrenia were evaluated. Functional magnetic resonance imaging and physiology (cardiac pulse) data were acquired during a mild visual stress reactivity challenge. Associations between changes in activity and functional connectivity of the stress response circuitry and variations in cardiovagal activity [normalized high frequency power of heart rate variability (HFn)] were evaluated using GLM analyses, including interactions with depressed mood and sex across disorders. Our results revealed that in women with high depressed mood, lower cardiovagal activity in response to negative affective stimuli was associated with greater activation of hypothalamus and right amygdala and reduced connectivity between hypothalamus and right orbitofrontal cortex, amygdala, and hippocampus. No significant associations were observed in women with low levels of depressed mood or men. Our results revealed mood- and sex-dependent interactions in the central regulation of cardiac autonomic activity in response to negative affective stimuli. These findings provide a potential pathophysiological mechanism for previously observed sex differences in the comorbidity of major depression and cardiovascular disease.
Collapse
|
4
|
Jones HJ, Minarik PA, Gilliss CL, Lee KA. Depressive symptoms associated with physical health problems in midlife women: A longitudinal study. J Affect Disord 2020; 263:301-309. [PMID: 31818793 PMCID: PMC6989369 DOI: 10.1016/j.jad.2019.11.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/11/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND It is unclear if the relationship between depression and physical health problems in women is related to age, reproductive stage, obesity or socio-demographic risk factors. METHODS Longitudinal data were obtained every 6 months for 36 months in 264 midlife African American, Caucasian and Latina women who began the study as healthy regularly menstruating 40 to 50-year-olds; 75 transitioned to peri- or post-menopause by 36 months. Scores of 16 or higher on the Center for Epidemiologic Studies-Depression (CES-D) scale were used to estimate depression risk. RESULTS Depression risk was 28% at study initiation and 25% at 36 months. Significantly more women at risk for depression were unemployed, obese, or hypertensive. Women at risk were more likely to become peri- or post-menopausal during the study period. A higher percentage (38%) of overweight and obese women had CES-D scores ≥ 16 compared to normal weight women (23%; p < .001). Over half (58%) of the 73 women at higher depression risk at the initial visit reported a health problem or chronic illness at 36 months, compared to only 36% of the 191 women with CES-D scores <16 (p = .001). LIMITATIONS This was a secondary analysis of data from a relatively healthy sample of women in the decade before menopause. Chronic illness was self-reported and the CES-D is a screening tool for depressive symptoms rather than a clinical diagnostic tool. CONCLUSIONS Health care providers may be underestimating the impact of unemployment on depressive symptoms, obesity and chronic health problems in midlife women.
Collapse
Affiliation(s)
| | | | | | - Kathryn A. Lee
- School of Nursing, University of California, San Francisco
| |
Collapse
|
5
|
Greaney JL, Dillon GA, Saunders EFH, Alexander LM. Peripheral microvascular serotoninergic signaling is dysregulated in young adults with major depressive disorder. J Appl Physiol (1985) 2020; 128:100-107. [PMID: 31751182 DOI: 10.1152/japplphysiol.00603.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of the brain serotonergic system is implicated in the pathogenesis of major depressive disorder (MDD). Serotonin is also a vasoactive signaling molecule, the effects of which are modulated by both nitric oxide (NO) and the serotonin transporter [the primary target of selective serotonin reuptake inhibitors (SSRIs)]. Despite its role in the neurobiology of depression, serotoninergic signaling mechanisms in the microvasculature of adults with MDD are unknown. We hypothesized that 1) cutaneous microvascular responsiveness to serotonin would be attenuated in MDD and mediated by reductions in both 2) NO-dependent and 3) serotonin reuptake-dependent mechanisms. In 12 adults with MDD (nonmedicated) and 12 nondepressed adults, red cell flux (laser-Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of 1) serotonin (10-10 to 10-1 mol/L) alone and in combination with a nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 15 mmol/L) and the SSRI paroxetine (10 μmol/L); and 2) paroxetine (n = 6; 10-9 to 10-2 M) alone and in combination with l-NAME. Serotonin-induced vasodilation was preserved in MDD. The NO-dependent component of serotonin-induced vasodilation was not different between groups. Paroxetine augmented vasodilatory responsiveness to serotonin via NO-dependent mechanisms in both groups; however, the magnitude was blunted in MDD. The NO contribution to direct paroxetine-induced vasodilation was also reduced in adults with MDD. Collectively, these preliminary data suggest that cutaneous microvascular serotoninergic signaling is dysregulated in adults with MDD and mediated by NO-dependent and serotonin reuptake-dependent mechanisms, providing initial mechanistic insight to the purported vasculoprotective effect of chronic SSRI treatment.NEW & NOTEWORTHY Cutaneous microvascular vasodilatory responsiveness to serotonin was preserved in adults with major depressive disorder (MDD). However, the contribution of serotonin reuptake-dependent mechanisms to serotonin-induced dilation was reduced in MDD. Direct perfusion of the selective serotonin reuptake inhibitor (SSRI) paroxetine elicited vasodilation that is partially mediated by nitric oxide (NO)-dependent mechanisms, but these responses were blunted in MDD, reflective of a diminished contribution of NO to the direct effects of a SSRI on the cutaneous microvasculature.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania.,Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Gabrielle A Dillon
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Erika F H Saunders
- Department of Psychiatry, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
6
|
Schaeuble D, Packard AEB, McKlveen JM, Morano R, Fourman S, Smith BL, Scheimann JR, Packard BA, Wilson SP, James J, Hui DY, Ulrich‐Lai YM, Herman JP, Myers B. Prefrontal Cortex Regulates Chronic Stress-Induced Cardiovascular Susceptibility. J Am Heart Assoc 2019; 8:e014451. [PMID: 31838941 PMCID: PMC6951062 DOI: 10.1161/jaha.119.014451] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Background The medial prefrontal cortex is necessary for appropriate appraisal of stressful information, as well as coordinating visceral and behavioral processes. However, prolonged stress impairs medial prefrontal cortex function and prefrontal-dependent behaviors. Additionally, chronic stress induces sympathetic predominance, contributing to health detriments associated with autonomic imbalance. Previous studies identified a subregion of rodent prefrontal cortex, infralimbic cortex (IL), as a key regulator of neuroendocrine-autonomic integration after chronic stress, suggesting that IL output may prevent chronic stress-induced autonomic imbalance. In the current study, we tested the hypothesis that the IL regulates hemodynamic, vascular, and cardiac responses to chronic stress. Methods and Results A viral-packaged small interfering RNA construct was used to knockdown vesicular glutamate transporter 1 (vGluT1) and reduce glutamate packaging and release from IL projection neurons. Male rats were injected with a vGluT1 small interfering RNA-expressing construct or GFP (green fluorescent protein) control into the IL and then remained as unstressed controls or were exposed to chronic variable stress. IL vGluT1 knockdown increased heart rate and mean arterial pressure reactivity, while chronic variable stress increased chronic mean arterial pressure only in small interfering RNA-treated rats. In another cohort, chronic variable stress and vGluT1 knockdown interacted to impair both endothelial-dependent and endothelial-independent vasoreactivity ex vivo. Furthermore, vGluT1 knockdown and chronic variable stress increased histological markers of fibrosis and hypertrophy. Conclusions Knockdown of glutamate release from IL projection neurons indicates that these cells are necessary to prevent the enhanced physiological responses to stress that promote susceptibility to cardiovascular pathophysiology. Ultimately, these findings provide evidence for a neurobiological mechanism mediating the relationship between stress and poor cardiovascular health outcomes.
Collapse
Affiliation(s)
| | | | - Jessica M. McKlveen
- National Institutes of HealthNational Center for Complimentary and Integrative HealthBethesdaMD
| | - Rachel Morano
- Pharmacology and Systems PhysiologyUniversity of CincinnatiOH
| | - Sarah Fourman
- Pathology and Laboratory MedicineUniversity of CincinnatiOH
| | | | | | | | - Steven P. Wilson
- Pharmacology, Physiology, and NeuroscienceUniversity of South CarolinaColumbiaSC
| | - Jeanne James
- Division of CardiologyDepartment of PediatricsMedical College of WisconsinMilwaukeeWI
| | - David Y. Hui
- Pathology and Laboratory MedicineUniversity of CincinnatiOH
| | | | - James P. Herman
- Pharmacology and Systems PhysiologyUniversity of CincinnatiOH
| | - Brent Myers
- Biomedical SciencesColorado State UniversityFort CollinsCO
| |
Collapse
|
7
|
Greaney JL, Saunders EFH, Santhanam L, Alexander LM. Oxidative Stress Contributes to Microvascular Endothelial Dysfunction in Men and Women With Major Depressive Disorder. Circ Res 2019; 124:564-574. [PMID: 30582458 DOI: 10.1161/circresaha.118.313764] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE In rodent models of depression, oxidative stress-induced reductions in NO bioavailability contribute to impaired endothelium-dependent dilation. Endothelial dysfunction is evident in major depressive disorder (MDD); however, the molecular mediators remain undefined. OBJECTIVE We sought to translate preclinical findings to humans by testing the role of oxidative stress in mediating microvascular endothelial dysfunction, including potential modulatory influences of sex, in MDD. METHODS AND RESULTS Twenty-four treatment-naive, otherwise healthy, young adults with MDD (14 women; 18-23 years) and 20 healthy adults (10 women; 19-30 years) participated. Red blood cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine, alone and in combination with an NO synthase inhibitor (L-NAME), a superoxide scavenger (Tempol), and an NADPH oxidase inhibitor (apocynin), as well as during perfusion of the endothelium-independent agonist sodium nitroprusside. Tissue oxidative stress markers (eg, nitrotyrosine abundance, superoxide production) were also quantified. Endothelium-dependent dilation was blunted in MDD and mediated by reductions in NO-dependent dilation. Endothelium-independent dilation was likewise attenuated in MDD. In MDD, there were no sex differences in either NO-mediated endothelium-dependent dilation or endothelium-independent dilation. Acute scavenging of superoxide or inhibition of NADPH oxidase improved NO-dependent dilation in MDD. Expression and activity of oxidative stress markers were increased in MDD. In a subset of adults with MDD treated with a selective serotonin reuptake inhibitor for their depressive symptoms and in remission (n=8; 7 women; 19-37 years), NO-mediated endothelium-dependent dilation was preserved, but endothelium-independent dilation was impaired, compared with healthy adults. CONCLUSIONS Oxidative stress-induced reductions in NO-dependent dilation, as well as alterations in vascular smooth muscle function, directly contribute to microvascular dysfunction in MDD. Strategies targeting vascular oxidative stress may be viable therapeutic options for improving NO-mediated endothelial function and reducing cardiovascular risk in MDD.
Collapse
Affiliation(s)
- Jody L Greaney
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| | - Erika F H Saunders
- Department of Psychiatry, Penn State College of Medicine, Hershey, PA (E.F.H.S.)
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.S.)
| | - Lacy M Alexander
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| |
Collapse
|
8
|
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019; 44:59-70. [PMID: 30030541 PMCID: PMC6235859 DOI: 10.1038/s41386-018-0146-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Major depressive disorder topped ischemic heart disease as the number one cause of disability worldwide in 2012, and women have twice the risk of men. Further, the comorbidity of depression and cardiometabolic disorders will be one of the primary causes of disability worldwide by 2020, with women at twice the risk. Thus, understanding the sex-dependent comorbidities has public health consequences worldwide. We propose here that sex differences in MDD-cardiometabolic comorbidity originate, in part, from pathogenic processes initiated in fetal development that involve sex differences in shared pathophysiology between the brain, the vascular system, the CNS control of the heart and associated hormonal, immune, and metabolic physiology. Pathways implicate neurotrophic and angiogenic growth factors, gonadal hormone receptors, and neurotransmitters such as gamma amino butyric acid (GABA) on neuronal and vascular development of HPA axis regions, such as the paraventricular nucleus (PVN), in addition to blood pressure, in part through the renin-angiotensin system, and insulin and glucose metabolism. We show that the same prenatal exposures have consequences for sex differences across multiple organ systems that, in part, share common pathophysiology. Thus, we believe that applying a sex differences lens to understanding shared biologic substrates underlying these comorbidities will provide novel insights into the development of sex-dependent therapeutics. Further, taking a lifespan perspective beginning in fetal development provides the opportunity to target abnormalities early in the natural history of these disorders in a sex-dependent way.
Collapse
Affiliation(s)
- Jill M Goldstein
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital (MGH), Boston, MA, 02120, USA.
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | - Taben Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School, at Massachusetts General Hospital, Boston, MA, USA
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert J Handa
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
9
|
Rich-Edwards JW, Kaiser UB, Chen GL, Manson JE, Goldstein JM. Sex and Gender Differences Research Design for Basic, Clinical, and Population Studies: Essentials for Investigators. Endocr Rev 2018; 39:424-439. [PMID: 29668873 PMCID: PMC7263836 DOI: 10.1210/er.2017-00246] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
A sex- and gender-informed perspective increases rigor, promotes discovery, and expands the relevance of biomedical research. In the current era of accountability to present data for males and females, thoughtful and deliberate methodology can improve study design and inference in sex and gender differences research. We address issues of motivation, subject selection, sample size, data collection, analysis, and interpretation, considering implications for basic, clinical, and population research. In particular, we focus on methods to test sex/gender differences as effect modification or interaction, and discuss why some inferences from sex-stratified data should be viewed with caution. Without careful methodology, the pursuit of sex difference research, despite a mandate from funding agencies, will result in a literature of contradiction. However, given the historic lack of attention to sex differences, the absence of evidence for sex differences is not necessarily evidence of the absence of sex differences. Thoughtfully conceived and conducted sex and gender differences research is needed to drive scientific and therapeutic discovery for all sexes and genders.
Collapse
Affiliation(s)
- Janet W Rich-Edwards
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Grace L Chen
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts
| | - JoAnn E Manson
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jill M Goldstein
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Mareckova K, Holsen L, Admon R, Whitfield-Gabrieli S, Seidman LJ, Buka SL, Klibanski A, Goldstein J. Neural - hormonal responses to negative affective stimuli: Impact of dysphoric mood and sex. J Affect Disord 2017; 222:88-97. [PMID: 28688266 PMCID: PMC5560420 DOI: 10.1016/j.jad.2017.06.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Maladaptive responses to negative affective stimuli are pervasive, including clinically ill and healthy people, and men and women respond differently at neural and hormonal levels. Inspired by the Research Domain Criteria initiative, we used a transdiagnostic approach to investigate the impact of sex and dysphoric mood on neural-hormonal responses to negative affective stimuli. METHODS Participants included 99 individuals with major depressive disorder, psychosis and healthy controls. Functional magnetic resonance imaging (fMRI) was complemented with real-time acquisition of hypothalamo-pituitary-adrenal (HPA) and -gonadal (HPG) hormones. fMRI data were analyzed in SPM8 and task-related connectivity was assessed using generalized psychophysiological interaction. RESULTS Across all participants, elevated cortisol response predicted lower brain activity in orbitofrontal cortex and hypothalamus-amygdala connectivity. In those with worse dysphoric mood, elevated cortisol response predicted lower activity in hypothalamus and hippocampus. In women, elevated cortisol response was associated with lower activity in medial prefrontal cortex and low hypothalamo-hippocampal connectivity. In women with high dysphoric mood, elevated cortisol response was associated with low hypothalamo-hippocampal connectivity. There were no interactions with diagnosis or medication. LIMITATIONS There was limited power to correct for multiple comparisons across total number of ROIs and connectivity targets; cortisol responses were relatively low. CONCLUSIONS We conclude that the pathophysiology in neural-hormonal responses to negative affective stimuli is shared across healthy and clinical populations and varies as a function of sex and dysphoric mood. Our findings may contribute to the development of hormonal adjunctive therapeutics that are sex-dependent, underscoring the importance of one's sex to precision medicine.
Collapse
Affiliation(s)
- K. Mareckova
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA,CEITEC, Masaryk University, Brno, Czech Republic
| | - L. Holsen
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | - R. Admon
- McLean Hospital, Department of Psychiatry, HMS, Boston, MA USA
| | - S. Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - LJ Seidman
- Beth Israel Deaconess Medical Center, Division of Public Psychiatry, Massachusetts Mental Health Center; Department of Psychiatry, HMS, Boston, MA, USA
| | - SL Buka
- Department of Community Health, Brown University, Providence, RI, USA
| | - A. Klibanski
- Massachusetts General Hospital, Department of Medicine, Neuroendocrine Unit; HMS, Department of Medicine, Boston, MA, USA
| | - J.M. Goldstein
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Schumann A, Andrack C, Bär KJ. Differences of sympathetic and parasympathetic modulation in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:324-331. [PMID: 28710030 DOI: 10.1016/j.pnpbp.2017.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Inconsistent results have been reported with respect to cardiac autonomic function in major depression. The aim of our study was to investigate autonomic function in various branches of the autonomic nervous system in order to better understand parasympathetic and sympathetic modulation in the disease. We investigated 29 unmedicated patients suffering from major depression (MD) in comparison to matched control subjects (gender, age, BMI). The autonomic assessment at rest included values of heart rate variability (HRV), blood pressure variability (BPV), baroreflex sensitivity (BRS), respiration, skin conductance (SC) as well as the calculation of pupillary diameter and the unrest index (PUI). Results were compared by means of a multivariate analysis of variance. In a classification analysis, we identified suitable parameters for patient - control separation. Finally, to analyze interrelations of pupillometric parameters and autonomic indices, we estimated Pearson correlation coefficients and fitted a linear regression model. Apart from a significantly increased heart rate (75±12 vs. 65±6min-1, p<0.001) and decreased BRS (14±13 vs. 20±15ms/mmHg, p<0.05), we observed a lack of significant differences in HRV and BPV analysis between patients and controls. However, pupillary diameter (left: 4.3±0.9 vs. 3.8±0.6, p<0.01; right: 4.3±0.9 vs. 3.7±0.6mm, p<0.01) and PUI (left: 14.8±6.0 vs. 10.7±4.5mm/min, p<0.01; right: 14.1±5.5 vs. 10.7±4.8mm/min, p<0.01), as well as the level (left: 7.3±6.2 vs. 4.3±4.4 μS, p<0.05) and fluctuations of skin conductance (left: 4.2±4.1 vs. 2.5±3.6, p<0.05; right: 4.2±4.4 vs. 2.6±3.2, p<0.05) were significantly different. The classification accuracy was 88.5% with high specificity (e=92.9%) and sensitivity (s=83.3%) including heart rate, PUI and skin conductance. HRV indices correlated to PUI in controls but not in patients. Our data add evidence to the current debate on autonomic function in major depression. We suggest that diverse results are mainly caused by methodological shortcomings, in particular by the application of HRV assessment only, which misses changes of sympathetic modulation. The application of broader analyzing tools will clarify the pattern of autonomic function in depression and ultimately its role in cardiac morbidity and mortality.
Collapse
Affiliation(s)
- Andy Schumann
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Caroline Andrack
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany.
| |
Collapse
|
12
|
Goldstein JM, Holsen L, Huang G, Hammond BD, James-Todd T, Cherkerzian S, Hale TM, Handa RJ. Prenatal stress-immune programming of sex differences in comorbidity of depression and obesity/metabolic syndrome. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28179814 PMCID: PMC5286728 DOI: 10.31887/dcns.2016.18.4/jgoldstein] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Major depressive disorder (MDD) is the number one cause of disability worldwide and is comorbid with many chronic diseases, including obesity/metabolic syndrome (MetS). Women have twice as much risk for MDD and comorbidity with obesity/MetS as men, although pathways for understanding this association remain unclear. On the basis of clinical and preclinical studies, we argue that prenatal maternal stress (ie, excess glucocorticoid expression and associated immune responses) that occurs during the sexual differentiation of the fetal brain has sex-dependent effects on brain development within highly sexually dimorphic regions that regulate mood, stress, metabolic function, the autonomic nervous system, and the vasculature. Furthermore, these effects have lifelong consequences for shared sex-dependent risk of MDD and obesity/MetS. Thus, we propose that there are shared biologic substrates at the anatomical, molecular, and/or genetic levels that produce the comorbid risk for MDD-MetS through sex-dependent fetal origins.
Collapse
Affiliation(s)
- Jill M Goldstein
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Holsen
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Huang
- Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Bradley D Hammond
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tamarra James-Todd
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sara Cherkerzian
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Goldstein JM. Prenatal stress-immune programming of sex differences in comorbidity of depression and obesity/metabolic syndrome. DIALOGUES IN CLINICAL NEUROSCIENCE 2016; 18:425-436. [PMID: 28179814 PMCID: PMC5286728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Major depressive disorder (MDD) is the number one cause of disability worldwide and is comorbid with many chronic diseases, including obesity/metabolic syndrome (MetS). Women have twice as much risk for MDD and comorbidity with obesity/MetS as men, although pathways for understanding this association remain unclear. On the basis of clinical and preclinical studies, we argue that prenatal maternal stress (ie, excess glucocorticoid expression and associated immune responses) that occurs during the sexual differentiation of the fetal brain has sex-dependent effects on brain development within highly sexually dimorphic regions that regulate mood, stress, metabolic function, the autonomic nervous system, and the vasculature. Furthermore, these effects have lifelong consequences for shared sex-dependent risk of MDD and obesity/MetS. Thus, we propose that there are shared biologic substrates at the anatomical, molecular, and/or genetic levels that produce the comorbid risk for MDD-MetS through sex-dependent fetal origins.
Collapse
Affiliation(s)
- Jill M. Goldstein
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Corticolimbic regulation of cardiovascular responses to stress. Physiol Behav 2016; 172:49-59. [PMID: 27793557 DOI: 10.1016/j.physbeh.2016.10.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease, a leading cause of death worldwide, is frequently initiated or exacerbated by stress. In fact, chronic stress exposure and heightened reactions to acute psychological stress are both associated with increased cardiovascular morbidity. This brief review focuses on the mechanisms by which corticolimbic nuclei, critical for stress appraisal and emotional reactivity, regulate heart rate and blood pressure responses to psychological stress. Both human and rodent data are examined with a major emphasis on basic studies investigating prefrontal cortex, amygdala, and hippocampus. A detailed literature review reveals substantial limitations in our understanding of this circuitry, as well as significant opportunities for future investigation that may ultimately reduce the burden of cardiovascular illness.
Collapse
|
15
|
Goldstein JM, Lancaster K, Longenecker JM, Abbs B, Holsen LM, Cherkerzian S, Whitfield-Gabrieli S, Makris N, Tsuang MT, Buka SL, Seidman LJ, Klibanski A. Sex differences, hormones, and fMRI stress response circuitry deficits in psychoses. Psychiatry Res 2015; 232:226-36. [PMID: 25914141 PMCID: PMC4439265 DOI: 10.1016/j.pscychresns.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 02/05/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022]
Abstract
Response to stress is dysregulated in psychosis (PSY). fMRI studies showed hyperactivity in hypothalamus (HYPO), hippocampus (HIPP), amygdala (AMYG), anterior cingulate (ACC), orbital and medial prefrontal (OFC; mPFC) cortices, with some studies reporting sex differences. We predicted abnormal steroid hormone levels in PSY would be associated with sex differences in hyperactivity in HYPO, AMYG, and HIPP, and hypoactivity in PFC and ACC, with more severe deficits in men. We studied 32 PSY cases (50.0% women) and 39 controls (43.6% women) using a novel visual stress challenge while collecting blood. PSY males showed BOLD hyperactivity across all hypothesized regions, including HYPO and ACC by FWE-correction. Females showed hyperactivity in HIPP and AMYG and hypoactivity in OFC and mPFC, the latter FWE-corrected. Interaction of group by sex was significant in mPFC (F = 7.00, p = 0.01), with PSY females exhibiting the lowest activity. Male hyperactivity in HYPO and ACC was significantly associated with hypercortisolemia post-stress challenge, and mPFC with low androgens. Steroid hormones and neural activity were dissociated in PSY women. Findings suggest disruptions in neural circuitry-hormone associations in response to stress are sex-dependent in psychosis, particularly in prefrontal cortex.
Collapse
Affiliation(s)
- Jill M Goldstein
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Katie Lancaster
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Julia M Longenecker
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Brandon Abbs
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Laura M Holsen
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Sara Cherkerzian
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Susan Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Nicolas Makris
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Ming T Tsuang
- Center for Behavior Genomics, Department of Psychiatry, University of California at San Diego, San Diego, CA, USA.
| | - Stephen L Buka
- Department of Community Health, Brown University, Providence, RI, USA.
| | - Larry J Seidman
- Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Division of Public Psychiatry, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA.
| | - Anne Klibanski
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Dai YJ, Xu ZH, Feng B, Xu CL, Zhao HW, Wu DC, Hu WW, Chen Z. Gender difference in acquired seizure susceptibility in adult rats after early complex febrile seizures. Neurosci Bull 2014; 30:913-922. [PMID: 25394585 DOI: 10.1007/s12264-014-1482-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022] Open
Abstract
Gender differences are involved in many neurological disorders including epilepsy. However, little is known about the effect of gender difference on the risk of epilepsy in adults with a specific early pathological state such as complex febrile seizures (FSs) in infancy. Here we used a well-established complex FS model in rats and showed that: (1) the susceptibility to seizures induced by hyperthermia, pentylenetetrazol (PTZ), and maximal electroshock (MES) was similar in male and female rat pups, while males were more susceptible to PTZ- and MES-induced seizures than age-matched females in normal adult rats; (2) adult rats with complex FSs in infancy acquired higher seizure susceptibility than normal rats; importantly, female FS rats were more susceptible to PTZ and MES than male FS rats; and (3) the protein expression of interleukin-1β, an inflammatory factor associated with seizure susceptibility, was higher in adult FS females than in males, which may reflect a gender-difference phenomenon of seizure susceptibility. Our results provide direct evidence that the acquired seizure susceptibility after complex FSs is gender-dependent.
Collapse
Affiliation(s)
- Yun-Jian Dai
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Hao Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Feng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ceng-Lin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hua-Wei Zhao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Deng-Chang Wu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Department of Neurology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei-Wei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Basic Medical College, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Stratton MS, Staros M, Budefeld T, Searcy BT, Nash C, Eitel C, Carbone D, Handa RJ, Majdic G, Tobet SA. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice. PLoS One 2014; 9:e106015. [PMID: 25162235 PMCID: PMC4146593 DOI: 10.1371/journal.pone.0106015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/27/2014] [Indexed: 11/18/2022] Open
Abstract
Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABAB receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABAB receptor to a 7-day critical period (E11–E17) during embryonic development. Experiments tested the role of GABAB receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABAB receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABAB receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABAB receptor antagonist. Embryonic exposure to GABAB receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABAB receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.
Collapse
Affiliation(s)
- Matthew S. Stratton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michelle Staros
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tomaz Budefeld
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Brian T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Connor Nash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad Eitel
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Carbone
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - Robert J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - Gregor Majdic
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Stuart A. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
18
|
Stanley SC, Brooks SD, Butcher JT, d'Audiffret AC, Frisbee SJ, Frisbee JC. Protective effect of sex on chronic stress- and depressive behavior-induced vascular dysfunction in BALB/cJ mice. J Appl Physiol (1985) 2014; 117:959-70. [PMID: 25123201 DOI: 10.1152/japplphysiol.00537.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The presence of chronic, unresolvable stresses leads to negative health outcomes, including development of clinical depression/depressive disorders, with outcome severity being correlated with depressive symptom severity. One of the major outcomes associated with chronic stress and depression is the development of cardiovascular disease (CVD) and an elevated CVD risk profile. However, in epidemiological research, sex disparities are evident, with premenopausal women suffering from depressive symptoms more acutely than men, but also demonstrating a relative protection from the onset of CVD. Given this, we investigated the differential effect of sex on conduit artery and resistance arteriolar function in male and female mice following 8 wk of an unpredictable chronic mild stress (UCMS) protocol. In males, plasma cortisol and depressive symptom severity (e.g., coat status, anhedonia, delayed grooming) were elevated by UCMS. Endothelium-dependent dilation to methacholine/acetylcholine was impaired in conduit arteries and skeletal muscle arterioles, suggesting a severe loss of nitric oxide bioavailability and increased production of thromboxane A2 vs. prostaglandin I2 associated with elevated reactive oxygen species (ROS) and an increased level of systemic inflammation. Endothelium-independent dilation was intact. In females, depressive symptoms and plasma cortisol increases were more severe than in males, although alterations to vascular reactivity were blunted, including the effects of elevated ROS and inflammation on dilator responses. These results suggest that compared with males, female rats are more susceptible to chronic stress in terms of the severity of depressive behaviors, but that the subsequent development of vasculopathy is blunted owing to an improved ability to tolerate elevated ROS and systemic inflammatory stress.
Collapse
Affiliation(s)
- Shyla C Stanley
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Steven D Brooks
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Joshua T Butcher
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Alexandre C d'Audiffret
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Vascular and Endovascular Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Stephanie J Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Health Policy, Leadership and Management, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
19
|
Frahm KA, Tobet SA. Development of the blood-brain barrier within the paraventricular nucleus of the hypothalamus: influence of fetal glucocorticoid excess. Brain Struct Funct 2014; 220:2225-34. [PMID: 24817635 PMCID: PMC4481307 DOI: 10.1007/s00429-014-0787-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
The blood–brain barrier (BBB) is a critical contributor to brain function. To understand its development and potential function in different brain regions, the postnatal (P) BBB was investigated in the mouse cortex (CTX), lateral hypothalamus, and paraventricular nucleus of the hypothalamus (PVN). Brains were examined on postnatal days (P)12, P22 and P52 for BBB competency and for pericytes as key cellular components of the BBB demarcated by immunoreactive desmin. Glucocorticoid influences (excess dexamethasone; dex) during prenatal development were also assessed for their impact on the blood vessels within these regions postnatally. At P12, there was significantly more extravascular leakage of a low molecular weight dye (fluorescein isothiocyanate) in the CTX than within hypothalamic regions. For pericytes, there were low levels of desmin immunoreactivity at P12 that increased with age for all regions. There was more desmin immunoreactivity present in the PVN at each age examined. Fetal dex exposure resulted in decreased blood vessel density within the PVN at P20. In the CTX, dex exposure increased BBB competency, in contrast to the PVN where there was a decrease in BBB competency and increased pericyte presence. Overall, unique alterations in the functioning of the BBB within the PVN may provide a novel mechanism for fetal antecedent programming that may influence adult disorders.
Collapse
Affiliation(s)
- Krystle A Frahm
- Program in Cell and Molecular Biology, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523-1617, USA
| | | |
Collapse
|
20
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
21
|
Goldstein JM, Handa RJ, Tobet SA. Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease. Front Neuroendocrinol 2014; 35:140-58. [PMID: 24355523 PMCID: PMC3917309 DOI: 10.1016/j.yfrne.2013.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Abstract
Comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) represents the fourth leading cause of morbidity and mortality worldwide, and women have a two times greater risk than men. Thus understanding the pathophysiology has widespread implications for attenuation and prevention of disease burden. We suggest that sex-dependent MDD-CVD comorbidity may result from alterations in fetal programming consequent to the prenatal maternal environments that produce excess glucocorticoids, which then drive sex-dependent developmental alterations of the fetal hypothalamic-pituitary-adrenal (HPA) axis circuitry impacting mood, stress regulation, autonomic nervous system (ANS), and the vasculature in adulthood. Evidence is consistent with the hypothesis that disruptions of pathways associated with gamma aminobutyric acid (GABA) in neuronal and vascular development and growth factors have critical roles in key developmental periods and adult responses to injury in heart and brain. Understanding the potential fetal origins of these sex differences will contribute to development of novel sex-dependent therapeutics.
Collapse
Affiliation(s)
- J M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital (BWH), Connors Center for Women's Health & Gender Biology, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA; BWH, Departments of Psychiatry and Medicine, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA.
| | - R J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth Street, Phoenix, AZ 85004, USA
| | - S A Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
22
|
Wattanapermpool J, de Tombe PP, Pak TR. Sex differences in health and disease: brain and heart connections--a special issue. Pflugers Arch 2013; 465:555-6. [PMID: 23588381 DOI: 10.1007/s00424-013-1279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/28/2022]
|