1
|
Won J, Kim J, Kim J, Ko J, Park CH, Jeong B, Lee SE, Jeong H, Kim SH, Park H, So I, Lee HH. Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. Nat Struct Mol Biol 2025; 32:326-338. [PMID: 39478185 DOI: 10.1038/s41594-024-01408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/25/2024] [Indexed: 02/19/2025]
Abstract
Transient receptor potential (TRP) ion channels have a crucial role as cellular sensors, mediating diverse physical and chemical stimuli. The formation of heteromeric structures expands the functionality of TRP channels; however, their molecular architecture remains largely unknown. Here we present the cryo-electron microscopy structures of the human TRPC1/TRPC4 heteromer in the apo and antagonist-bound states, both consisting of one TRPC1 subunit and three TRPC4 subunits. The heteromer structure reveals a distinct ion-conduction pathway, including an asymmetrically constricted selectivity filter and an asymmetric lower gate, primarily attributed to the incorporation of TRPC1. Through a structure-guided electrophysiological assay, we show that both the selectivity filter and the lower part of the S6 helix participate in deciding overall preference for permeating monovalent cations. Moreover, we reveal that the introduction of one lysine residue of TRPC1 into the tetrameric central cavity is enough to render one of the most important functional consequences of TRPC heteromerization: reduced calcium permeability. Our results establish a framework for addressing the structure-function relationship of the heteromeric TRP channels.
Collapse
Affiliation(s)
- Jongdae Won
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Jinhyeong Kim
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jinsung Kim
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Juyeon Ko
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Haewon Park
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Byeongseok Jeong
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sun-Hong Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyunwoo Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Kang H, So I. Unique responses of the fixed stoichiometric TRPC1-TRPC5 concatemer to G proteins. Front Physiol 2024; 15:1392980. [PMID: 39397856 PMCID: PMC11466768 DOI: 10.3389/fphys.2024.1392980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/17/2024] [Indexed: 10/15/2024] Open
Abstract
Transient receptor potential canonical (TRPC)5 channel is a non-selective cation channel that plays a significant role in membrane depolarization and calcium influx. TRPC5 not only forms homotetramers itself but also heterotetramers with TRPC1. However, accurately testing and confirming these heterotetrameric channels at specific ratios has proven challenging. Therefore, creating heteromeric concatemers of TRPC5 and TRPC1 with a fixed stoichiometry of 1:1 becomes essential. This study aims to meticulously identify and reaffirm the properties of TRPC5 homomers and heteromers with a 1:1 fixed stoichiometry to determine the optimal ratio for the TRPC1/5 heterotetramer. The overall characteristics were consistent with those of the previous studies, but several specific features were different. The TRPC1-TRPC5 concatemer is activated by Englerin A and GiQL, whereas carbachol alone does not trigger its activation. Additionally, GqQL significantly inhibited the current when co-expressed with the concatemer. Interestingly, carbachol can activate the TRPC1-TRPC5 concatemer in the presence of internal GTPγS, highlighting the influence of intracellular signaling conditions on its activation. Meanwhile, the TRPC5-TRPC5 concatemer is responsive to both carbachol and Englerin A. In conclusion, we provide evidence that the TRPC1-TRPC5 heteromeric concatemer with fixed stoichiometry need specific conditions to respond to carbachol, whereas the TRPC5-TRPC5 homomeric concatemer responds physiologically to carbachol. Additional research may be necessary to ascertain the optimal stoichiometry for the TRPC1-TRPC5 concatemer to enhance its electrophysiological properties.
Collapse
Affiliation(s)
- Hana Kang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Park CH, Kim J, Lee JE, Kwak M, So I. Pore residues of transient receptor potential channels canonical 1 and 4 heteromer determine channel properties. Am J Physiol Cell Physiol 2023; 325:C42-C51. [PMID: 37212545 DOI: 10.1152/ajpcell.00488.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Transient receptor potential channels canonical 1 and 4 (TRPC1 and TRPC4) are proteins belonging to the same TRPC channel family, and the two are known to form a heterotetrameric channel. TRPC4 can form a homotetrameric, nonselective cation channel by itself, but the involvement of the TRPC1 subunit changes several major characteristics of the channel. In this study, we focused on the pore region (selectivity filter, pore helix, and S6 helix) of TRPC1 and TRPC4 as a determinant of the identity and characteristics of a heteromeric TRPC1/4 channel: decreased calcium permeability of the channel and outward-rectifying current-voltage (I-V) curve. Mutants and chimeras of the pore residues were created, and their currents were recorded using whole cell patch clamp. The lower gate mutants of TRPC4 exhibited diminished calcium permeability as measured by GCaMP6 fluorescence. Also, chimeric channels substituting the pore region of TRPC1 to TRPC4 were made to locate the pore region that is critical in the production of an outward-rectifying I-V curve characteristic of TRPC1/4 heteromeric channels.NEW & NOTEWORTHY Heteromer research has been a challenging field due to lack of structural studies. Using chimeras and single mutants, we present evidence that the pore region of TRPC1/4 heteromer contributes to determining the channel's characteristics such as calcium permeability, I-V curve, and conductance.
Collapse
Affiliation(s)
- Christine Haewon Park
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Jung Eun Lee
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Insuk So
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Won J, Kim J, Jeong H, Kim J, Feng S, Jeong B, Kwak M, Ko J, Im W, So I, Lee HH. Molecular architecture of the Gα i-bound TRPC5 ion channel. Nat Commun 2023; 14:2550. [PMID: 37137991 PMCID: PMC10156788 DOI: 10.1038/s41467-023-38281-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
G-protein coupled receptors (GPCRs) and ion channels serve as key molecular switches through which extracellular stimuli are transformed into intracellular effects, and it has long been postulated that ion channels are direct effector molecules of the alpha subunit of G-proteins (Gα). However, no complete structural evidence supporting the direct interaction between Gα and ion channels is available. Here, we present the cryo-electron microscopy structures of the human transient receptor potential canonical 5 (TRPC5)-Gαi3 complexes with a 4:4 stoichiometry in lipid nanodiscs. Remarkably, Gαi3 binds to the ankyrin repeat edge of TRPC5 ~ 50 Å away from the cell membrane. Electrophysiological analysis shows that Gαi3 increases the sensitivity of TRPC5 to phosphatidylinositol 4,5-bisphosphate (PIP2), thereby rendering TRPC5 more easily opened in the cell membrane, where the concentration of PIP2 is physiologically regulated. Our results demonstrate that ion channels are one of the direct effector molecules of Gα proteins triggered by GPCR activation-providing a structural framework for unraveling the crosstalk between two major classes of transmembrane proteins: GPCRs and ion channels.
Collapse
Affiliation(s)
- Jongdae Won
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Jinhyeong Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Shasha Feng
- Department of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Byeongseok Jeong
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Misun Kwak
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Wonpil Im
- Department of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 2022; 110:4162-4175.e7. [PMID: 36257322 DOI: 10.1016/j.neuron.2022.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Yvonne Schwarz
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Katharina Oleinikov
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ahsan Raza
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Fabien Ectors
- Transgenic facility, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Dieter Bruns
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Breisacherstr. 4, 79106 Freiburg, Germany.
| |
Collapse
|
6
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
7
|
Li W, Ehrich M. Effects of chlorpyrifos on transient receptor potential channels. Toxicol Lett 2022; 358:100-104. [DOI: 10.1016/j.toxlet.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023]
|
8
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Kim J, Moon SH, Kim T, Ko J, Jeon YK, Shin YC, Jeon JH, So I. Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:101-110. [PMID: 31908579 PMCID: PMC6940491 DOI: 10.4196/kjpp.2020.24.1.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
Transient receptor potential canonical 4 (TRPC4) channel is a nonselective calcium-permeable cation channels. In intestinal smooth muscle cells, TRPC4 currents contribute more than 80% to muscarinic cationic current (mIcat). With its inward-rectifying current-voltage relationship and high calcium permeability, TRPC4 channels permit calcium influx once the channel is opened by muscarinic receptor stimulation. Polyamines are known to inhibit nonselective cation channels that mediate the generation of mIcat. Moreover, it is reported that TRPC4 channels are blocked by the intracellular spermine through electrostatic interaction with glutamate residues (E728, E729). Here, we investigated the correlation between the magnitude of channel inactivation by spermine and the magnitude of channel conductance. We also found additional spermine binding sites in TRPC4. We evaluated channel activity with electrophysiological recordings and revalidated structural significance based on Cryo-EM structure, which was resolved recently. We found that there is no correlation between magnitude of inhibitory action of spermine and magnitude of maximum current of the channel. In intracellular region, TRPC4 attracts spermine at channel periphery by reducing access resistance, and acidic residues contribute to blocking action of intracellular spermine; channel periphery, E649; cytosolic space, D629, D649, and E687.
Collapse
Affiliation(s)
- Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Sang Hui Moon
- Office of Medical Education, College of Medicine, Seoul National University, Seoul 03080, Korea.,Department of Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Taewook Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Young Keul Jeon
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ju-Hong Jeon
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
10
|
Duitama M, Vargas-López V, Casas Z, Albarracin SL, Sutachan JJ, Torres YP. TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Front Neurosci 2020; 14:782. [PMID: 32848557 PMCID: PMC7417429 DOI: 10.3389/fnins.2020.00782] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) are cation channels expressed in both non-excitable and excitable cells from diverse tissues, including heart, lung, and brain. The TRP channel family includes 28 isoforms activated by physical and chemical stimuli, such as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been shown that TRP channels are also directly or indirectly activated by reactive oxygen species. Oxidative stress plays an essential role in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, and TRP channels are involved in the progression of those diseases by mechanisms involving changes in the crosstalk between Ca2+ regulation, oxidative stress, and production of inflammatory mediators. TRP channels involved in nociception include members of the TRPV, TRPM, TRPA, and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has also been reported that pain is a complex issue in patients with Alzheimer's and Parkinson's diseases, and adequate management of pain in those conditions is still in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved in neurodegeneration. Therefore, some studies have considered TRPV1 as a target for both pain treatment and neurodegenerative disorders. Thus, this review aimed to describe the TRP-dependent mechanism that can mediate pain sensation in neurodegenerative diseases and the therapeutic approach available to palliate pain and neurodegenerative symptoms throughout the regulation of these channels.
Collapse
|
11
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Structure-Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels. Cells 2019; 9:cells9010073. [PMID: 31892199 PMCID: PMC7017149 DOI: 10.3390/cells9010073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The study of the structure–function relationship of ion channels has been one of the most challenging goals in contemporary physiology. Revelation of the three-dimensional (3D) structure of ion channels has facilitated our understanding of many of the submolecular mechanisms inside ion channels, such as selective permeability, voltage dependency, agonist binding, and inter-subunit multimerization. Identifying the structure–function relationship of the ion channels is clinically important as well since only such knowledge can imbue potential therapeutics with practical possibilities. In a sense, recent advances in the understanding of the structure–relationship of transient receptor potential canonical (TRPC) channels look promising since human TRPC channels are calcium-permeable, non-selective cation channels expressed in many tissues such as the gastrointestinal (GI) tract, kidney, heart, vasculature, and brain. TRPC channels are known to regulate GI contractility and motility, pulmonary hypertension, right ventricular hypertrophy, podocyte injury, seizure, fear, anxiety-like behavior, and many others. In this article, we tried to elaborate recent findings of Cryo-EM (cryogenic-electron microscopy) based structural information of TRPC 4 and 5 channels and domain-specific functions of the channel, such as G-protein mediated activation mechanism, extracellular modification of the channel, homo/hetero-tetramerization, and pharmacological gating mechanisms.
Collapse
|
13
|
Kim J, Ko J, Myeong J, Kwak M, Hong C, So I. TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Arch 2019; 471:1045-1053. [PMID: 31222490 DOI: 10.1007/s00424-019-02289-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington's disease, Parkinson's disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.
Collapse
Affiliation(s)
- Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jongyun Myeong
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Misun Kwak
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Kwangju, South Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Harada K, Matsuoka H, Inoue M. STIM1-dependent membrane insertion of heteromeric TRPC1-TRPC4 channels in response to muscarinic receptor stimulation. J Cell Sci 2019; 132:jcs.227389. [PMID: 31036675 DOI: 10.1242/jcs.227389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Muscarinic receptor stimulation results in activation of nonselective cation (NSC) channels in guinea pig adrenal medullary (AM) cells. The biophysical and pharmacological properties of the NSC channel suggest the involvement of heteromeric channels of TRPC1 with TRPC4 or TRPC5. This possibility was explored in PC12 cells and guinea pig AM cells. Proximity ligation assay (PLA) revealed that when exogenously expressed in PC12 cells, TRPC1 forms a heteromeric channel with TRPC4, but not with TRPC5, in a STIM1-dependent manner. The heteromeric TRPC1-TRPC4 channel was also observed in AM cells and trafficked to the cell periphery in response to muscarine stimulation. To explore whether heteromeric channels are inserted into the cell membrane, tags were attached to the extracellular domains of TRPC1 and TRPC4. PLA products developed between the tags in cells stimulated by muscarine, but not in resting cells, indicating that muscarinic stimulation results in the membrane insertion of channels. This membrane insertion required expression of full-length STIM1. We conclude that muscarinic receptor stimulation results in the insertion of heteromeric TRPC1-TRPC4 channels into the cell membrane in PC12 cells and guinea pig AM cells.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Hidetada Matsuoka
- Department of Cell and Systems Physiology University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| |
Collapse
|
15
|
TRPC-mediated Ca 2+ signaling and control of cellular functions. Semin Cell Dev Biol 2019; 94:28-39. [PMID: 30738858 DOI: 10.1016/j.semcdb.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Canonical members of the TRP superfamily of ion channels have long been recognized as key elements of Ca2+ handling in a plethora of cell types. The emerging role of TRPC channels in human physiopathology has generated considerable interest in their pharmacological targeting, which requires detailed understanding of their molecular function. Although consent has been reached that receptor-phospholipase C (PLC) pathways and generation of lipid mediators constitute the prominent upstream signaling process that governs channel activity, multimodal sensing features of TRPC complexes have been demonstrated repeatedly. Downstream signaling by TRPC channels is similarly complex and involves the generation of local and global cellular Ca2+ rises, which are well-defined in space and time to govern specific cellular functions. These TRPC-mediated Ca2+ signals rely in part on Ca2+ permeation through the channels, but are essentially complemented by secondary mechanisms such as Ca2+ mobilization from storage sites and Na+/Ca2+ exchange, which involve coordinated interaction with signaling partners. Consequently, the control of cell functions by TRPC molecules is critically determined by dynamic assembly and subcellular targeting of the TRPC complexes. The very recent availability of high-resolution structure information on TRPC channel complexes has paved the way towards a comprehensive understanding of signal transduction by TRPC channels. Here, we summarize current concepts of cation permeation in TRPC complexes, TRPC-mediated shaping of cellular Ca2+ signals and the associated control of specific cell functions.
Collapse
|
16
|
Ko J, Myeong J, Shin YC, So I. Differential PI(4,5)P 2 sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels. Sci Rep 2019; 9:1849. [PMID: 30755645 PMCID: PMC6372716 DOI: 10.1038/s41598-018-38443-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential canonical (TRPC) 4 and TRPC5 channels are modulated by the Gαq-PLC pathway. Since phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) maintains TRPC4 and TRPC5 channel function, the Gαq-PLC pathway inhibits channel activity by depleting PI(4,5)P2. Here we investigated the difference in PI(4,5)P2 sensitivity between homomeric and heteromeric TRPC channels. First, by using a Danio rerio voltage-sensing phosphatase (DrVSP), we show that PI(4,5)P2 dephosphorylation robustly inhibits TRPC4α, TRPC4β, and TRPC5 homotetramer currents and also TRPC1/4α, TRPC1/4β, and TRPC1/5 heterotetramer currents. Secondly, sensitivity of channels to PI(4,5)P2 dephosphorylation was suggested through the usage of FRET in combination with patch clamping. The sensitivity increased in the sequence TRPC4β < TRPC4α < TRPC5 in homotetramers, whereas when forming heterotetramers with TRPC1, the sensitivity was approximately equal between the channels. Thirdly, we determined putative PI(4,5)P2 binding sites based on a TRPC4 prediction model. By neutralization of basic residues, we identified putative PI(4,5)P2 binding sites because the mutations reduced FRET to a PI(4,5)P2 sensor and reduced the current amplitude. Therefore, one functional TRPC4 has 8 pockets with the two main binding regions; K419, K664/R511, K518, H630. We conclude that TRPC1 channel function as a regulator in setting PI(4,5)P2 affinity for TRPC4 and TRPC5 that changes PI(4,5)P2 sensitivity.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
17
|
Inoue M, Harada K, Matsui M, Matsuoka H. Differences among muscarinic agonists in M 1 receptor-mediated nonselective cation channel activation and TASK1 channel inhibition in adrenal medullary cells. Eur J Pharmacol 2019; 843:104-112. [PMID: 30452911 DOI: 10.1016/j.ejphar.2018.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Muscarinic receptor stimulation induces depolarizing inward currents and catecholamine secretion in adrenal medullary (AM) cells from various mammals. In guinea-pig AM cells muscarine and oxotremorine at concentrations ≤ 1 μM produce activation of nonselective cation channels with a similar potency and efficacy, whereas muscarine at higher concentrations produces not only nonselective cation channel activation, but also TASK1 channel inhibition. In rat AM cells, the muscarinic M1 receptor is involved in TASK1 channel inhibition in response to muscarinic agonists, and the efficacy of oxotremorine is half that of muscarine. These pharmacological findings might indicate that different muscarinic receptor subtypes are responsible for the regulation of nonselective cation and TASK1 channel activities. The present study aimed to determine the muscarinic receptor subtypes involved in nonselective cation channel activation in guinea-pig and mouse AM cells. The inward current evoked by 1 μM muscarine was completely suppressed by 100 μM quinine, whereas 30 μM muscarine-induced inward currents were comprised of quinine-sensitive and -insensitive components. The electrophysiological and pharmacological properties of the muscarine-induced currents indicated that the quinine-sensitive and insensitive components are due to nonselective cation channel activation and TASK1 channel inhibition, respectively. Muscarine at 30 μM failed to induce any current in AM cells treated with muscarinic toxin 7 or genetically deleted of the M1 receptor. The KD value of VU0255035 against the muscarinic receptor mediating nonselective cation channel activation was 17.5 nM. These results indicate that the M1 receptor mediates nonselective cation channel activation as well as TASK1 channel inhibition.
Collapse
Affiliation(s)
- Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan.
| | - Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | | | - Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| |
Collapse
|
18
|
Emerging Roles of Diacylglycerol-Sensitive TRPC4/5 Channels. Cells 2018; 7:cells7110218. [PMID: 30463370 PMCID: PMC6262340 DOI: 10.3390/cells7110218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential classical or canonical 4 (TRPC4) and TRPC5 channels are members of the classical or canonical transient receptor potential (TRPC) channel family of non-selective cation channels. TRPC4 and TRPC5 channels are widely accepted as receptor-operated cation channels that are activated in a phospholipase C-dependent manner, following the Gq/11 protein-coupled receptor activation. However, their precise activation mechanism has remained largely elusive for a long time, as the TRPC4 and TRPC5 channels were considered as being insensitive to the second messenger diacylglycerol (DAG) in contrast to the other TRPC channels. Recent findings indicate that the C-terminal interactions with the scaffolding proteins Na+/H+ exchanger regulatory factor 1 and 2 (NHERF1 and NHERF2) dynamically regulate the DAG sensitivity of the TRPC4 and TRPC5 channels. Interestingly, the C-terminal NHERF binding suppresses, while the dissociation of NHERF enables, the DAG sensitivity of the TRPC4 and TRPC5 channels. This leads to the assumption that all of the TRPC channels are DAG sensitive. The identification of the regulatory function of the NHERF proteins in the TRPC4/5-NHERF protein complex offers a new starting point to get deeper insights into the molecular basis of TRPC channel activation. Future studies will have to unravel the physiological and pathophysiological functions of this multi-protein channel complex.
Collapse
|
19
|
Myeong J, Ko J, Kwak M, Kim J, Woo J, Ha K, Hong C, Yang D, Kim HJ, Jeon JH, So I. Dual action of the Gα q-PLCβ-PI(4,5)P 2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Sci Rep 2018; 8:12117. [PMID: 30108272 PMCID: PMC6092394 DOI: 10.1038/s41598-018-30625-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
The transient receptor potential canonical (TRPC) 1 channel is widely distributed in mammalian cells and is involved in many physiological processes. TRPC1 is primarily considered a regulatory subunit that forms heterotetrameric channels with either TRPC4 or TRPC5 subunits. Here, we suggest that the regulation of TRPC1/4 and TRPC1/5 heterotetrameric channels by the Gαq-PLCβ pathway is self-limited and dynamically mediated by Gαq and PI(4,5)P2. We provide evidence indicating that Gαq protein directly interacts with either TRPC4 or TRPC5 of the heterotetrameric channels to permit activation. Simultaneously, Gαq-coupled PLCβ activation leads to the breakdown of PI(4,5)P2, which inhibits activity of TRPC1/4 and 1/5 channels.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joohan Woo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju, 61452, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Gachon University College of Medicine, Incheon, 21936, Republic of Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
20
|
Reboreda A, Theissen FM, Valero-Aracama MJ, Arboit A, Corbu MA, Yoshida M. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators. Behav Brain Res 2018; 354:64-83. [PMID: 29501506 DOI: 10.1016/j.bbr.2018.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
Collapse
Affiliation(s)
- Antonio Reboreda
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany.
| | - Frederik M Theissen
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 17, 91054 Erlangen, Germany
| | - Alberto Arboit
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Mihaela A Corbu
- Ruhr University Bochum (RUB), Universitätsstraße 150, 44801, Bochum, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany.
| |
Collapse
|
21
|
Wang LK, Chen X, Zhang CQ, Liang C, Wei YJ, Yue J, Liu SY, Yang H. Elevated Expression of TRPC4 in Cortical Lesions of Focal Cortical Dysplasia II and Tuberous Sclerosis Complex. J Mol Neurosci 2017; 62:222-231. [PMID: 28455787 DOI: 10.1007/s12031-017-0923-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Focal cortical dysplasia type II (FCD II) and tuberous sclerosis complex (TSC) are well-known causes of chronic refractory epilepsy in children. Canonical transient receptor potential channels (TRPCs) are non-selective cation channels that are commonly activated by phospholipase C (PLC) stimulation. Previous studies found that TRPC4 may participate in the process of epileptogenesis. This study aimed to examine the expression and distribution of TRPC4 in FCD II (n = 24) and TSC (n = 11) surgical specimens compared with that in age-matched autopsy control samples (n = 12). We found that the protein levels of TRPC4 and its upstream factor, PLC delta 1 (PLCD1), were elevated in FCD II and TSC samples compared to those of control samples. Immunohistochemistry assays revealed that TRPC4 staining was stronger in malformed cells, such as dysmorphic neurons, balloon cells and giant cells. Moderate-to-strong staining of the upstream factor PLCD1 was also identified in abnormal neurons. Moreover, double immunofluorescence staining revealed that TRPC4 was colocalised with glutamatergic and GABAergic neuron markers. Taken together, our results indicate that overexpression of TRPC4 protein may be involved in the epileptogenesis of FCD II and TSC.
Collapse
Affiliation(s)
- Lu-Kang Wang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of the People's Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083, China
| | - Chun-Qing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chao Liang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Yu-Jia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Shi-Yong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
22
|
Ko J, Myeong J, Yang D, So I. Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:133-140. [PMID: 28066150 PMCID: PMC5214905 DOI: 10.4196/kjpp.2017.21.1.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 12/16/2022]
Abstract
Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (–)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21936, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
23
|
Ludlow MJ, Gaunt HJ, Rubaiy HN, Musialowski KE, Blythe NM, Vasudev NS, Muraki K, Beech DJ. (-)-Englerin A-evoked Cytotoxicity Is Mediated by Na+ Influx and Counteracted by Na+/K+-ATPase. J Biol Chem 2016; 292:723-731. [PMID: 27875305 PMCID: PMC5241745 DOI: 10.1074/jbc.m116.755678] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
(−)-Englerin A ((−)-EA) has a rapid and potent cytotoxic effect on several types of cancer cell that is mediated by plasma membrane ion channels containing transient receptor potential canonical 4 (TRPC4) protein. Because these channels are Ca2+-permeable, it was initially thought that the cytotoxicity arose as a consequence of Ca2+ overload. Here we show that this is not the case and that the effect of (−)-EA is mediated by a heteromer of TRPC4 and TRPC1 proteins. Both TRPC4 and TRPC1 were required for (−)-EA cytotoxicity; however, although TRPC4 was necessary for the (−)-EA-evoked Ca2+ elevation, TRPC1 was not. TRPC1 either had no role or was a negative regulator of Ca2+ entry. By contrast, both TRPC4 and TRPC1 were necessary for monovalent cation entry evoked by (−)-EA, and (−)-EA-evoked cell death was dependent upon entry of the monovalent cation Na+. We therefore hypothesized that Na+/K+-ATPase might act protectively by counteracting the Na+ load resulting from sustained Na+ entry. Indeed, inhibition of Na+/K+-ATPase by ouabain potently and strongly increased (−)-EA-evoked cytotoxicity. The data suggest that (−)-EA achieves cancer cell cytotoxicity by inducing sustained Na+ entry through heteromeric TRPC1/TRPC4 channels and that the cytotoxic effect of (−)-EA can be potentiated by Na+/K+-ATPase inhibition.
Collapse
Affiliation(s)
- Melanie J Ludlow
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Hannah J Gaunt
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Hussein N Rubaiy
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Katie E Musialowski
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Nicola M Blythe
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Naveen S Vasudev
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Katsuhiko Muraki
- the School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - David J Beech
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
24
|
Myeong J, Ko J, Hong C, Yang D, Lee KP, Jeon JH, So I. The interaction domains of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heteromultimeric channels. Biochem Biophys Res Commun 2016; 474:476-481. [PMID: 27131740 DOI: 10.1016/j.bbrc.2016.04.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 11/28/2022]
Abstract
Transient receptor potential canonical (TRPC) family contains a non-selective cation channel, and four TRPC subunits form a functional tetrameric channel. TRPC4/5 channels form not only the homotetrameric channel but also a heterotetrameric channel with TRPC1. We investigated the interaction domain required for TRPC1/4 or TRPC1/5 heteromultimeric channels using FRET and the patch-clamp technique. TRPC1 only localized at the plasma membrane (PM) when it was coexpressed with TRPC4 or TRPC5. The TRPC1/4 or TRPC1/5 heteromultimeric showed the typical outward rectifying I/V curve. When TRPC1 and TRPC4 form a heteromeric channel, the N-terminal coiled-coil domain (CCD) and C-terminal 725-745 region of TRPC1 interact with the N-terminal CCD and C-terminal 700-728 region of TRPC4. However, when TRPC1 and TRPC5 form a heteromeric channel, the N-terminal CCD and C-terminal 673-725 region of TRPC1 interact with the N-terminal CCD and C-terminal 707-735 region of TRPC5. In conclusion, the N-terminal CCD of TRPC channels is essential for the heteromultimeric structure of TRPC channels, whereas specific C-terminal regions are required for unique heteromerization between subgroups of TRPC channels.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
25
|
Critical roles of Gi/o proteins and phospholipase C-δ1 in the activation of receptor-operated TRPC4 channels. Proc Natl Acad Sci U S A 2016; 113:1092-7. [PMID: 26755577 DOI: 10.1073/pnas.1522294113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient Receptor Potential Canonical (TRPC) proteins form nonselective cation channels commonly known to be activated downstream from receptors that signal through phospholipase C (PLC). Although TRPC3/C6/C7 can be directly activated by diacylglycerols produced by PLC breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), the mechanism by which the PLC pathway activates TRPC4/C5 remains unclear. We show here that TRPC4 activation requires coincident stimulation of Gi/o subgroup of G proteins and PLCδ, with a preference for PLCδ1 over PLCδ3, but not necessarily the PLCβ pathway commonly thought to be involved in receptor-operated TRPC activation. In HEK293 cells coexpressing TRPC4 and Gi/o-coupled µ opioid receptor, µ agonist elicited currents biphasically, with an initial slow phase preceding a rapidly developing phase. The currents were dependent on intracellular Ca(2+) and PIP2. Reducing PIP2 through phosphatases abolished the biphasic kinetics and increased the probability of channel activation by weak Gi/o stimulation. In both HEK293 cells heterologously expressing TRPC4 and renal carcinoma-derived A-498 cells endogenously expressing TRPC4, channel activation was inhibited by knocking down PLCδ1 levels and almost completely eliminated by a dominant-negative PLCδ1 mutant and a constitutively active RhoA mutant. Conversely, the slow phase of Gi/o-mediated TRPC4 activation was diminished by inhibiting RhoA or enhancing PLCδ function. Our data reveal an integrative mechanism of TRPC4 on detection of coincident Gi/o, Ca(2+), and PLC signaling, which is further modulated by the small GTPase RhoA. This mechanism is not shared with the closely related TRPC5, implicating unique roles of TRPC4 in signal integration in brain and other systems.
Collapse
|
26
|
Kim J, Moon SH, Shin YC, Jeon JH, Park KJ, Lee KP, So I. Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids. Pflugers Arch 2015; 468:551-61. [PMID: 26631167 DOI: 10.1007/s00424-015-1753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023]
Abstract
Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.
Collapse
Affiliation(s)
- Jinsung Kim
- College of Medicine, Catholic University of Korea, Seoul, 137-701, Republic of Korea.,Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Sang Hui Moon
- Department of Surgery, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Young-Cheul Shin
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Kyu Joo Park
- Department of Surgery, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764, Republic of Korea.
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
27
|
Zhu Y, Lu Y, Qu C, Miller M, Tian J, Thakur DP, Zhu J, Deng Z, Hu X, Wu M, McManus OB, Li M, Hong X, Zhu MX, Luo HR. Identification and optimization of 2-aminobenzimidazole derivatives as novel inhibitors of TRPC4 and TRPC5 channels. Br J Pharmacol 2015; 172:3495-509. [PMID: 25816897 DOI: 10.1111/bph.13140] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/16/2015] [Accepted: 03/18/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential canonical (TRPC) channels play important roles in a broad array of physiological functions and are involved in various diseases. However, due to a lack of potent subtype-specific inhibitors the exact roles of TRPC channels in physiological and pathophysiological conditions have not been elucidated. EXPERIMENTAL APPROACH Using fluorescence membrane potential and Ca(2+) assays and electrophysiological recordings, we characterized new 2-aminobenzimidazole-based small molecule inhibitors of TRPC4 and TRPC5 channels identified from cell-based fluorescence high-throughput screening. KEY RESULTS The original compound, M084, was a potent inhibitor of both TRPC4 and TRPC5, but was also a weak inhibitor of TRPC3. Structural modifications of the lead compound resulted in the identification of analogues with improved potency and selectivity for TRPC4 and TRPC5 channels. The aminobenzimidazole derivatives rapidly inhibited the TRPC4- and TRPC5-mediated currents when applied from the extracellular side and this inhibition was independent of the mode of activation of these channels. The compounds effectively blocked the plateau potential mediated by TRPC4-containing channels in mouse lateral septal neurons, but did not affect the activity of heterologously expressed TRPA1, TRPM8, TRPV1 or TRPV3 channels or that of the native voltage-gated Na(+) , K(+) and Ca(2) (+) channels in dissociated neurons. CONCLUSIONS AND IMPLICATIONS The TRPC4/C5-selective inhibitors developed here represent novel and useful pharmaceutical tools for investigation of physiological and pathophysiological functions of TRPC4/C5 channels.
Collapse
Affiliation(s)
- Yingmin Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yungang Lu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunrong Qu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Melissa Miller
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dhananjay P Thakur
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jinmei Zhu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Xianming Hu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng Wu
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Owen B McManus
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Li
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
28
|
Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H. (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed Engl 2015; 54:3787-91. [PMID: 25707820 PMCID: PMC7116557 DOI: 10.1002/anie.201411511] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Indexed: 12/21/2022]
Abstract
Current therapies for common types of cancer such as renal cell cancer are often ineffective and unspecific, and novel pharmacological targets and approaches are in high demand. Here we show the unexpected possibility for the rapid and selective killing of renal cancer cells through activation of calcium-permeable nonselective transient receptor potential canonical (TRPC) calcium channels by the sesquiterpene (-)-englerin A. This compound was found to be a highly efficient, fast-acting, potent, selective, and direct stimulator of TRPC4 and TRPC5 channels. TRPC4/5 activation through a high-affinity extracellular (-)-englerin A binding site may open up novel opportunities for drug discovery aimed at renal cancer.
Collapse
Affiliation(s)
- Yasemin Akbulut
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany, Tel. +49 (0) 231-133-2400
- Technische Universität Dortmund, Fakultät Chemie, Lehrbereich Chemische Biologie, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Hannah J Gaunt
- School of Medicine, Garstang Building, Mount Preston Street, University of Leeds, Leeds, LS2 9JT, England, UK; Tel +44 (0) 113 34 34323
| | - Katsuhiko Muraki
- School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Melanie J Ludlow
- School of Medicine, Garstang Building, Mount Preston Street, University of Leeds, Leeds, LS2 9JT, England, UK; Tel +44 (0) 113 34 34323
| | - Mohamed S Amer
- School of Medicine, Garstang Building, Mount Preston Street, University of Leeds, Leeds, LS2 9JT, England, UK; Tel +44 (0) 113 34 34323
- Clinical Physiology Department, Faculty of Medicine, Menoufiya University, Egypt
| | - Alexander Bruns
- School of Medicine, Garstang Building, Mount Preston Street, University of Leeds, Leeds, LS2 9JT, England, UK; Tel +44 (0) 113 34 34323
| | - Naveen S Vasudev
- School of Medicine, Garstang Building, Mount Preston Street, University of Leeds, Leeds, LS2 9JT, England, UK; Tel +44 (0) 113 34 34323
| | - Lea Radtke
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany, Tel +49 (0) 30 83860182
| | - Matthieu Willot
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany, Tel +49 (0) 30 83860182
| | - Sven Hahn
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany, Tel +49 (0) 30 83860182
| | - Tobias Seitz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany, Tel +49 (0) 30 83860182
| | - Slava Ziegler
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany, Tel. +49 (0) 231-133-2400
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany, Tel +49 (0) 30 83860182
| | - David J Beech
- School of Medicine, Garstang Building, Mount Preston Street, University of Leeds, Leeds, LS2 9JT, England, UK; Tel +44 (0) 113 34 34323
| | - Herbert Waldmann
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany, Tel. +49 (0) 231-133-2400
- Technische Universität Dortmund, Fakultät Chemie, Lehrbereich Chemische Biologie, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
29
|
Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H. (−)-Englerin A is a Potent and Selective Activator of TRPC4 and TRPC5 Calcium Channels. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411511] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator? Cells 2014; 3:939-62. [PMID: 25268281 PMCID: PMC4276908 DOI: 10.3390/cells3040939] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/07/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
Collapse
|
31
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
32
|
Abstract
The TRPC1 ion channel was the first mammalian TRP channel to be cloned. In humans, it is encoded by the TRPC1 gene located in chromosome 3. The protein is predicted to consist of six transmembrane segments with the N- and C-termini located in the cytoplasm. The extracellular loop connecting transmembrane segments 5 and 6 participates in the formation of the ionic pore region. Inside the cell, TRPC1 is present in the endoplasmic reticulum, plasma membrane, intracellular vesicles, and primary cilium, an antenna-like sensory organelle functioning as a signaling platform. In human and rodent tissues, it shows an almost ubiquitous expression. TRPC1 interacts with a diverse group of proteins including ion channel subunits, receptors, and cytosolic proteins to mediate its effect on Ca(2+) signaling. It primarily functions as a cation nonselective channel within pathways controlling Ca(2+) entry in response to cell surface receptor activation. Through these pathways, it affects basic cell functions, such as proliferation and survival, differentiation, secretion, and cell migration, as well as cell type-specific functions such as chemotropic turning of neuronal growth cones and myoblast fusion. The biological role of TRPC1 has been studied in genetically engineered mice where the Trpc1 gene has been experimentally ablated. Although these mice live to adulthood, they show defects in several organs and tissues, such as the cardiovascular, central nervous, skeletal and muscular, and immune systems. Genetic and functional studies have implicated TRPC1 in diabetic nephropathy, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, cancer, seizures, and Darier-White skin disease.
Collapse
Affiliation(s)
- Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|