1
|
Keller C, Santos RR, van Megen WH, Loffing J. Characterization of ROMK cellular heterogeneity along the mouse kidney thick ascending limb. Pflugers Arch 2025:10.1007/s00424-025-03086-4. [PMID: 40358700 DOI: 10.1007/s00424-025-03086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The renal thick ascending limb (TAL) plays a key role in water and ion homeostasis. Apical potassium secretion via the renal outer medullary potassium channel (ROMK) is essential for transepithelial sodium reabsorption via the furosemide-sensitive Na-K-2Cl-cotransporter and creates the electrochemical gradient for paracellular ion transport through Claudin tight junction proteins. Interestingly, the TAL exhibits transcriptomic heterogeneity and variable apical ROMK abundance. Single-cell RNA sequencing suggests that the cortical TAL consists of at least three distinct cell types, but whether ROMK distribution aligns with these types remains unclear. We analyzed perfusion-fixed mouse kidneys using RNAscope in situ hybridization (ISH), iterative indirect immunofluorescence imaging (4i multiplexing), and machine learning. ROMK mRNA expression was seen in all TAL cells. In contrast, apical ROMK protein abundance was found on almost all macula densa (MD) cells but was heterogeneous along the rest of the TAL. In the remaining TAL, only about 60% of the TAL cells had strong apical ROMK staining, while 40% lacked apical ROMK but showed weak perinuclear signals. ISH revealed that apical ROMK-positive cells express Ptger3 mRNA, whereas apical ROMK-negative cells express Foxq1 mRNA. Multiplexing analysis showed that ROMK-positive cells form Claudin-10b-positive tight junctions, while ROMK-negative cells form Claudin-16/19-positive junctions and express basolateral Kir4.1. Despite universal ROMK mRNA expression, apical ROMK distribution aligns with molecularly distinct TAL cell types. This unique ROMK expression pattern suggests functional heterogeneity for ROMK along the TAL.
Collapse
Affiliation(s)
- Christian Keller
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland
- PhD Program Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rui Ramos Santos
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland
- Ophthalmology Clinic, City Hospital Zurich, Zurich, Switzerland
- Spross Research Institute, Zurich, Switzerland
| | - Wouter H van Megen
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Himmerkus N, Quintanova C, Bhullar H, van Megen WH, Deluque AL, Skjødt K, Bogdanovic M, Bleich M, Alexander RT, Dimke H. Calcium-Sensing Receptor in the Thick Ascending Limb and Renal Response to Hypercalcemia. J Am Soc Nephrol 2025:00001751-990000000-00534. [PMID: 39836479 DOI: 10.1681/asn.0000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background:
The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.
Methods:
Experimental hypercalcemia was induced using the Vitamin D analog (Dihydrotachysterol, DHT) in mice with Ksp-Cre dependent deletion of the Casr (Ksp-Casr) in kidney with Cre negative littermates (WT) serving as controls. Urinary and fecal electrolyte determinations, dual-energy x-ray absorptiometry, molecular and biochemical evaluation, and in vitro tubule microperfusion were performed in both sexes.
Results:
Ksp-Cre-driven Casr deletion strongly reduced CASR abundance in the thick ascending limb (TAL). At baseline, no marked differences were detected in electrolyte handling and tubular permeability characteristics across the TAL. 3 days of DHT administration induced hypercalcemia in both WT and Ksp-Casr mice. However, while WT mice developed hypercalciuria, this response was absent in Ksp-Casr mice. Urinary excretion of magnesium and other electrolytes did not differ between hypercalcemic WT and Ksp-Casr mice. Intestinal electrolyte absorption was comparable between the two groups. Microperfusion of isolated cortical TALs revealed no baseline differences in the transepithelial voltage, resistance, or ion permeabilities. Following hypercalcemia, transepithelial resistance increased and calcium permeability markedly decreased in WT mice, but not in Ksp-Casr mice, with only minor alterations in magnesium permeability and no changes in transepithelial voltage.
Conclusions:
In hypercalcemic mice, absence of the CASR in TAL prevented the increase in urinary calcium excretion. The CASR specifically regulated the paracellular permeability of the TAL, especially for calcium.
Collapse
Affiliation(s)
- Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | | | - Harneet Bhullar
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | | | - Amanda Lima Deluque
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Karsten Skjødt
- Department of Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Milos Bogdanovic
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - R Todd Alexander
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Demirci H, Bahena-Lopez J, Smorodchenko A, Su XT, Nelson J, Yang CL, Curry J, Duan XP, Wang WH, Sharkovska Y, Liu R, Yilmaz DE, Quintanova C, Emberly K, Emery B, Himmerkus N, Bleich M, Ellison DH, Bachmann S. Distinct cell types along thick ascending limb express pathways for monovalent and divalent cation transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633282. [PMID: 39896580 PMCID: PMC11785040 DOI: 10.1101/2025.01.16.633282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Kidney thick ascending limb cells reabsorb sodium, potassium, calcium, and magnesium and contribute to urinary concentration. These cells are typically viewed as of a single type that recycles potassium across the apical membrane and generates a lumen-positive transepithelial voltage driving calcium and magnesium reabsorption, although variability in potassium channel expression has been reported. Additionally, recent transcriptomic analyses suggest that different cell types exist along this segment, but classifications have varied and have not led to a new consensus model. We used immunolocalization, electrophysiology and enriched single nucleus RNA-Seq to identify thick ascending limb cell types in rat, mouse and human. We identified three major TAL cell types defined by expression of potassium channels and claudins. One has apical potassium channels, low basolateral potassium conductance, and is bordered by a sodium-permeable claudin. A second lacks apical potassium channels, has high basolateral potassium conductance and is bordered by calcium- and magnesium-permeable claudins. A third type also lacks apical potassium channels and has a high basolateral potassium conductance, but these cells are ringed by sodium-permeable claudins. The recognition of diverse cell types resolves longstanding questions about how solute transport can be modulated selectively and how disruption of these cells leads to human disease.
Collapse
Affiliation(s)
- Hasan Demirci
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, 10117 Berlin Germany
| | - Jessica Bahena-Lopez
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, Oregon
| | | | - Xiao-Tong Su
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, Oregon
| | - Jonathan Nelson
- Division of Nephrology & Hypertension, USC Keck School of Medicine, Los Angeles, CA
| | - Chao-Ling Yang
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, Oregon
| | - Joshua Curry
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, Oregon
| | - Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, 221004 Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, New York
| | - Yuliya Sharkovska
- Klinik für Pädiatrie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL
| | - Duygu Elif Yilmaz
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Catarina Quintanova
- Institute of Physiology, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Katie Emberly
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR
| | - Ben Emery
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, 24118 Kiel, Germany
| | - David H. Ellison
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, Oregon
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, 10117 Berlin Germany
| |
Collapse
|
4
|
Dimke H. New insights into renal calcium-sensing receptor activation. Curr Opin Nephrol Hypertens 2024; 33:433-440. [PMID: 38690798 DOI: 10.1097/mnh.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.
Collapse
Affiliation(s)
- Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Martínez-Romero MC, Hernández-Contreras ME, Bafalliu-Vidal JA, Barreda-Sánchez M, Martínez-Menchón T, Cabello-Chaves V, Guillén-Navarro E. HELIX Syndrome, a Claudinopathy with Relevant Dermatological Manifestations: Report of Two New Cases. Genes (Basel) 2024; 15:687. [PMID: 38927623 PMCID: PMC11202757 DOI: 10.3390/genes15060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
HELIX syndrome (Hypohidrosis-Electrolyte disturbances-hypoLacrimia-Ichthyosis-Xerostomia) (MIM#617671) (ORPHA:528105), described in 2017, is due to an abnormal claudin 10 b protein, secondary to pathogenic CLDN10 variants. So far, only ten families have been described. We aim to describe the phenotype in the first Spanish family identified, highlight the skin anomalies as an important clue, and expand the genotypic spectrum. Two adult brothers from consanguineous parents with suspected ectodermal dysplasia (ED) since early childhood were re-evaluated. A comprehensive phenotypic exam and an aCGH + SNP4 × 180 K microarray followed by Sanger sequencing of the CLDN10 gene were performed. They presented hypohidrosis, xerosis, mild ichthyosis, plantar keratosis, palm hyperlinearity, alacrima, and xerostomia. In adulthood, they also developed a salt-losing nephropathy with hypokalemia and hypermagnesemia. The molecular study in both patients revealed a novel pathogenic homozygous deletion of 8 nucleotides in exon 2 of the CLDN10 gene [CLDN10 (NM_0006984.4): c.322_329delGGCTCCGA, p.Gly108fs*] leading to a premature truncation of the protein. Both parents were heterozygous carriers. Hypohidrosis, ichthyosis, and plantar keratosis associated with alacrima and xerostomia should raise suspicion for HELIX syndrome, which also includes nephropathy and electrolyte disturbances in adults. Given the potential for ED misdiagnosis in infancy, it is important to include the CLDN10 gene in a specific genodermatosis next-generation sequencing (NGS) panel to provide early diagnosis, accurate management, and genetic counseling.
Collapse
Affiliation(s)
- María Carmen Martínez-Romero
- Molecular Genetics Section, Biochemistry and Clinical Genetics Center, University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.C.M.-R.); (J.A.B.-V.)
- Pediatric Research, Murcian Institute for Biosanitary Research (IMIB) Pascual Parrilla, 30120 Murcia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Carlos III Health Institute, 28029 Madrid, Spain
- Faculty of Medicine, UCAM Catholic University of Murcia, 30109 Murcia, Spain
| | | | - Juan Antonio Bafalliu-Vidal
- Molecular Genetics Section, Biochemistry and Clinical Genetics Center, University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.C.M.-R.); (J.A.B.-V.)
| | - María Barreda-Sánchez
- Pediatric Research, Murcian Institute for Biosanitary Research (IMIB) Pascual Parrilla, 30120 Murcia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Carlos III Health Institute, 28029 Madrid, Spain
- Faculty of Medicine, UCAM Catholic University of Murcia, 30109 Murcia, Spain
| | - Teresa Martínez-Menchón
- Dermatology Department, University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain;
| | | | - Encarna Guillén-Navarro
- Pediatric Research, Murcian Institute for Biosanitary Research (IMIB) Pascual Parrilla, 30120 Murcia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Carlos III Health Institute, 28029 Madrid, Spain
- Pediatrics Department, University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
- Surgery, Pediatrics, Obstetrics and Gynecology Department, University of Murcia (UMU), 30120 Murcia, Spain
| |
Collapse
|
6
|
Brideau G, Cheval L, Griveau C, Ling WME, Lievre L, Crambert G, Müller D, Broćić J, Cherchame E, Houillier P, Prot-Bertoye C. Claudin-10 Expression and the Gene Expression Pattern of Thick Ascending Limb Cells. Int J Mol Sci 2024; 25:4008. [PMID: 38612818 PMCID: PMC11011785 DOI: 10.3390/ijms25074008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Many genomic, anatomical and functional differences exist between the medullary (MTAL) and the cortical thick ascending limb of the loop of Henle (CTAL), including a higher expression of claudin-10 (CLDN10) in the MTAL than in the CTAL. Therefore, we assessed to what extent the Cldn10 gene expression is a determinant of differential gene expression between MTAL and CTAL. RNAs extracted from CTAL and MTAL microdissected from wild type (WT) and Cldn10 knock out mice (cKO) were analyzed by RNAseq. Differential and enrichment analyses (GSEA) were performed with interactive R Shiny software. Between WT and cKO MTAL, 637 genes were differentially expressed, whereas only 76 were differentially expressed between WT and cKO CTAL. Gene expression patterns and GSEA analyses in all replicates showed that WT MTAL did not cluster with the other replicates; no hierarchical clustering could be found between WT CTAL, cKO CTAL and cKO MTAL. Compared to WT replicates, cKO replicates were enriched in Cldn16, Cldn19, Pth1r, (parathyroid hormone receptor type 1), Casr (calcium sensing receptor) and Vdr (Vitamin D Receptor) mRNA in both the cortex and medulla. Cldn10 is associated with gene expression patterns, including genes specifically involved in divalent cations reabsorption in the TAL.
Collapse
Affiliation(s)
- Gaelle Brideau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Wung-Man Evelyne Ling
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, DE-13353 Berlin, Germany;
| | - Jovana Broćić
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Data Analysis Core Platform, F-75013 Paris, France; (J.B.); (E.C.)
| | - Emeline Cherchame
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Data Analysis Core Platform, F-75013 Paris, France; (J.B.); (E.C.)
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), The European Rare Kidney Disease Reference Network (ERKNet), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, The European Reference Network on Rare Endocrine Conditions (Endo-ERN), F-75015 Paris, France
- Faculté de Médecine, Université Paris Cité, F-75006 Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), The European Rare Kidney Disease Reference Network (ERKNet), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, The European Reference Network on Rare Endocrine Conditions (Endo-ERN), F-75015 Paris, France
| |
Collapse
|
7
|
Beggs MR, Young K, Plain A, O'Neill DD, Raza A, Flockerzi V, Dimke H, Alexander RT. Maternal Epidermal Growth Factor Promotes Neonatal Claudin-2 Dependent Increases in Small Intestinal Calcium Permeability. FUNCTION 2023; 4:zqad033. [PMID: 37575484 PMCID: PMC10413934 DOI: 10.1093/function/zqad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by μCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allen Plain
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Demark
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
8
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
9
|
Alexander RT, Dimke H. Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Ann N Y Acad Sci 2022; 1518:69-83. [PMID: 36200584 DOI: 10.1111/nyas.14909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
10
|
Quintanova C, Himmerkus N, Svendsen SL, von Schwerdtner O, Merkel C, Pinckert L, Mutig K, Breiderhoff T, Müller D, Günzel D, Bleich M. Unrecognized role of claudin-10b in basolateral membrane infoldings of the thick ascending limb. Ann N Y Acad Sci 2022; 1517:266-278. [PMID: 35996827 DOI: 10.1111/nyas.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Claudin-10b is an important component of the tight junction in the thick ascending limb (TAL) of Henle's loop and allows paracellular sodium transport. In immunofluorescence stainings, claudin-10b-positive cells exhibited extensive extra staining of basolateral, column-like structures. The precise localization and function have so far remained elusive. In isolated cortical TAL segments from C57BL/6J mice, kidney-specific claudin-10 knockout mice (cKO), and respective litter mates (WT), we investigated the localization and protein expression and function by fluorescence microscopy and electrophysiological measurements. Ultrastructural analysis of TAL in kidney sections was performed by electron microscopy. Claudin-10b colocalized with the basolateral Na+ -K+ ATPase and the Cl- channel subunit barttin, but the lack of claudin-10b did not influence the localization or abundance of these proteins. However, the accessibility of the basolateral infolded extracellular space to ouabain or fluorescein was increased by basolateral Ca2+ removal and in the absence of claudin-10b. Ultrastructural analysis by electron microscopy revealed a widening of basolateral membrane infoldings in cKO in comparison to WT. We hypothesize that claudin-10b shapes neighboring membrane invaginations by trans interaction to stabilize and facilitate high-flux salt transport in a water-tight epithelium.
Collapse
Affiliation(s)
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | | | - Cosima Merkel
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Lennart Pinckert
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | - Tilman Breiderhoff
- Department of Pediatrics, Division of Gastroenterology, Nephrology, and Metabolic Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology, and Metabolic Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
11
|
van Megen WH, Tan RSG, Alexander RT, Dimke H. Differential parathyroid and kidney Ca 2+-sensing receptor activation in autosomal dominant hypocalcemia 1. EBioMedicine 2022; 78:103947. [PMID: 35313217 PMCID: PMC8935519 DOI: 10.1016/j.ebiom.2022.103947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Parathyroid Ca2+-sensing receptor (CaSR) activation inhibits parathyroid hormone (PTH) release, while activation of renal CaSRs attenuates Ca2+ transport and increases expression of the pore-blocking claudin-14. Patients with autosomal dominant hypocalcemia 1 (ADH1), due to activating CASR mutations, exhibit hypocalcemia but not always hypercalciuria (elevated Ca2+ in urine). The latter promotes nephrocalcinosis and renal insufficiency. Although CaSRs throughout the body including the kidney harbor activating CASR mutations, it is not understood why only some ADH1 patients display hypercalciuria. Methods Activation of the CaSR was studied in mouse models and a ADH1 patient. In vitro CaSR activation was studied in HEK293 cells. Findings Cldn14 showed blood Ca2+ concentration-dependent regulation, which was absent in mice with kidney-specific Casr deletion, indicating Cldn14 is a suitable marker for chronic CaSR activation in the kidney. Mice with a gain-of-function mutation in the Casr (Nuf) were hypocalcemic with low plasma PTH levels. However, renal CaSRs were not activated at baseline but only after normalizing blood Ca2+ levels. Similarly, significant hypercalciuria was not observed in a ADH1 patient until blood Ca2+ was normalized. In vitro experiments indicate that increased CaSR expression in the parathyroid relative to the kidney could contribute to tissue-specific CaSR activation thresholds. Interpretation Our findings suggest that parathyroid CaSR overactivity can reduce plasma Ca2+ to levels insufficient to activate renal CaSRs, even when an activating mutation is present. These findings identify a conceptually new mechanism of CaSR-dependent Ca2+ balance regulation that aid in explaining the spectrum of hypercalciuria in ADH1 patients. Funding Erasmus+ 2018/E+/4458087, the Canadian Institutes for Health research, the Novo Nordisk Foundation, the Beckett Foundation, the Carlsberg Foundation and Independent Research Fund Denmark.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 3rd floor, 5000 Odense C, Denmark; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebecca Siu Ga Tan
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada; The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - R Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada; The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada; Department of Pediatrics, 4-585 Edmonton Clinic Health Academy, University of Alberta, 11405 87th Avenue, Edmonton, Alberta T6G 2R7, Canada.
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 3rd floor, 5000 Odense C, Denmark; Department of Nephrology, Odense University Hospital, Denmark.
| |
Collapse
|
12
|
Vargas-Poussou R. Pathophysiological aspects of the thick ascending limb and novel genetic defects: HELIX syndrome and transient antenatal Bartter syndrome. Pediatr Nephrol 2022; 37:239-252. [PMID: 33733301 DOI: 10.1007/s00467-021-05019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
The thick ascending limb plays a central role in human kidney physiology, participating in sodium reabsorption, urine concentrating mechanisms, calcium and magnesium homeostasis, bicarbonate and ammonium homeostasis, and uromodulin synthesis. This review aims to illustrate the importance of these roles from a pathophysiological point of view by describing the interactions of the key proteins of this segment and by discussing how recently identified and long-known hereditary diseases affect this segment. The descriptions of two recently described salt-losing tubulopathies, transient antenatal Bartter syndrome and HELIX syndrome, which are caused by mutations in MAGED2 and CLDN10 genes, respectively, highlight the role of new players in the modulation of sodium reabsorption the thick ascending limb.
Collapse
Affiliation(s)
- Rosa Vargas-Poussou
- Department of Molecular Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 20-40 rue Leblanc, 75015, Paris, France. .,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France. .,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
13
|
Breiderhoff T, Himmerkus N, Meoli L, Fromm A, Sewerin S, Kriuchkova N, Nagel O, Ladilov Y, Krug S, Quintanova C, Stumpp M, Garbe-Schönberg D, Westernströer U, Merkel C, Brinkhus M, Altmüller J, Schweiger M, Mueller D, Mutig K, Morawski M, Halbritter J, Milatz S, Bleich M, Günzel D. Claudin-10a Deficiency Shifts Proximal Tubular Cl - Permeability to Cation Selectivity via Claudin-2 Redistribution. J Am Soc Nephrol 2022; 33:699-717. [PMID: 35031570 PMCID: PMC8970455 DOI: 10.1681/asn.2021030286] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022] Open
Abstract
Background The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiological role of claudin-10a in the kidney has been unclear. Methods To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice; confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining; and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. Results Mice deficient in claudin-10a were fertile and without overt phenotypes. Upon knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a consequence, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison of other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, as well as unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. Conclusions Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyperreabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.
Collapse
Affiliation(s)
- Tilman Breiderhoff
- T Breiderhoff, Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Nina Himmerkus
- N Himmerkus, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Luca Meoli
- L Meoli, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Fromm
- A Fromm, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Sewerin
- S Sewerin, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Natalia Kriuchkova
- N Kriuchkova, Institute for Functional Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Nagel
- O Nagel, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yury Ladilov
- Y Ladilov, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Krug
- S Krug, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Catarina Quintanova
- C Quintanova, Institute of Physiology, Christian-Albrechts-Universitat zu Kiel, Kiel, Germany
| | - Meike Stumpp
- M Stumpp, Zoological Institute, Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Garbe-Schönberg
- D Garbe-Schönberg, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulrike Westernströer
- U Westernströer, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Cosima Merkel
- C Merkel, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Merle Brinkhus
- M Brinkhus, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Janine Altmüller
- J Altmüller, Cologne Center for Genomics, University of Cologne, Koln, Germany
| | - Michal Schweiger
- M Schweiger, Cologne Center for Genomics, University of Cologne, Koln, Germany
| | - Dominik Mueller
- D Mueller, Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- K Mutig, Institute for Functional Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morawski
- M Morawski, Leipzig University Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | - Jan Halbritter
- J Halbritter, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanne Milatz
- S Milatz, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Bleich
- M Bleich, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dorothee Günzel
- D Günzel, Clinical Physiology / Div. of Nutritional Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
14
|
Beggs MR, Young K, Pan W, O'Neill DD, Saurette M, Plain A, Rievaj J, Doschak MR, Cordat E, Dimke H, Alexander RT. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc Natl Acad Sci U S A 2021; 118:e2111247118. [PMID: 34810264 PMCID: PMC8694054 DOI: 10.1073/pnas.2111247118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
Calcium (Ca2+) homeostasis is maintained through coordination between intestinal absorption, renal reabsorption, and bone remodeling. Intestinal and renal (re)absorption occurs via transcellular and paracellular pathways. The latter contributes the bulk of (re)absorption under conditions of adequate intake. Epithelial paracellular permeability is conferred by tight-junction proteins called claudins. However, the molecular identity of the paracellular Ca2+ pore remains to be delineated. Claudins (Cldn)-2 and -12 confer Ca2+ permeability, but deletion of either claudin does not result in a negative Ca2+ balance or increased calciotropic hormone levels, suggesting the existence of additional transport pathways or parallel roles for the two claudins. To test this, we generated a Cldn2/12 double knockout mouse (DKO). These animals have reduced intestinal Ca2+ absorption. Colonic Ca2+ permeability is also reduced in DKO mice and significantly lower than single-null animals, while small intestine Ca2+ permeability is unaltered. The DKO mice display significantly greater urinary Ca2+ wasting than Cldn2 null animals. These perturbations lead to hypocalcemia and reduced bone mineral density, which was not observed in single-KO animals. Both claudins were localized to colonic epithelial crypts and renal proximal tubule cells, but they do not physically interact in vitro. Overexpression of either claudin increased Ca2+ permeability in cell models with endogenous expression of the other claudin. We find claudin-2 and claudin-12 form partially redundant, independent Ca2+ permeable pores in renal and colonic epithelia that enable paracellular Ca2+ (re)absorption in these segments, with either one sufficient to maintain Ca2+ balance.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women's and Children's Health Research Institute, Edmonton, AB, T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Matthew Saurette
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Juraj Rievaj
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H5, Canada
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada;
- Women's and Children's Health Research Institute, Edmonton, AB, T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| |
Collapse
|
15
|
Abstract
Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice. Consequently, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- R T Alexander
- Departments of Physiology and Pediatrics, University of Alberta, Edmonton, Canada; .,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| | - D G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Lee JJ, Alzamil J, Rehman S, Pan W, Dimke H, Alexander RT. Activation of the calcium sensing receptor increases claudin-14 expression via a PLC -p38-Sp1 pathway. FASEB J 2021; 35:e21982. [PMID: 34694654 PMCID: PMC9297942 DOI: 10.1096/fj.202002137rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022]
Abstract
Activation of the basolateral calcium sensing receptor (CaSR) in the renal tubular thick ascending limb (TAL) increases claudin‐14 expression, which reduces paracellular calcium (Ca2+) permeability, thus increasing urinary Ca2+ excretion. However, the upstream signaling pathway contributing to altered CLDN14 gene expression is unknown. To delineate this pathway, we identified and then cloned the CaSR responsive region including the promoter of mouse Cldn14 into a luciferase reporter vector. This 1500 bp sequence upstream of the 5′ UTR of Cldn14 variant 1, conferred increased reporter activity in the presence of high extracellular Ca2+ (5 mM) relative to a lower (0.5 mM) concentration. Assessment of Cldn14 reporter activity in response to increased extracellular Ca2+ in the presence or absence of specific inhibitors confirmed signaling through PLC and p38, but not JNK. Overexpression of SP1 attenuated Cldn14 reporter activity in response to CasR signaling. SP1 is expressed in the TAL and phosphorylation was attenuated by CaSR signaling. Finally, activating mutations in the CaSR increased Cldn14 reporter activity while a dominant negative mutation in the CaSR inhibited it. Together, these studies suggest that basolateral activation of the CASR leads to increased Cldn14 expression via a PLC‐ stimulated p38 pathway that prevents Sp1 mediated repression.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Jawad Alzamil
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Saba Rehman
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Prot-Bertoye C, Griveau C, Skjødt K, Cheval L, Brideau G, Lievre L, Ferriere E, Arbaretaz F, Garbin K, Zamani R, Marcussen N, Figueres L, Breiderhoff T, Muller D, Bruneval P, Houillier P, Dimke H. Differential localization patterns of claudin 10, 16, and 19 in human, mouse, and rat renal tubular epithelia. Am J Physiol Renal Physiol 2021; 321:F207-F224. [PMID: 34151590 DOI: 10.1152/ajprenal.00579.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gaëlle Brideau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Elsa Ferriere
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Floriane Arbaretaz
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Kevin Garbin
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Reza Zamani
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Lucile Figueres
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Tilman Breiderhoff
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Muller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Bruneval
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Anatomopathologie, Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
18
|
Tan RSG, Lee CHL, Dimke H, Todd Alexander R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp Biol Med (Maywood) 2021; 246:2407-2419. [PMID: 33926258 DOI: 10.1177/15353702211010415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.
Collapse
Affiliation(s)
- Rebecca Siu Ga Tan
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Nephrology, Odense University Hospital, Odense 5000, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada.,Department of Pediatrics, University of Alberta, Edmonton T6G 1C9, Canada
| |
Collapse
|
19
|
Frische S, Alexander RT, Ferreira P, Tan RSG, Wang W, Svenningsen P, Skjødt K, Dimke H. Localization and regulation of claudin-14 in experimental models of hypercalcemia. Am J Physiol Renal Physiol 2021; 320:F74-F86. [PMID: 33283646 DOI: 10.1152/ajprenal.00397.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Variations in the claudin-14 (CLDN14) gene have been linked to increased risk of hypercalciuria and kidney stone formation. However, the exact cellular localization of CLDN14 and its regulation remain to be fully delineated. To this end, we generated a novel antibody that allowed the detection of CLDN14 in paraffin-embedded renal sections. This showed CLDN14 to be detectable in the kidney only after induction of hypercalcemia in rodent models. Protein expression in the kidney is localized exclusively to the thick ascending limbs (TALs), mainly restricted to the cortical and upper medullary portion of the kidney. However, not all cells in the TALs expressed the tight junction protein. In fact, CLDN14 was primarily expressed in cells also expressing CLDN16 but devoid of CLDN10. CLDN14 appeared in very superficial apical cell domains and near cell junctions in a belt-like formation along the apical cell periphery. In transgenic mice, Cldn14 promotor-driven LacZ activity did not show complete colocalization with CLDN14 protein nor was it increased by hypercalcemia, suggesting that LacZ activity cannot be used as a marker for CLDN14 localization and regulation in this model. In conclusion, CLDN14 showed a restricted localization pattern in the apical domain of select cells of the TAL.
Collapse
Affiliation(s)
| | - R Todd Alexander
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Patrícia Ferreira
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rebecca Siu Ga Tan
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Weidong Wang
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
Himmerkus N, Svendsen SL, Quintanova C, Bleich M, Von Schwerdtner O, Benzing T, Welling PA, Leipziger J, Rinschen MM. Viewing Cortical Collecting Duct Function Through Phenotype-guided Single-Tubule Proteomics. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa007. [PMID: 35330743 PMCID: PMC8788781 DOI: 10.1093/function/zqaa007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
The revolution of the omics technologies has enabled profiling of the molecules of any sample. However, the heterogeneity of the kidney with highly specialized nephron segments like the cortical collecting duct (CCD) poses a challenge regarding integration of omics data and functional analysis. We examined function and proteome from the same single CCDs of C57Bl6 mice by investigating them in a double-barreled perfusion system before targeted mass spectrometry. Transepithelial voltage (Vte), transepithelial resistance, as well as amiloride-sensitive voltage (ΔVteamil) were recorded. CCDs were of 400-600 µm of length, showed lumen negative Vte between -8.5 and -32.5 mV and an equivalent short circuit current I'sc between 54 and 192 µA/cm2. On a single-tubule proteome level, intercalated cell (IC) markers strongly correlated with other intercalated cell markers and negatively with principal cell markers. Integration of proteome data with phenotype data revealed that tubular length correlated with actin and Na+-K+-ATPase expression. ΔVte(amil) reflected the expression level of the β-subunit of the epithelial sodium channel. Intriguingly, ΔVte(amil) correlated inversely with the water channel AQP2 and the negative regulator protein NEDD4L (NEDD4-2). In pendrin knockout (KO) mice, the CCD proteome was accompanied by strong downregulation of other IC markers like CLCNKB, BSND (Barttin), and VAA (vH+-ATPase), a configuration that may contribute to the salt-losing phenotype of Pendred syndrome. Proteins normally coexpressed with pendrin were decreased in pendrin KO CCDs. In conclusion, we show that functional proteomics on a single nephron segment scale allows function-proteome correlations, and may potentially help predicting function from omics data.
Collapse
Affiliation(s)
- Nina Himmerkus
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | - Markus Bleich
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | - Thomas Benzing
- Center for Molecular Medicine, University of Cologne, Cologne, Germany,Department II of Internal Medicine, University of Cologne, Cologne, Germany
| | - Paul A Welling
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Center for Molecular Medicine, University of Cologne, Cologne, Germany,Department II of Internal Medicine, University of Cologne, Cologne, Germany,Scripps Center for Metabolomics, Scripps Research, San Diego, CA, USA,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Corresponding author. E-mail:
| |
Collapse
|
21
|
Curry JN, Saurette M, Askari M, Pei L, Filla MB, Beggs MR, Rowe PS, Fields T, Sommer AJ, Tanikawa C, Kamatani Y, Evan AP, Totonchi M, Alexander RT, Matsuda K, Yu AS. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest 2020; 130:1948-1960. [PMID: 32149733 PMCID: PMC7108907 DOI: 10.1172/jci127750] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
The major risk factor for kidney stone disease is idiopathic hypercalciuria. Recent evidence implicates a role for defective calcium reabsorption in the renal proximal tubule. We hypothesized that claudin-2, a paracellular cation channel protein, mediates proximal tubule calcium reabsorption. We found that claudin-2-null mice have hypercalciuria due to a primary defect in renal tubule calcium transport and papillary nephrocalcinosis that resembles the intratubular plugs in kidney stone formers. Our findings suggest that a proximal tubule defect in calcium reabsorption predisposes to papillary calcification, providing support for the vas washdown hypothesis. Claudin-2-null mice were also found to have increased net intestinal calcium absorption, but reduced paracellular calcium permeability in the colon, suggesting that this was due to reduced intestinal calcium secretion. Common genetic variants in the claudin-2 gene were associated with decreased tissue expression of claudin-2 and increased risk of kidney stones in 2 large population-based studies. Finally, we describe a family in which males with a rare missense variant in claudin-2 have marked hypercalciuria and kidney stone disease. Our findings indicate that claudin-2 is a key regulator of calcium excretion and a potential target for therapies to prevent kidney stones.
Collapse
Affiliation(s)
- Joshua N Curry
- Department of Molecular and Integrative Physiology and
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew Saurette
- Department of Pediatrics and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Masomeh Askari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Lei Pei
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Michael B Filla
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Megan R Beggs
- Department of Pediatrics and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Sn Rowe
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Timothy Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Andre J Sommer
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - R Todd Alexander
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Alan Sl Yu
- Department of Molecular and Integrative Physiology and
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| |
Collapse
|
22
|
Plain A, Pan W, O’Neill D, Ure M, Beggs MR, Farhan M, Dimke H, Cordat E, Alexander RT. Claudin-12 Knockout Mice Demonstrate Reduced Proximal Tubule Calcium Permeability. Int J Mol Sci 2020; 21:ijms21062074. [PMID: 32197346 PMCID: PMC7139911 DOI: 10.3390/ijms21062074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 01/13/2023] Open
Abstract
The renal proximal tubule (PT) is responsible for the reabsorption of approximately 65% of filtered calcium, primarily via a paracellular pathway. However, which protein(s) contribute this paracellular calcium pore is not known. The claudin family of tight junction proteins confers permeability properties to an epithelium. Claudin-12 is expressed in the kidney and when overexpressed in cell culture contributes paracellular calcium permeability (PCa). We therefore examined claudin-12 renal localization and its contribution to tubular paracellular calcium permeability. Claudin-12 null mice (KO) were generated by replacing the single coding exon with β-galactosidase from Escherichia coli. X-gal staining revealed that claudin-12 promoter activity colocalized with aquaporin-1, consistent with the expression in the PT. PTs were microperfused ex vivo and PCa was measured. PCa in PTs from KO mice was significantly reduced compared with WT mice. However, urinary calcium excretion was not different between genotypes, including those on different calcium containing diets. To assess downstream compensation, we examined renal mRNA expression. Claudin-14 expression, a blocker of PCa in the thick ascending limb (TAL), was reduced in the kidney of KO animals. Thus, claudin-12 is expressed in the PT, where it confers paracellular calcium permeability. In the absence of claudin-12, reduced claudin-14 expression in the TAL may compensate for reduced PT calcium reabsorption.
Collapse
Affiliation(s)
- Allein Plain
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Wanling Pan
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Deborah O’Neill
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Megan Ure
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Megan R. Beggs
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
- The Women’s & Children’s Health Research Institute, 11405-87 Avenue, Edmonton, AB T6G 1C9 Canada;
| | - Maikel Farhan
- The Women’s & Children’s Health Research Institute, 11405-87 Avenue, Edmonton, AB T6G 1C9 Canada;
- Department of Pediatrics, The University of Alberta, Edmonton, AB T6J 2R7, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Emmanuelle Cordat
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - R. Todd Alexander
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
- The Women’s & Children’s Health Research Institute, 11405-87 Avenue, Edmonton, AB T6G 1C9 Canada;
- Department of Pediatrics, The University of Alberta, Edmonton, AB T6J 2R7, Canada
- Correspondence: ; Tel.: +1-(780)-248-5560
| |
Collapse
|
23
|
Prot-Bertoye C, Houillier P. Claudins in Renal Physiology and Pathology. Genes (Basel) 2020; 11:genes11030290. [PMID: 32164158 PMCID: PMC7140793 DOI: 10.3390/genes11030290] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins are integral proteins expressed at the tight junctions of epithelial and endothelial cells. In the mammalian kidney, every tubular segment express a specific set of claudins that give to that segment unique properties regarding permeability and selectivity of the paracellular pathway. So far, 3 claudins (10b, 16 and 19) have been causally traced to rare human syndromes: variants of CLDN10b cause HELIX syndrome and variants of CLDN16 or CLDN19 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The review summarizes our current knowledge on the physiology of mammalian tight junctions and paracellular ion transport, as well as on the role of the 3 above-mentioned claudins in health and disease. Claudin 14, although not having been causally linked to any rare renal disease, is also considered, because available evidence suggests that it may interact with claudin 16. Some single-nucleotide polymorphisms of CLDN14 are associated with urinary calcium excretion and/or kidney stones. For each claudin considered, the pattern of expression, the function and the human syndrome caused by pathogenic variants are described.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
24
|
Bankir L, Figueres L, Prot-Bertoye C, Bouby N, Crambert G, Pratt JH, Houillier P. Medullary and cortical thick ascending limb: similarities and differences. Am J Physiol Renal Physiol 2020; 318:F422-F442. [DOI: 10.1152/ajprenal.00261.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thick ascending limb of the loop of Henle (TAL) is the first segment of the distal nephron, extending through the whole outer medulla and cortex, two regions with different composition of the peritubular environment. The TAL plays a critical role in the control of NaCl, water, acid, and divalent cation homeostasis, as illustrated by the consequences of the various monogenic diseases that affect the TAL. It delivers tubular fluid to the distal convoluted tubule and thereby affects the function of the downstream tubular segments. The TAL is commonly considered as a whole. However, many structural and functional differences exist between its medullary and cortical parts. The present review summarizes the available data regarding the similarities and differences between the medullary and cortical parts of the TAL. Both subsegments reabsorb NaCl and have high Na+-K+-ATPase activity and negligible water permeability; however, they express distinct isoforms of the Na+-K+-2Cl−cotransporter at the apical membrane. Ammonia and bicarbonate are mostly reabsorbed in the medullary TAL, whereas Ca2+and Mg2+are mostly reabsorbed in the cortical TAL. The peptidic hormone receptors controlling transport in the TAL are not homogeneously expressed along the cortical and medullary TAL. Besides this axial heterogeneity, structural and functional differences are also apparent between species, which underscores the link between properties and role of the TAL under various environments.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Lucile Figueres
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
| | - Nadine Bouby
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - J. Howard Pratt
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
| |
Collapse
|
25
|
Milatz S. A Novel Claudinopathy Based on Claudin-10 Mutations. Int J Mol Sci 2019; 20:ijms20215396. [PMID: 31671507 PMCID: PMC6862131 DOI: 10.3390/ijms20215396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Claudins are key components of the tight junction, sealing the paracellular cleft or composing size-, charge- and water-selective paracellular channels. Claudin-10 occurs in two major isoforms, claudin-10a and claudin-10b, which constitute paracellular anion or cation channels, respectively. For several years after the discovery of claudin-10, its functional relevance in men has remained elusive. Within the past two years, several studies appeared, describing patients with different pathogenic variants of the CLDN10 gene. Patients presented with dysfunction of kidney, exocrine glands and skin. This review summarizes and compares the recently published studies reporting on a novel autosomal-recessive disorder based on claudin-10 mutations.
Collapse
Affiliation(s)
- Susanne Milatz
- Institute of Physiology, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.
| |
Collapse
|
26
|
King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O'Neill D, Plain A, Greasley PJ, Jönsson-Rylander AC, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 2019; 10:10/456/eaam6474. [PMID: 30158152 DOI: 10.1126/scitranslmed.aam6474] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
Hyperphosphatemia is common in patients with chronic kidney disease and is increasingly associated with poor clinical outcomes. Current management of hyperphosphatemia with dietary restriction and oral phosphate binders often proves inadequate. Tenapanor, a minimally absorbed, small-molecule inhibitor of the sodium/hydrogen exchanger isoform 3 (NHE3), acts locally in the gastrointestinal tract to inhibit sodium absorption. Because tenapanor also reduces intestinal phosphate absorption, it may have potential as a therapy for hyperphosphatemia. We investigated the mechanism by which tenapanor reduces gastrointestinal phosphate uptake, using in vivo studies in rodents and translational experiments on human small intestinal stem cell-derived enteroid monolayers to model ion transport physiology. We found that tenapanor produces its effect by modulating tight junctions, which increases transepithelial electrical resistance (TEER) and reduces permeability to phosphate, reducing paracellular phosphate absorption. NHE3-deficient monolayers mimicked the phosphate phenotype of tenapanor treatment, and tenapanor did not affect TEER or phosphate flux in the absence of NHE3. Tenapanor also prevents active transcellular phosphate absorption compensation by decreasing the expression of NaPi2b, the major active intestinal phosphate transporter. In healthy human volunteers, tenapanor (15 mg, given twice daily for 4 days) increased stool phosphorus and decreased urinary phosphorus excretion. We determined that tenapanor reduces intestinal phosphate absorption predominantly through reduction of passive paracellular phosphate flux, an effect mediated exclusively via on-target NHE3 inhibition.
Collapse
Affiliation(s)
| | | | - Ying He
- Ardelyx Inc., Fremont, CA 94555, USA
| | | | - Ji Wang
- Ardelyx Inc., Fremont, CA 94555, USA
| | | | | | | | - Deng Pan
- Ardelyx Inc., Fremont, CA 94555, USA
| | | | | | | | | | | | | | - Debbie O'Neill
- University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Allein Plain
- University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Peter J Greasley
- Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | | | - Daniel Karlsson
- Bioscience, CVMD, IMED Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | - Margareta Behrendt
- Bioscience, CVMD, IMED Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | - Maria Strömstedt
- Bioscience, CVMD, IMED Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | | | - Thomas Knöpfel
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | - Eva M Pastor Arroyo
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | - Joanne Marks
- Department of Neuroscience, Physiology and Pharmacology, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Mark Donowitz
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
27
|
Ziemens A, Sonntag SR, Wulfmeyer VC, Edemir B, Bleich M, Himmerkus N. Claudin 19 Is Regulated by Extracellular Osmolality in Rat Kidney Inner Medullary Collecting Duct Cells. Int J Mol Sci 2019; 20:ijms20184401. [PMID: 31500238 PMCID: PMC6770061 DOI: 10.3390/ijms20184401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
The inner medullary collecting duct (IMCD) is subject to severe changes in ambient osmolality and must either allow water transport or be able to seal the lumen against a very high osmotic pressure. We postulate that the tight junction protein claudin-19 is expressed in IMCD and that it takes part in epithelial adaptation to changing osmolality at different functional states. Presence of claudin-19 in rat IMCD was investigated by Western blotting and immunofluorescence. Primary cell culture of rat IMCD cells on permeable filter supports was performed under different osmotic culture conditions and after stimulation by antidiuretic hormone (AVP). Electrogenic transepithelial transport properties were measured in Ussing chambers. IMCD cells cultivated at 300 mosm/kg showed high transepithelial resistance, a cation selective paracellular pathway and claudin-19 was mainly located in the tight junction. Treatment by AVP increased cation selectivity but did not alter transepithelial resistance or claudin-19 subcellular localization. In contrast, IMCD cells cultivated at 900 mosm/kg had low transepithelial resistance, anion selectivity, and claudin-19 was relocated from the tight junctions to intracellular vesicles. The data shows osmolality-dependent transformation of IMCD epithelium from tight and sodium-transporting to leaky, with claudin-19 expression in the tight junction associated to tightness and cation selectivity under low osmolality.
Collapse
Affiliation(s)
- Annalisa Ziemens
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Svenja R Sonntag
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Vera C Wulfmeyer
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Bayram Edemir
- Department of Internal Medicine IV, Hematology and Oncology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Markus Bleich
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| |
Collapse
|
28
|
Lee JJ, Liu X, O'Neill D, Beggs MR, Weissgerber P, Flockerzi V, Chen XZ, Dimke H, Alexander RT. Activation of the calcium sensing receptor attenuates TRPV6-dependent intestinal calcium absorption. JCI Insight 2019; 5:128013. [PMID: 31013259 DOI: 10.1172/jci.insight.128013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasma calcium (Ca2+) is maintained by amending the release of parathyroid hormone and through direct effects of the Ca2+ sensing receptor (CaSR) in the renal tubule. Combined, these mechanisms alter intestinal Ca2+ absorption by modulating 1,25-dihydroxy vitamin D3 production, bone resorption, and renal Ca2+ excretion. The CaSR is a therapeutic target in the treatment of secondary hyperparathyroidism and hypocalcemia a common complication of calcimimetic therapy. The CaSR is also expressed in intestinal epithelium, however, a direct role in regulating local intestinal Ca2+ absorption is unknown. Chronic CaSR activation decreased expression of genes involved in Ca2+ absorption. In Ussing chambers, increasing extracellular Ca2+ or basolateral application of the calcimimetic cinacalcet decreased net Ca2+ absorption across intestinal preparations acutely. Conversely, Ca2+ absorption increased with decreasing extracellular Ca2+ concentration. These responses were absent in mice expressing a non-functional TRPV6, TRPV6D541A. Cinacalcet also attenuated Ca2+ fluxes through TRPV6 in Xenopus oocytes when co-expressed with the CaSR. Moreover, the phospholipase C inhibitor, U73122, prevented cinacalcet-mediated inhibition of Ca2+ flux. These results reveal a regulatory pathway whereby activation of the CaSR in the basolateral membrane of the intestine directly attenuates local Ca2+ absorption via TRPV6 to prevent hypercalcemia and help explain how calcimimetics induce hypocalcemia.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Xiong Liu
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie O'Neill
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Petra Weissgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Hamburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Hamburg, Germany
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Diabetes-induced hypomagnesemia is not modulated by metformin treatment in mice. Sci Rep 2019; 9:1770. [PMID: 30742025 PMCID: PMC6370757 DOI: 10.1038/s41598-018-38351-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
Approximately 30% of patients with type 2 diabetes mellitus (T2D) have hypomagnesemia (blood magnesium (Mg2+) concentration <0.7 mmol/L). In T2D patients, treatment with metformin is associated with reduced blood Mg2+ levels. To investigate how T2D and metformin affect Mg2+ homeostasis db/m and db/db mice were treated with metformin or placebo. Mice were housed in metabolic cages to measure food and water intake, and to collect urine and feces. Serum and urinary Mg2+ concentrations were determined and mRNA expression of magnesiotropic genes was determined in kidney and distal colon using RT-qPCR. Db/db mice had significantly lower serum Mg2+ levels than db/m mice. Mild hypermagnesuria was observed in the db/db mice at two weeks, but not at four weeks. Metformin-treatment had no effect on the serum Mg2+ concentration and on the urinary Mg2+ excretion. Both in kidney and distal colon of db/db mice, there was a compensatory upregulation in the mRNA expression of magnesiotropic genes, such as transient receptor potential melastatin 6 (Trpm6), whereas metformin treatment did not affect gene expression levels. In conclusion, we show that T2D causes hypomagnesemia and that metformin treatment has no effect on Mg2+ homeostasis in mice.
Collapse
|
30
|
|
31
|
Kompatscher A, de Baaij JHF, Aboudehen K, Farahani S, van Son LHJ, Milatz S, Himmerkus N, Veenstra GC, Bindels RJM, Hoenderop JGJ. Transcription factor HNF1β regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. Am J Physiol Renal Physiol 2018; 315:F27-F35. [DOI: 10.1152/ajprenal.00601.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations in hepatocyte nuclear factor 1β (HNF1β) cause autosomal dominant tubulointerstitial kidney disease (ADTKD-HNF1β), and patients tend to develop renal cysts, maturity-onset diabetes of the young (MODY), and suffer from electrolyte disturbances, including hypomagnesemia, hypokalemia, and hypocalciuria. Previous HNF1β research focused on the renal distal convoluted tubule (DCT) to elucidate the ADTKD-HNF1β electrolyte phenotype, although 70% of Mg2+ is reabsorbed in the thick ascending limb of Henle’s loop (TAL). An important regulator of Mg2+ reabsorption in the TAL is the calcium-sensing receptor (CaSR). This study used several methods to elucidate the role of HNF1β in electrolyte reabsorption in the TAL. HNF1β ChIP-seq data revealed a conserved HNF1β binding site in the second intron of the CaSR gene. Luciferase-promoter assays displayed a 5.8-fold increase in CaSR expression when HNF1β was present. Expression of the HNF1β p.Lys156Glu mutant, which prevents DNA binding, abolished CaSR expression. Hnf1β knockdown in an immortalized mouse kidney TAL cell line (MKTAL) reduced expression of the CaSR and Cldn14 (claudin 14) by 56% and 48%, respectively, while Cldn10b expression was upregulated 5.0-fold. These results were confirmed in a kidney-specific HNF1β knockout mouse, which exhibited downregulation of the Casr by 81%. Cldn19 and Cldn10b expression levels were also decreased by 37% and 83%, respectively, whereas Cldn3 was upregulated by 4.6-fold. In conclusion, HNF1β is a transcriptional activator of the CaSR. Consequently, patients with HNF1β mutations may have reduced CaSR activity in the kidney, which could explain cyst progression and hyperabsorption of Ca2+ and Mg2+ in the TAL resulting in hypocalciuria.
Collapse
Affiliation(s)
- Andreas Kompatscher
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karam Aboudehen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Shayan Farahani
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Lex H. J. van Son
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Milatz
- Institute of Physiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gertjan C. Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Dimke H, Schnermann J. Axial and cellular heterogeneity in electrolyte transport pathways along the thick ascending limb. Acta Physiol (Oxf) 2018; 223:e13057. [PMID: 29476644 DOI: 10.1111/apha.13057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/27/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022]
Abstract
The thick ascending limb (TAL) extends from the border of the inner medulla to the renal cortex, thus ascending through regions with wide differences in tissue solute and electrolyte concentrations. Structural and functional differences between TAL cells in the medulla (mTAL) and the cortex (cTAL) would therefore be useful to adapt TAL transport function to a changing external fluid composition. While mechanisms common to all TAL cells play a central role in the reclamation of about 25% of the NaCl filtered by the kidney, morphological features, Na+ / K+ -ATPase activity, NKCC2 splicing and phosphorylation do vary between segments and cells. The TAL contributes to K+ homeostasis and TAL cells with high or low basolateral K+ conductances have been identified which may be involved in K+ reabsorption and secretion respectively. Although transport rates for HCO3- do not differ between mTAL and cTAL, divergent axial and cellular expression of H+ transport proteins in TAL have been documented. The reabsorption of the divalent cations Ca2+ and Mg2+ is highest in cTAL and paralleled by differences in divalent cation permeability and the expression of select claudins. Morphologically, two cell types with different cell surface phenotypes have been described that still need to be linked to specific functional characteristics. The unique external environment and its change along the longitudinal axis require an axial functional heterogeneity for the TAL to optimally participate in conserving electrolyte homeostasis. Despite substantial progress in understanding TAL function, there are still considerable knowledge gaps that are just beginning to become bridged.
Collapse
Affiliation(s)
- H. Dimke
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - J. Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases; Bethesda MD USA
| |
Collapse
|
33
|
Deletion of claudin-10 rescues claudin-16–deficient mice from hypomagnesemia and hypercalciuria. Kidney Int 2018; 93:580-588. [DOI: 10.1016/j.kint.2017.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 08/13/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022]
|
34
|
Sonntag SR, Ziemens A, Wulfmeyer VC, Milatz S, Bleich M, Himmerkus N. Diuretic state affects ascending thin limb tight junctions. Am J Physiol Renal Physiol 2018; 314:F190-F195. [PMID: 28971992 DOI: 10.1152/ajprenal.00419.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nephron segments in the inner medulla are part of the urine concentrating mechanism. Depending on the diuretic state, they are facing a large range of extracellular osmolality. We investigated whether water homeostasis affects tubular transport and permeability properties in inner medullary descending thin limb (IMdTL) and ascending thin limb (IMaTL). Three experimental groups of rats under different diuretic states were investigated on metabolic cages: waterload, furosemide-induced diuresis, and control (antidiuresis). Urine production and osmolalities reflected the 3-day treatment. To functionally investigate tubular epithelial properties, we performed experiments in freshly isolated inner medullary thin limbs from these animals. Tubular segments were acutely dissected and investigated for trans- and paracellular properties by in vitro perfusion and electrophysiological analysis. IMdTL and IMaTL were distinguished by morphological criteria. We confirmed absence of transepithelial electrogenic transport in thin limbs. Although diffusion potential measurements showed no differences between treatments in IMdTLs, we observed increased paracellular cation selectivity under waterload in IMaTLs. NaCl diffusion potential was -5.64 ± 1.93 mV under waterload, -1.99 ± 1.72 mV under furosemide-induced diuresis, and 0.27 ± 0.40 mV under control. The corresponding permeability ratio PNa/Cl was 1.53 ± 0.21 (waterload), 1.22 ± 0.18 (furosemide-induced diuresis), and 0.99 ± 0.02 (control), respectively. Claudins are main constituents of the tight junction responsible for paracellular selectivity; however, immunofluorescence did not show qualitative differences in claudin 4, 10, and 16 localization. Our results show that IMaTLs change tight junction properties in response to diuretic state to allow adaptation of NaCl reabsorption.
Collapse
Affiliation(s)
| | - Annalisa Ziemens
- Institute of Physiology, Christian Albrechts University of Kiel , Kiel , Germany
| | | | - Susanne Milatz
- Institute of Physiology, Christian Albrechts University of Kiel , Kiel , Germany
| | - Markus Bleich
- Institute of Physiology, Christian Albrechts University of Kiel , Kiel , Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian Albrechts University of Kiel , Kiel , Germany
| |
Collapse
|
35
|
Hinze C, Ruffert J, Walentin K, Himmerkus N, Nikpey E, Tenstad O, Wiig H, Mutig K, Yurtdas ZY, Klein JD, Sands JM, Branchi F, Schumann M, Bachmann S, Bleich M, Schmidt-Ott KM. GRHL2 Is Required for Collecting Duct Epithelial Barrier Function and Renal Osmoregulation. J Am Soc Nephrol 2017; 29:857-868. [PMID: 29237740 DOI: 10.1681/asn.2017030353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022] Open
Abstract
Collecting ducts make up the distal-most tubular segments of the kidney, extending from the cortex, where they connect to the nephron proper, into the medulla, where they release urine into the renal pelvis. During water deprivation, body water preservation is ensured by the selective transepithelial reabsorption of water into the hypertonic medullary interstitium mediated by collecting ducts. The collecting duct epithelium forms tight junctions composed of barrier-enforcing claudins and exhibits a higher transepithelial resistance than other segments of the renal tubule exhibit. However, the functional relevance of this strong collecting duct epithelial barrier is unresolved. Here, we report that collecting duct-specific deletion of an epithelial transcription factor, grainyhead-like 2 (GRHL2), in mice led to reduced expression of tight junction-associated barrier components, reduced collecting duct transepithelial resistance, and defective renal medullary accumulation of sodium and other osmolytes. In vitro, Grhl2-deficient collecting duct cells displayed increased paracellular flux of sodium, chloride, and urea. Consistent with these effects, Grhl2-deficient mice had diabetes insipidus, produced dilute urine, and failed to adequately concentrate their urine after water restriction, resulting in susceptibility to prerenal azotemia. These data indicate a direct functional link between collecting duct epithelial barrier characteristics, which appear to prevent leakage of interstitial osmolytes into urine, and body water homeostasis.
Collapse
Affiliation(s)
- Christian Hinze
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Departments of Nephrology and Medical Intensive Care
| | - Janett Ruffert
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Urologic Research, Berlin, Germany
| | - Katharina Walentin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Elham Nikpey
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway; and
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Zeliha Yesim Yurtdas
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Urologic Research, Berlin, Germany
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Federica Branchi
- Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin, Berlin, Germany
| | - Michael Schumann
- Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Markus Bleich
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; .,Departments of Nephrology and Medical Intensive Care
| |
Collapse
|
36
|
Bongers EMHF, Shelton LM, Milatz S, Verkaart S, Bech AP, Schoots J, Cornelissen EAM, Bleich M, Hoenderop JGJ, Wetzels JFM, Lugtenberg D, Nijenhuis T. A Novel Hypokalemic-Alkalotic Salt-Losing Tubulopathy in Patients with CLDN10 Mutations. J Am Soc Nephrol 2017; 28:3118-3128. [PMID: 28674042 DOI: 10.1681/asn.2016080881] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/11/2017] [Indexed: 11/03/2022] Open
Abstract
Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.
Collapse
Affiliation(s)
| | | | - Susanne Milatz
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | | | | | - Markus Bleich
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
37
|
Bleich M, Wulfmeyer VC, Himmerkus N, Milatz S. Heterogeneity of tight junctions in the thick ascending limb. Ann N Y Acad Sci 2017. [DOI: 10.1111/nyas.13400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Markus Bleich
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
| | - Vera C. Wulfmeyer
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
- Department of Nephrology and Hypertension; Hannover Medical School; Hannover Germany
| | - Nina Himmerkus
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
| | - Susanne Milatz
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
| |
Collapse
|
38
|
Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol 2017; 312:F998-F1015. [DOI: 10.1152/ajprenal.00032.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.
Collapse
Affiliation(s)
- R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Beggs MR, Alexander RT. Intestinal absorption and renal reabsorption of calcium throughout postnatal development. Exp Biol Med (Maywood) 2017; 242:840-849. [PMID: 28346014 DOI: 10.1177/1535370217699536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis.
Collapse
Affiliation(s)
- Megan R Beggs
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - R Todd Alexander
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
40
|
ILDR1 is important for paracellular water transport and urine concentration mechanism. Proc Natl Acad Sci U S A 2017; 114:5271-5276. [PMID: 28461473 DOI: 10.1073/pnas.1701006114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Whether the tight junction is permeable to water remains highly controversial. Here, we provide evidence that the tricellular tight junction is important for paracellular water permeation and that Ig-like domain containing receptor 1 (ILDR1) regulates its permeability. In the mouse kidney, ILDR1 is localized to tricellular tight junctions of the distal tubules. Genetic knockout of Ildr1 in the mouse kidney causes polyuria and polydipsia due to renal concentrating defects. Microperfusion of live renal distal tubules reveals that they are impermeable to water in normal animals but become highly permeable to water in Ildr1 knockout animals whereas paracellular ionic permeabilities in the Ildr1 knockout mouse renal tubules are not affected. Vasopressin cannot correct paracellular water loss in Ildr1 knockout animals despite normal effects on the transcellular aquaporin-2-dependent pathway. In cultured renal epithelial cells normally lacking the expression of Ildr1, overexpression of Ildr1 significantly reduces the paracellular water permeability. Together, our study provides a mechanism of how cells transport water and shows how such a mechanism may be exploited as a therapeutic approach to maintain water homeostasis.
Collapse
|
41
|
Muto S. Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol 2017; 312:F9-F24. [DOI: 10.1152/ajprenal.00204.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/30/2022] Open
Abstract
The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport.
Collapse
Affiliation(s)
- Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
42
|
Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. Proc Natl Acad Sci U S A 2016; 114:E219-E227. [PMID: 28028216 DOI: 10.1073/pnas.1611684114] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The thick ascending limb (TAL) of Henle's loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2.
Collapse
|
43
|
Milatz S, Breiderhoff T. One gene, two paracellular ion channels—claudin-10 in the kidney. Pflugers Arch 2016; 469:115-121. [DOI: 10.1007/s00424-016-1921-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
|
44
|
Himmerkus N, Plain A, Marques RD, Sonntag SR, Paliege A, Leipziger J, Bleich M. AVP dynamically increases paracellular Na+ permeability and transcellular NaCl transport in the medullary thick ascending limb of Henle’s loop. Pflugers Arch 2016; 469:149-158. [DOI: 10.1007/s00424-016-1915-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023]
|