1
|
Chaloemthanetphong A, Choowongkomon K, Worrapitirungsi W, Thangsiriskul N, Sathirapatya T, Sukawutthiya P, Noh H, Kanhar AA, Varrathyarom P, Lertparinyaphorn I, Natthasumon N, Bongsebandhu-Phubhakdi S, Auvichayapat V, Vongpaisarnsin K. SCN5A missense variants and their contribution to deaths in Sudden Unexplained Nocturnal Death Syndrome (SUNDS). Forensic Sci Int Genet 2025; 76:103237. [PMID: 39977965 DOI: 10.1016/j.fsigen.2025.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Sudden Unexplained Nocturnal Death Syndrome (SUNDS), locally known as Lai-tai in Thailand, leads to sudden death during sleep in otherwise healthy young males. Cardiac arrhythmias, including Brugada syndrome (BrS) and Long QT syndrome (LQTS), are often implicated, with mutations in the SCN5A gene, encoding the Nav1.5 sodium channel, strongly linked to both conditions. This study characterized postmortem SUNDS cases in Thailand and analyzed SCN5A gene variants using whole exome sequencing (WES) and molecular modeling. Forensic autopsies were performed on 98 SUNDS victims from August 2020 to February 2023. WES was applied to 98 SUNDS-related genes, filtering variants based on dbNSFP annotations and public databases like the 1000 Genomes Project. Three SCN5A variants (A665S, R179Q, and R965C) were detected in five cases (approximate for 5 %). One case of A665S, which was reported for the first time in Thailand, was discovered. The R179Q variant was identified in an additional case, but it did not have a substantial electrostatic surface impact on Nav1.5. In contrast, the R965C variant, which is frequently associated with BrS, was discovered in three cases (approximate for 3 %). These results imply that SCN5A variants are involved in the pathogenesis of SUNDS and may provide valuable genetic markers for the purpose of diagnosis and prevention.
Collapse
Affiliation(s)
- Aummarin Chaloemthanetphong
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Wikanda Worrapitirungsi
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattachai Thangsiriskul
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hasnee Noh
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashfaque Ahmed Kanhar
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pagparpat Varrathyarom
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand
| | - Irin Lertparinyaphorn
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Saknan Bongsebandhu-Phubhakdi
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vichaya Auvichayapat
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
2
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
3
|
Vašků A, Novotný T, Špinar J. Polymorphic Variants of SCN5A Gene (rs41312433 and rs1805124) Associated with Coronary Artery Affliction in Patients with Severe Arrhythmias. Genes (Basel) 2024; 15:200. [PMID: 38397190 PMCID: PMC10887539 DOI: 10.3390/genes15020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Several mutations in this gene for the α subunit of the cardiac sodium channel have been identified in a heterogeneous subset of cardiac rhythm syndromes, including Brugada syndrome, progressive cardiac conduction defect, sick sinus node syndrome, atrial fibrillation and dilated cardiomyopathy. The aim of our study was to associate some SCN5A polymorphic variants directly with confirmed coronary stenoses in patients with non-LQTS ventricular fibrillation/flutter treated by an implantable cardioverter defibrillator. MATERIALS AND METHODS A group of 32 unrelated individuals, aged 63 ± 12 years, was included in the study. All the patients were examined, diagnosed and treated with an implantable cardioverter defibrillator at the Department of Internal Cardiology Medicine, Faculty Hospital Brno. The control group included 87 persons of similar age without afflicted coronary circulation, which was confirmed coronagraphically. Genomic DNA was extracted from samples of peripheral blood according to the standard protocol. Two SCN5A polymorphisms-IVS9-3C/A (rs41312433) and A1673G (rs1805124, H558R)-were examined in association with coronary artery stenosis in the patients. RESULTS In the case-control study, no significant differences in genotype distribution/allelic frequencies were observed for IVS9-3c>a and A1673G gene polymorphisms between patients with severe arrhythmias and healthy persons. The distribution of SCN5A double genotypes was not significantly different among different types of arrhythmias according to their ejection fraction in arrhythmic patients (p = 0.396). The ventricular arrhythmias with an ejection fraction below 40% were found to be 10.67 times more frequent in patients with multiple coronary stenosis with clinically valid sensitivity, specificity and power tests. In the genotype-phenotype study, we observed a significant association of both SCN5A polymorphisms with the stenosis of coronary vessels in the patients with severe arrhythmia. The double genotype of polymorphisms IVS9-3C/A together with A1673G (CCAA) as well as their simple genotypes were associated with significant multiple stenosis of coronary arteries (MVS) with high sensitivity and specificity (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.70; specificity 0.682; power test 0.359) Moreover, when a concrete stenotic coronary artery was associated with SCN5A genotypes, the CCAA double genotype was observed to be five times more frequent in patients with significant stenosis in the right coronary artery (RCA) compared to those without affliction of this coronary artery (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.682; specificity 0.700; power test 0.359). The CCAA genotype was also more frequent in patients without RCA affliction with MVS (p = 0.008); in patients with ACD affliction but without MVS (p = 0.008); and in patients with both ACD affliction and MVS compared to those without ACD affliction and MVS (p = 0.005). CONCLUSIONS Our study presents a highly sensitive and specific association of two polymorphisms in SCN5A with significant coronary artery stenoses in patients with potentially fatal ventricular arrhythmias. At the same time, these polymorphisms were not associated with arrhythmias themselves. Thus, SCN5A gene polymorphic variants may form a part of germ cell gene predisposition to ischemia.
Collapse
Affiliation(s)
- Anna Vašků
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomáš Novotný
- Department of Internal Medicine and Cardiology, University Hospital Brno, Masaryk University, 62500 Brno, Czech Republic;
| | - Jindřich Špinar
- First Department of Internal Medicine—Cardioangiology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, 60200 Brno, Czech Republic;
| |
Collapse
|
4
|
Ma JG, O’Neill MJ, Richardson E, Thomson KL, Ingles J, Muhammad A, Solus JF, Davogustto G, Anderson KC, Benjamin Shoemaker M, Stergachis AB, Floyd BJ, Dunn K, Parikh VN, Chubb H, Perrin MJ, Roden DM, Vandenberg JI, Ng CA, Glazer AM. Multi-site validation of a functional assay to adjudicate SCN5A Brugada Syndrome-associated variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.19.23299592. [PMID: 38196587 PMCID: PMC10775332 DOI: 10.1101/2023.12.19.23299592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Brugada Syndrome (BrS) is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in the cardiac sodium channel gene, SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging and ~79% of SCN5A missense variants in ClinVar are currently classified as Variants of Uncertain Significance (VUS). An in vitro SCN5A-BrS automated patch clamp assay was generated for high-throughput functional studies of NaV1.5. The assay was independently studied at two separate research sites - Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute - revealing strong correlations, including peak INa density (R2=0.86). The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. The assay accurately distinguished benign controls (24/25) from pathogenic controls (23/24). Odds of Pathogenicity values derived from the experimental results yielded 0.042 for normal function (BS3 criterion) and 24.0 for abnormal function (PS3 criterion), resulting in up to strong evidence for both ACMG criteria. The calibrated assay was then used to study SCN5A VUS observed in four families with BrS and other arrhythmia phenotypes associated with SCN5A loss-of-function. The assay revealed loss-of-function for three of four variants, enabling reclassification to likely pathogenic. This validated APC assay provides clinical-grade functional evidence for the reclassification of current VUS and will aid future SCN5A-BrS variant classification.
Collapse
Affiliation(s)
- Joanne G. Ma
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | | | - Ebony Richardson
- Clinical Genomics Laboratory, Centre for Population Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia and Murdoch Children Research Institute, Melbourne, Australia
| | - Kate L. Thomson
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Jodie Ingles
- Clinical Genomics Laboratory, Centre for Population Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia and Murdoch Children Research Institute, Melbourne, Australia
| | - Ayesha Muhammad
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joseph F. Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanni Davogustto
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine C. Anderson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Benjamin Shoemaker
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew B. Stergachis
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Brendan J. Floyd
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyla Dunn
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria N. Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry Chubb
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark J. Perrin
- Department of Genomic Medicine, Royal Melbourne Hospital, Victoria, Australia
| | - Dan M. Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie I. Vandenberg
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Andrew M. Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Lee S, Chung CTS, Radford D, Chou OHI, Lee TTL, Ng ZMW, Roever L, Rajan R, Bazoukis G, Letsas KP, Zeng S, Liu FZ, Wong WT, Liu T, Tse G. Secular trends of health care resource utilization and costs between Brugada syndrome and congenital long QT syndrome: A territory-wide study. Clin Cardiol 2023; 46:1194-1201. [PMID: 37489866 PMCID: PMC10577540 DOI: 10.1002/clc.24102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Health care resource utilization (HCRU) and costs are important metrics of health care burden, but they have rarely been explored in the setting of cardiac ion channelopathies. HYPOTHESIS This study tested the hypothesis that attendance-related HCRUs and costs differed between patients with Brugada syndrome (BrS) and congenital long QT syndrome (LQTS). METHODS This was a retrospective cohort study of consecutive BrS and LQTS patients at public hospitals or clinics in Hong Kong, China. HCRUs and costs (in USD) for Accident and Emergency (A&E), inpatient, general outpatient and specialist outpatient attendances were analyzed between 2001 and 2019 at the cohort level. Comparisons were made using incidence rate ratios (IRRs [95% confidence intervals]). RESULTS Over the 19-year period, 516 BrS (median age of initial presentation: 51 [interquartile range: 38-61] years, 92% male) and 134 LQTS (median age of initial presentation: 21 [9-44] years, 32% male) patients were included. Compared to LQTS patients, BrS patients had lower total costs (2 008 126 [2 007 622-2 008 629] vs. 2 343 864 [2 342 828-2 344 900]; IRR: 0.857 [0.855-0.858]), higher costs for A&E attendances (83 113 [83 048-83 177] vs. 70 604 [70 487-70 721]; IRR: 1.177 [1.165-1.189]) and general outpatient services (2,176 [2,166-2,187] vs. 921 [908-935]; IRR: 2.363 [2.187-2.552]), but lower costs for inpatient stay (1 391 624 [1 391 359-1 391 889] vs. 1 713 742 [1 713 166-1 714 319]; IRR: 0.812 [0.810-0.814]) and lower costs for specialist outpatient services (531 213 [531 049-531 376] vs. 558 597 [558268-558926]; IRR: 0.951 [0.947-0.9550]). CONCLUSIONS Overall, BrS patients consume 14% less health care resources compared to LQTS patients in terms of attendance costs. BrS patients require more A&E and general outpatient services, but less inpatient and specialist outpatient services than LQTS patients.
Collapse
Affiliation(s)
- Sharen Lee
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Cheuk To Skylar Chung
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Danny Radford
- Kent and Medway Medical SchoolUniversity of Kent and Canterbury Christ Church UniversityCanterburyKentUK
| | - Oscar Hou In Chou
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Teddy Tai Loy Lee
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Zita Man Wai Ng
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Leonardo Roever
- Department of Clinical ResearchFederal University of UberlandiaUberlandiaBrazil
| | - Rajesh Rajan
- Department of CardiologySabah Al Ahmed Cardiac CentreKuwait CityKuwait
| | - George Bazoukis
- Second Department of CardiologyEvangelismos General Hospital of AthensAthensGreece
| | | | - Shaoying Zeng
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangzhouChina
| | - Fang Zhou Liu
- Department of Cardiology, Atrial Fibrillation Center, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Wing Tak Wong
- State Key Laboratory of Agrobiotechnology (CUHK), School of Life SciencesChinese University of Hong KongHong KongChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Division of Natural Sciences, Kent and Medway Medical SchoolUniversity of KentCanterburyKentUK
| |
Collapse
|
6
|
Penttinen K, Prajapati C, Shah D, Rajan DK, Cherian RM, Swan H, Aalto-Setälä K. HiPSC-derived cardiomyocyte to model Brugada syndrome: both asymptomatic and symptomatic mutation carriers reveal increased arrhythmogenicity. BMC Cardiovasc Disord 2023; 23:208. [PMID: 37098502 PMCID: PMC10131315 DOI: 10.1186/s12872-023-03234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Brugada syndrome is an inherited cardiac arrhythmia disorder that is mainly associated with mutations of the cardiac voltage-gated sodium channel alpha subunit 5 (SCN5A) gene. The clinical symptoms include ventricular fibrillation and an increased risk of sudden cardiac death. Human-induced pluripotent stem cell (hiPSC) lines were derived from symptomatic and asymptomatic individuals carrying the R1913C mutation in the SCN5A gene. The present work aimed to observe the phenotype-specific differences in hiPSC-derived cardiomyocytes (CMs) obtained from symptomatic and asymptomatic mutation carriers. In this study, CM electrophysiological properties, beating abilities and calcium parameters were measured. Mutant CMs exhibited higher average sodium current densities than healthy CMs, but the differences were not statistically significant. Action potential durations were significantly shorter in CMs from the symptomatic individual, and a spike-and-dome morphology of action potential was exclusively observed in CMs from the symptomatic individual. More arrhythmias occurred in mutant CMs at single cell and cell aggregate levels compared with those observed in wild-type CMs. Moreover, there were no major differences in ionic currents or intracellular calcium dynamics between the CMs of asymptomatic and symptomatic individuals after the administration of adrenaline and flecainide.In conclusion, mutant CMs were more prone to arrhythmia than healthy CMs but did not explain why only one of the mutation carriers was symptomatic.
Collapse
Affiliation(s)
- Kirsi Penttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Chandra Prajapati
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland.
| | - Disheet Shah
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Dhanesh Kattipparambil Rajan
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Reeja Maria Cherian
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
| | - Heikki Swan
- Helsinki University Hospital, Helsinki, 00290, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33520, Finland
- Heart Hospital, Tampere University Hospital, Tampere, 33520, Finland
| |
Collapse
|
7
|
Melgari D, Calamaio S, Frosio A, Prevostini R, Anastasia L, Pappone C, Rivolta I. Automated Patch-Clamp and Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Synergistic Approach in the Study of Brugada Syndrome. Int J Mol Sci 2023; 24:ijms24076687. [PMID: 37047659 PMCID: PMC10095337 DOI: 10.3390/ijms24076687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.
Collapse
Affiliation(s)
- Dario Melgari
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Serena Calamaio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Anthony Frosio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Rachele Prevostini
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Ilaria Rivolta
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| |
Collapse
|
8
|
Li Y, Lang S, Akin I, Zhou X, El-Battrawy I. Brugada Syndrome: Different Experimental Models and the Role of Human Cardiomyocytes From Induced Pluripotent Stem Cells. J Am Heart Assoc 2022; 11:e024410. [PMID: 35322667 PMCID: PMC9075459 DOI: 10.1161/jaha.121.024410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Brugada syndrome (BrS) is an inherited and rare cardiac arrhythmogenic disease associated with an increased risk of ventricular fibrillation and sudden cardiac death. Different genes have been linked to BrS. The majority of mutations are located in the SCN5A gene, and the typical abnormal ECG is an elevation of the ST segment in the right precordial leads V1 to V3. The pathophysiological mechanisms of BrS were studied in different models, including animal models, heterologous expression systems, and human-induced pluripotent stem cell-derived cardiomyocyte models. Currently, only a few BrS studies have used human-induced pluripotent stem cell-derived cardiomyocytes, most of which have focused on genotype-phenotype correlations and drug screening. The combination of new technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR associated protein 9)-mediated genome editing and 3-dimensional engineered heart tissues, has provided novel insights into the pathophysiological mechanisms of the disease and could offer opportunities to improve the diagnosis and treatment of patients with BrS. This review aimed to compare different models of BrS for a better understanding of the roles of human-induced pluripotent stem cell-derived cardiomyocytes in current BrS research and personalized medicine at a later stage.
Collapse
Affiliation(s)
- Yingrui Li
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany
| | - Siegfried Lang
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim Akin
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Xiaobo Zhou
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research Southwest Medical University Luzhou Sichuan China.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany.,Department of Cardiology and Angiology Bergmannsheil Bochum Medical Clinic II Ruhr University Bochum Germany
| |
Collapse
|
9
|
Lou J, Chen H, Huang S, Chen P, Yu Y, Chen F. Update on risk factors and biomarkers of sudden unexplained cardiac death. J Forensic Leg Med 2022; 87:102332. [DOI: 10.1016/j.jflm.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
|
10
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
11
|
Korkosh VS, Zaytseva AK, Kostareva AA, Zhorov BS. Intersegment Contacts of Potentially Damaging Variants of Cardiac Sodium Channel. Front Pharmacol 2021; 12:756415. [PMID: 34803699 PMCID: PMC8600069 DOI: 10.3389/fphar.2021.756415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Over 1,500 missense variants of sodium channel hNav1.5, which are reported in the ClinVar database, are associated with cardiac diseases. For most of the variants, the clinical significance is uncertain (VUS), not provided (NP), or has conflicting interpretations of pathogenicity (CIP). Reclassifying these variants as pathogenic/likely pathogenic (P/LP) variants is important for diagnosing genotyped patients. In our earlier work, several bioinformatics tools and paralogue annotation method consensually predicted that 74 VUS/NP/CIP variants of 54 wild type residues (set w54) are potentially damaging variants (PDVs). Atomic mechanisms underlying dysfunction of the PDVs are unknown. Here we employed a recent cryo-EM structure of the hNav1.5 channel with likely inactivated pore domain (PD) and activated voltage-sensing domains (VSDs), and ad hoc models of the closed and open PD and resting VSDs to explore intersegment contacts of w54 residues. We found that 44 residues from set w54 contact 84 residues with 118 disease missense variants. These include 104 VUS/NP/CIP variants, most of which are associated with the loss-of-function Brugada syndrome (BrS1) or gain-of-function long QT syndrome (LQT3). Matrix representation of the PDVs and their contact variants facilitated recognition of coupled mutations associated with the same disease. In particular, BrS1-associated coupled mutations, which disturb the P-loops region with the selectivity filter slow inactivation gate, would cause the channel dysfunction. Other likely causes of the channel dysfunction include coupled BrS1-associated variants within VSDs that would destabilize their activated states and coupled LQT3-associated variants, which would stabilize the open PD or activated VSDs. Our study proposes mechanisms of channel dysfunction for scores of BrS1- and LQT3-associated variants, confirms status for 82% of PDVs, and suggests damaging status for their contact variants, which are currently categorized as VUS/NP/CIP variants.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna A Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Shestak AG, Makarov LM, Komoliatova VN, Kolesnikova IV, Skorodumova LO, Generozov EV, Zaklyazminskaya EV. Coexistence of Two Rare Genetic Variants in Canonical and Non-canonical Exons of SCN5A: A Potential Source of Misinterpretation. Front Genet 2021; 12:722291. [PMID: 34552620 PMCID: PMC8450431 DOI: 10.3389/fgene.2021.722291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Primary cardiac channelopathies are a group of diseases wherein the role of DNA testing in aiding diagnosis and treatment-based decision-making is gaining increasing attention. However, in some cases, evaluating the pathogenicity of new variants is still challenging. We report an accurate multistage assessment of a rare genetic variant in the SCN5A gene using next-generation sequencing (NGS) techniques and Sanger sequencing. Female sportsman (14 years old) underwent genetic counseling and DNA testing due to QT interval prolongation registered during ECG Holter monitoring. Genetic testing of the proband was performed in two independent laboratories. Primary DNA testing was performed by WES using the Ion ProtonTM System. Target panel sequencing of 11 genes was performed using PGM Ion Torrent. Search for variants in non-canonical and canonical exons 6 was performed by Sanger sequencing. The cascade familial screening and control re-sequencing were provided for proband with identified genetic variant p.S216L (g.38655290G>A, NM_198056.2:c.647C>T, and rs41276525) in the canonical exon 6 of the SCN5A gene after receiving data from another laboratory. Control Sanger and NGS sequencing revealed the absence p.S216L in the canonical exon 6 and confirmed the presence of p.S216L (g.38655522G>A, c.647C>T, and rs201002736) in the non-canonical exon 6 of the SCN5A gene. The identified variant was re-interpreted. The non-canonical transcripts of the exon 6 of the SCN5A gene is poorly represented in cardiac tissue (gnomAD). The detected variant was found in proband's healthy mother. The correct interpretation of genetic data requires close cooperation between clinicians and researchers. It can help to avoid financial costs and stress for proband's and families.
Collapse
Affiliation(s)
- Anna G Shestak
- Russian National Research Center of Surgery Named After B.V. Petrovsky, Moscow, Russia
| | - Leonid M Makarov
- Center for Syncope and Cardiac Arrhythmias in Children and Adolescents of the Federal Medical Biological Agency, Moscow, Russia
| | - Vera N Komoliatova
- Center for Syncope and Cardiac Arrhythmias in Children and Adolescents of the Federal Medical Biological Agency, Moscow, Russia
| | - Irina V Kolesnikova
- Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russia
| | - Liubov O Skorodumova
- Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russia
| | - Edward V Generozov
- Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russia
| | | |
Collapse
|
14
|
Kamga MVK, Reppel M, Hescheler J, Nguemo F. Modeling genetic cardiac channelopathies using induced pluripotent stem cells - Status quo from an electrophysiological perspective. Biochem Pharmacol 2021; 192:114746. [PMID: 34461117 DOI: 10.1016/j.bcp.2021.114746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Long QT syndrome (LQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT) are genetic diseases of the heart caused by mutations in specific cardiac ion channels and are characterized by paroxysmal arrhythmias, which can deteriorate into ventricular fibrillation. In LQTS3 and BrS different mutations in the SCN5A gene lead to a gain-or a loss-of-function of the voltage-gated sodium channel Nav1.5, respectively. Although sharing the same gene mutation, these syndromes are characterized by different clinical manifestations and functional perturbations and in some cases even present an overlapping clinical phenotype. Several studies have shown that Na+ current abnormalities in LQTS3 and BrS can also cause Ca2+-signaling aberrancies in cardiomyocytes (CMs). Abnormal Ca2+ homeostasis is also the main feature of CPVT which is mostly caused by heterozygous mutations in the RyR2 gene. Large numbers of disease-causing mutations were identified in RyR2 and SCN5A but it is not clear how different variants in the SCN5A gene produce different clinical syndromes and if in CPVT Ca2+ abnormalities and drug sensitivities vary depending on the mutation site in the RyR2. These questions can now be addressed by using patient-specific in vitro models of these diseases based on induced pluripotent stem cells (iPSCs). In this review, we summarize different insights gained from these models with a focus on electrophysiological perturbations caused by different ion channel mutations and discuss how will this knowledge help develop better stratification and more efficient personalized therapies for these patients.
Collapse
Affiliation(s)
- Michelle Vanessa Kapchoup Kamga
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Michael Reppel
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Praxis für Kardiologie und Angiologie, Landsberg am Lech, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
15
|
Wang Y, Du Y, Luo L, Hu P, Yang G, Li T, Han X, Ma A, Wang T. Alterations of Nedd4-2-binding capacity in PY-motif of Na V 1.5 channel underlie long QT syndrome and Brugada syndrome. Acta Physiol (Oxf) 2020; 229:e13438. [PMID: 31900993 DOI: 10.1111/apha.13438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Abstract
AIMS Pathogenic variants of the SCN5A gene can cause Brugada syndrome (BrS) and long QT syndrome (LQTS), which predispose individuals to potentially fatal ventricular arrhythmias and sudden cardiac death. SCN5A encodes the NaV 1.5 protein, the pore forming α-subunit of the voltage-dependent cardiac Na+ channel. Using a WW domain, the E3 ubiquitin ligase Nedd4-2 binds to the PY-motif ([L/P]PxY) within the C-terminus of NaV 1.5, which results in decreased protein expression and current through NaV 1.5 ubiquitination. Here, we investigate the role of E3 ubiquitin ligase Nedd4-2-mediated NaV 1.5 degradation in the pathological mechanisms of the BrS-associated variant SCN5A-p.L1239P and LQTS-associated variant SCN5A-p.Y1977N. METHODS AND RESULTS Using a combination of molecular biology, biochemical and electrophysiological approaches, we examined the expression, function and Nedd4-2 interactions of SCN5A-p.L1239P and SCN5A-p.Y1977N. SCN5A-p.L1239P is characterized as a loss-of-function, whereas SCN5A-p.Y1977N is a gain-of-function variant of the NaV 1.5 channel. Sequence alignment shows that BrS-associated SCN5A-p.L1239P has a new Nedd4-2-binding site (from LLxY to LPxY). This new Nedd4-2-binding site increases the interaction between NaV 1.5 and Nedd4-2, enhancing ubiquitination and degradation of the NaV 1.5 channel. Disruption of the new Nedd4-2-binding site of SCN5A-p.L1239P restores NaV 1.5 expression and function. However, the LQTS-associated SCN5A-p.Y1977N disrupts the usual Nedd4-2-binding site (from PPxY to PPxN). This decreases NaV 1.5-Nedd4-2 interaction, preventing ubiquitination and degradation of NaV 1.5 channels. CONCLUSIONS Our data suggest that the PY-motif plays an essential role in modifying the expression/function of NaV 1.5 channels through Nedd4-2-mediated ubiquitination. Alterations of NaV 1.5-Nedd4-2 interaction represent a novel pathological mechanism for NaV 1.5 channel diseases caused by SCN5A variants.
Collapse
Affiliation(s)
- Ya Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Yuan Du
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Ling Luo
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Peijing Hu
- Department of Cardiovascular Medicine Second Affiliated Hospital of Xi'an Medical College Xi'an Shaanxi P. R. China
| | - Guodong Yang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Tao Li
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiu Han
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Aiqun Ma
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- Key Laboratory of Molecular Cardiology Xi'an Shaanxi P. R. China
- Key Laboratory of Environment and Genes Related to Diseases Xi'an Jiaotong University Ministry of Education Xi'an Shaanxi P. R. China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- Key Laboratory of Molecular Cardiology Xi'an Shaanxi P. R. China
- Key Laboratory of Environment and Genes Related to Diseases Xi'an Jiaotong University Ministry of Education Xi'an Shaanxi P. R. China
| |
Collapse
|
16
|
Yu H, Meng Y, Zhang S, Tian C, Wu F, Li N, Li Q, Jin Y, Pu J. Stop codons and the +4 nucleotide may influence the efficiency of G418 in rescuing nonsense mutations of the HERG gene. Int J Mol Med 2019; 44:2037-2046. [PMID: 31573043 PMCID: PMC6844634 DOI: 10.3892/ijmm.2019.4360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
The importance of the local sequence context in determining how efficiently aminoglycosides rescue nonsense mutations has been established previously in disease models. Different stop codons appear to facilitate the termination process with differing efficiencies. Furthermore, the efficiency with which termination is suppressed may also be influenced by the local sequence context surrounding the stop codon. The strongest bias has usually been identified with the nucleotide base that immediately follows the stop codon in the majority of experiments. However, how the sequence context influences the efficiency of aminoglycosides in rescuing the human ether‑a‑go‑go‑related (HERG) protein in mammalian cells remains to be fully elucidated. Therefore, the present study was devised to examine the susceptibility of different termination codons on the HERG gene and the +4 nucleotide immediately following them to be suppressed by aminoglycosides in 293 cells. The 293 cells were transiently transfected with the wild‑type or mutant genes. The read‑through effect was subsequently examined by adding aminoglycoside G418 into the culture medium, followed by incubation of the cells for 24 h. An immunofluorescence method was then used to observe the protein expression of HERG prior to and following drug treatment. Patch clamping was performed to evaluate the function of the HERG protein. These experiments revealed that stop codons TGA and TAA in the R1014X mutant were more susceptible to treatment with the drug G418. Similar results were observed with the W927X‑TGA and W927X‑TAA mutants. Subsequently, R1014X‑TGAC, R1014X‑TGAG and R1014X‑TGAA mutants were constructed based on the R1014X‑TGAT mutant. The level of red fluorescence was observed prior to and following the administration of G418 using antibodies targeting the N‑ or C‑terminus of the HERG protein. However, the tail current density was found only to increase with the R1014X‑TGAT mutant following G418 treatment. Taken together, the results of the present study suggest that the type of premature stop codon and the context of the nucleotide immediately following at the +4 position, may determine the pharmacological rescue efficiency of the HERG gene.
Collapse
Affiliation(s)
- Haiyun Yu
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006
| | - Yanhai Meng
- Department of ICU, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037
| | - Shuhong Zhang
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | - Chen Tian
- Department of Pathology, Capital Medical University Electric Power Teaching Hospital (State Grid Corporation Beijing Electric Power Hospital), Beijing 100037
| | - Fang Wu
- Department of Pathology, Capital Medical University Electric Power Teaching Hospital (State Grid Corporation Beijing Electric Power Hospital), Beijing 100037
| | - Ning Li
- Department of Pathology, Capital Medical University Electric Power Teaching Hospital (State Grid Corporation Beijing Electric Power Hospital), Beijing 100037
| | - Qiuyang Li
- Department of Pathology, Capital Medical University Electric Power Teaching Hospital (State Grid Corporation Beijing Electric Power Hospital), Beijing 100037
| | - Yulan Jin
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006
| | - Jielin Pu
- Department of Cardiology, East Hospital, Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
17
|
Hu RM, Tester DJ, Li R, Sun T, Peterson BZ, Ackerman MJ, Makielski JC, Tan BH. Mexiletine rescues a mixed biophysical phenotype of the cardiac sodium channel arising from the SCN5A mutation, N406K, found in LQT3 patients. Channels (Austin) 2019; 12:176-186. [PMID: 29983085 PMCID: PMC6104686 DOI: 10.1080/19336950.2018.1475794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Individual mutations in the SCN5A-encoding cardiac sodium channel α-subunit usually cause a single cardiac arrhythmia disorder, some cause mixed biophysical or clinical phenotypes. Here we report an infant, female patient harboring a N406K mutation in SCN5A with a marked and mixed biophysical phenotype and assess pathogenic mechanisms. Methods and Results: A patient suffered from recurrent seizures during sleep and torsades de pointes with a QTc of 530 ms. Mutational analysis identified a N406K mutation in SCN5A. The mutation was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells. After 48 hours incubation with and without mexiletine, macroscopic voltage-gated sodium current (INa) was measured with standard whole-cell patch clamp techniques. SCN5A-N406K elicited both a significantly decreased peak INa and a significantly increased late INa compared to wide-type (WT) channels. Furthermore, mexiletine both restored the decreased peak INa of the mutant channel and inhibited the increased late INa of the mutant channel. Conclusion: SCN5A-N406K channel displays both “gain-of-function” in late INa and “loss-of-function” in peak INa density contributing to a mixed biophysical phenotype. Moreover, our finding may provide the first example that mexiletine exerts a dual rescue of both “gain-of-function” and “loss-of-function” of the mutant sodium channel.
Collapse
Affiliation(s)
- Rou-Mu Hu
- a Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital , Capital Medical University , Beijing , China.,b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA
| | - David J Tester
- c Departments of Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Ryan Li
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Tianyu Sun
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Blaise Z Peterson
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Michael J Ackerman
- c Departments of Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Jonathan C Makielski
- b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA
| | - Bi-Hua Tan
- b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA.,d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
18
|
Zaytseva AK, Karpushev AV, Kiselev AM, Mikhaylov EN, Lebedev DS, Zhorov BS, Kostareva AA. Characterization of a novel SCN5A genetic variant A1294G associated with mixed clinical phenotype. Biochem Biophys Res Commun 2019; 516:777-783. [DOI: 10.1016/j.bbrc.2019.06.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/15/2022]
|
19
|
Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Classification and Reporting of Potentially Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing. Circulation 2019; 137:619-630. [PMID: 29431662 DOI: 10.1161/circulationaha.117.030142] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acquired and congenital forms of long QT syndrome represent 2 distinct but clinically and genetically intertwined disorders of cardiac repolarization characterized by the shared final common pathway of QT interval prolongation and risk of potentially life-threatening arrhythmias. Over the past 2 decades, our understanding of the spectrum of genetic variation that (1) perturbs the function of cardiac ion channel macromolecular complexes and intracellular calcium-handling proteins, (2) underlies acquired/congenital long QT syndrome susceptibility, and (3) serves as a determinant of QT interval duration in the general population has grown exponentially. In turn, these molecular insights led to the development and increased utilization of clinically impactful genetic testing for congenital long QT syndrome. However, the widespread adoption and potential misinterpretation of the 2015 American College of Medical Genetics and Genomics variant classification and reporting guidelines may have contributed unintentionally to the reduced reporting of common genetic variants, with compelling epidemiological and functional evidence to support a potentially proarrhythmic role in patients with congenital and acquired long QT syndrome. As a result, some genetic testing reports may fail to convey the full extent of a patient's genetic susceptibility for a potentially life-threatening arrhythmia to the ordering healthcare professional. In this white paper, we examine the current classification and reporting (or lack thereof) of potentially proarrhythmic common genetic variants and investigate potential mechanisms to facilitate the reporting of these genetic variants without increasing the risk of diagnostic miscues.
Collapse
Affiliation(s)
- John R Giudicessi
- Departments of Cardiovascular Medicine and Internal Medicine, Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN (J.R.G)
| | - Dan M Roden
- Departments of Biomedical Informatics, Medicine, and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.M.R.)
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands (A.A.M.W.)
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.J.A.)
| |
Collapse
|
20
|
Differences in Functional Expression of Connexin43 and Na V1.5 by Pan- and Class-Selective Histone Deacetylase Inhibition in Heart. Int J Mol Sci 2018; 19:ijms19082288. [PMID: 30081552 PMCID: PMC6121244 DOI: 10.3390/ijms19082288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Class-selective histone deacetylase (HDAC) inhibitors were designed to improve safety profiles and therapeutic effectiveness in the treatment of multiple cancers relative to pan-HDAC inhibitors. However, the underlying mechanisms for their therapeutic and cardiotoxic potentials remain poorly understood. Cardiac sodium currents (INa) and gap junction conductance (gj) were measured by whole cell patch clamp techniques on primary cultures of neonatal cardiomyocytes. Cardiac NaV1.5 sodium channel and connexin43 (Cx43) gap junction protein levels were assessed by Western blot analyses. Panobinostat produced concentration-dependent reductions in ventricular gj, peak INa density, and NaV1.5 protein expression levels. Membrane voltage (Vm)-dependent activation of INa was shifted by +3 to 6 mV with no effect on inactivation. Entinostat (1 μM) did not affect ventricular gj, peak INa density, or INa activation. However, the INa half-inactivation voltage (V½) was shifted by −3.5 mV. Ricolinostat had only minor effects on ventricular gj and INa properties, though INa activation was shifted by −4 mV. Cx43 and NaV1.5 protein expression levels were not altered by class-selective HDAC inhibitors. The lack of effects of class-selective HDAC inhibitors on ventricular gj and INa may help explain the improved cardiac safety profile of entinostat and ricolinostat.
Collapse
|
21
|
Han D, Tan H, Sun C, Li G. Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med (Maywood) 2018; 243:852-863. [PMID: 29806494 DOI: 10.1177/1535370218777972] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The voltage-gated sodium channel 1.5 (Nav1.5), encoded by the SCN5A gene, is responsible for the rising phase of the action potential of cardiomyocytes. The sodium current mediated by Nav1.5 consists of peak and late components (INa-P and INa-L). Mutant Nav1.5 causes alterations in the peak and late sodium current and is associated with an increasingly wide range of congenital arrhythmias. More than 400 mutations have been identified in the SCN5A gene. Although the mechanisms of SCN5A mutations leading to a variety of arrhythmias can be classified according to the alteration of INa-P and INa-L as gain-of-function, loss-of-function and both, few researchers have summarized the mechanisms in this way before. In this review article, we aim to review the mechanisms underlying dysfunctional Nav1.5 due to SCN5A mutations and to provide some new insights into further approaches in the treatment of arrhythmias. Impact statement The field of ion channelopathy caused by dysfunctional Nav1.5 due to SCN5A mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of various arrhythmias develops. In this review, we focus on the dysfunctional Nav1.5 related to arrhythmias and the underlying mechanisms. We update SCN5A mutations in a precise way since 2013 and presents novel classifications of SCN5A mutations responsible for the dysfunction of the peak (INa-P) and late (INa-L) sodium channels based on their phenotypes, including loss-, gain-, and coexistence of gain- and loss-of function mutations in INa-P, INa-L, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying arrhythmias from cell to bedside, promoting the management of various arrhythmias in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Hui Tan
- 2 Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chaofeng Sun
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Guoliang Li
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
22
|
Influence of genetic modifiers on sudden cardiac death cases. Int J Legal Med 2017; 132:379-385. [DOI: 10.1007/s00414-017-1739-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
|
23
|
Chadda KR, Jeevaratnam K, Lei M, Huang CLH. Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes. Pflugers Arch 2017; 469:629-641. [PMID: 28265756 PMCID: PMC5438422 DOI: 10.1007/s00424-017-1959-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/14/2017] [Indexed: 12/11/2022]
Abstract
Arrhythmias arise from breakdown of orderly action potential (AP) activation, propagation and recovery driven by interactive opening and closing of successive voltage-gated ion channels, in which one or more Na+ current components play critical parts. Early peak, Na+ currents (INa) reflecting channel activation drive the AP upstroke central to cellular activation and its propagation. Sustained late Na+ currents (INa-L) include contributions from a component with a delayed inactivation timecourse influencing AP duration (APD) and refractoriness, potentially causing pro-arrhythmic phenotypes. The magnitude of INa-L can be analysed through overlaps or otherwise in the overall voltage dependences of the steady-state properties and kinetics of activation and inactivation of the Na+ conductance. This was useful in analysing repetitive firing associated with paramyotonia congenita in skeletal muscle. Similarly, genetic cardiac Na+ channel abnormalities increasing INa-L are implicated in triggering phenomena of automaticity, early and delayed afterdepolarisations and arrhythmic substrate. This review illustrates a wide range of situations that may accentuate INa-L. These include (1) overlaps between steady-state activation and inactivation increasing window current, (2) kinetic deficiencies in Na+ channel inactivation leading to bursting phenomena associated with repetitive channel openings and (3) non-equilibrium gating processes causing channel re-opening due to more rapid recoveries from inactivation. All these biophysical possibilities were identified in a selection of abnormal human SCN5A genotypes. The latter presented as a broad range of clinical arrhythmic phenotypes, for which effective therapeutic intervention would require specific identification and targeting of the diverse electrophysiological abnormalities underlying their increased INa-L.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, VSM Building, Guildford, GU2 7AL, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, VSM Building, Guildford, GU2 7AL, UK
- School of Medicine, Perdana University-Royal College of Surgeons Ireland, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
- Department of Biochemistry, University of Cambridge, Hopkins Building, Cambridge, CB2 1QW, UK.
| |
Collapse
|
24
|
陈 燕, 刘 深, 谢 亮, 朱 庭, 陈 益, 邓 晓, 孟 素, 彭 健. [Functional analysis of a novel SCN5A mutation G1712C identified in Brugada syndrome]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:256-260. [PMID: 28219873 PMCID: PMC6779663 DOI: 10.3969/j.issn.1673-4254.2017.02.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To elucidate the molecular and electrophysiological mechanisms of Brugada syndrome through functional analysis of a novel SCN5A gene mutation G1712C. METHODS A recombinant plasmid pRc<CMV-hH1 containing the mutant human cardiac sodium channel α subunit (hH1) cDNA was constructed using in vitro PCR-based site-directed mutagenesis technique. LipofectamineTM 3000 was used to transfect the plasmid DNA into HEK293 cell line to induce stable expression of Na+ channel β1-subunit, and the positive colonies were selected by screening with G418.The standard liposome method was used to transiently transfect HEK293 cells with either the wild-type or mutant Na+ channel subunits (hH1 and mhH1, respectively), and the macroscopic Na+ currents were recorded using whole-cell patch-clamp technique. Data acquisition and analysis, generation of voltage commands and curve fitting were accomplished with EPC-10, PatchMaster and IGOR Pro 6.0. RESULTS An HEK293 cell line that stably expressed Na+ channel β1-subunit was successfully established. After transient transfection with the WT subunit, large Na+ currents were recorded from the stable β1-cell line. Transient transfection with the G1712C subunit, however, did not elicit a Na+ current in the cells. CONCLUSION Compared with normal Na+ channel, the wild-type channel exhibits a similar sodium current. The characteristic kinetics of sodium channel of WT-hH1 was identical to that in normal cardiac muscle cell, and the missense mutation (G1712C) in the P-loop region of the domain IV may have caused the failure of sodium channel expression.
Collapse
Affiliation(s)
- 燕玉 陈
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - 深荣 刘
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - 亮真 谢
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - 庭延 朱
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - 益臻 陈
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - 晓江 邓
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - 素荣 孟
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - 健 彭
- />南方医科大学南方医院心内科,广东 广州510515Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| |
Collapse
|